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Abstract. Recent introduction of ICT in agriculture has brought a
number of changes in the way farming is done. This means use of Internet
of Things(IoT), Cloud Computing(CC), Big Data (BD) and automa-
tion to gain better control over the process of farming. As the use of
these technologies in farms has grown exponentially with massive data
production, there is need to develop and use state-of-the-art tools in
order to gain more insight from the data within reasonable time. In
this paper, we present an initial understanding of Convolutional Neural
Network (CNN), the recent architectures of state-of-the-art CNN and
their underlying complexities. Then we propose a classification taxon-
omy tailored for agricultural application of CNN. Finally, we present
a comprehensive review of research dedicated to applications of state-
of-the-art CNNs in agricultural production systems. Our contribution
is in two-fold. First, for end users of agricultural deep learning tools,
our benchmarking finding can serve as a guide to selecting appropriate
architecture to use. Second, for agricultural software developers of deep
learning tools, our in-depth analysis explains the state-of-the-art CNN
complexities and points out possible future directions to further optimize
the running performance.

Keywords: Convolutional Neural Network · Farming ·
Internet of Things

1 Introduction

The global population is set to touch 9.6 billion mark by year 2050 [4]. The
continuous population growth means increase in demand for food to feed the
population [5]. Agriculture is the practice of cultivation of land and breeding of
animals & plants to provide food and other products in order to sustain and
enhance life [6]. Due to the extreme weather conditions, rising climate change
and environmental impact resulting from intensive farming practices [8], farmers
are now forced to change their farming practices. To cope with the new farming
challenges, farmers are forced to practice smart farming [9], which offers solutions
of farming management and environment management for better production.
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Smart farming focuses on the use of information and communication technology
(ICT) in the cyber-physical farm management cycle for efficient farming [10].

Current ICT technologies relevant for use in smart farming include IoT [11],
remote sensing [12], CC [13] and BD [14]. Remote sensing is the science of gath-
ering information about objects or areas from a distance without having phys-
ical contact with objects or areas being investigated. Data collected through
remote sensing and distributed devices is managed by cloud computing tech-
nology, which offers the tools for pre-processing and modelling of huge amounts
of data coming from various heterogeneous sources [15]. These four technologies
could create applications to provide solutions to todays’s agricultural challenges.
The solutions include real time analytics required to carry out agile actions espe-
cially in case of suddenly changed operational or environmental condition (e.g.
weather or disease alert). The continuous monitoring, measuring, storing and
analysing of various physical aspects has led to a phenomena of big data [16].
To get insight for practical action from this large type of data requires tools and
methods that can process multidimensional data from different sources while
leveraging on the processing time.

One of the successful data processing tool applied in this kind of large dataset
is the biologically inspired Convolutional Neural Networks (CNNs), which have
achieved state-of-the-art results [17] in computer vision [18] and data mining
[19]. As deep learning has been successfully applied in various domains, it has
recently entered in the domain of agriculture [10]. CNN is a subset method of
Deep Learning (DL) [20], defined as deep, feed-forward Artificial Neural Network
(ANN) [21]. The CNN covolutions allow data representations in a hierarchical
way [22]. The common characteristics of CNN models is that they follow the same
general design principles of successive applying convolutional layers to the input,
periodically downsampling the spatial dimensions while increasing the number
of feature maps. These architectures serve as rich feature extractors which can
be used for image classification, object detection, image segmentation and many
more other advanced tasks. This study investigates the agricultural problems
that employ the major state-of-the-art CNN architectures that have participated
in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [23] with
highest accuracy in a multi-class classification problem. ImageNet [26] classifi-
cation challenge has played a critical role in advancing the CNN state-of-the-art
[17]. The motivation for carrying out the study include: (a) CNNs has better
precision compared to other popular image-processing techniques in the large
majority of problems [27]. (b) CNN has entered in the agricultural domain with
promising potential [28]. (c) all the CNN models that have achieved the top-5
error are successful when applied in other computer vision domain with remark-
able results [27]. This review aims to provide insight on use of state-of-the-art
CNN models in relation to smart farming and to identify smart farming research
and development challenges related to computer vision. Therefore the analysis
will primarily focus on the success on use of state-of-the-art CNN models in
smart farms with a intention to provide this relevant information to the future
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researchers. From that perspective the research questions to be addressed in the
study are:

(a) What is the role of CNN in smart farming?
(b) What type of the state-of-the-art CNN architecture should be used?
(c) What are the benefits of using state-of-the-art CNN in IoT based agricultural

systems?

The rest of the paper is organized as follows: in Sect. 2, we present an overview
of existing state-of-the-art CNNs architectures including their recent updates.
Then we propose a taxonomy to provide a systematic classification of agricultural
issues for CNN application. In Sect. 3, we present the existing state-of-the-art
CNNs and their scope of application in agri-systems. We conclude the paper in
Sect. 4.

2 Methodology

In order to address the research questions a bibliographic analysis in the domain
under study was done between 2012 and 2018, it involved two steps: (a) collec-
tion of related works and, (b) detailed review and analysis of the works. The
choice of the period is from the fact that CNN is rather a recent phenomenon.
In the first step, a keyword-based search using all combinations of two groups of
keywords of which the first group addresses CNN models (LeNet, AlexNet, NIN,
ENet, GoogLeNet, ResNet, DenseNet, VGG, Inception) and the second group
refers to farming (i.e. agriculture, farming, smart farming). The analysis was
done while considering the following research questions: (a) smart farm problem
they addressed, (b) dataset used, (c) accuracy based on author’s performance
metric, (d) state-of-the-art CNN model used. Its important to note that use of
state-of-the-art deep learning has great potential, and there have been recent
small comparative studies to analyse and compare the most efficient archtec-
ture to use in agricultural systems. They include: Comparison between LeNet,
AlexNet, and VGGNet on automatic identification of center pivot irrigation [29]
and comparison between VGG-16, Inception-V4, Resnet and DenseNet for plant
disease identification [30].

3 State-of-the-Art CNN: An Overview

CNNs typically perform best when they are large, meaning when they have
more deeper and highly interconnected layers [31]. The primary drawback of
these architectures is the computational cost, thus large CNNs are typically
impractically slow especially for embedded IoT devices [32]. There are recent
research efforts on how to reduce the computation cost of deep learning net-
works for everyday application while maintaining the prediction accuracy [33].
In order to understand the application of the state-of-the-art CNN architectures
in agricultural systems, we reviewed the accuracy and computational require-
ments from relevant literature including recent updates of networks as shown in
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Fig. 1. The classical state-of-the-art deep network architectures include; LeNet
[34], AlexNet [35], NIN [36], ENet [37], ZFNet [38], GoogleLeNet [39] and VGG
16 [40]. Modern architectures include; Inception [41], ResNet [42], and DenseNet
[43].

Fig. 1. Top-1 accuracy vs the computational cost. The size of the circles is propor-
tional to number of parameters. Legend; the grey circles at the bottom right represents
number of parameters in millions [32].

LeNet-5 is a 7-layer pioneer convolutional network by LeCun et al. [34] to
classify digits, used to recognise hand-written numbers digitized in 32× 32 pixel
greyscale input images. High resolution images require more convolutional layers,
so the model is constrained by the availability of the computing resources.

AlexNet is a 5-layer network similar to LeNet-5 but with more filters [35].
It outperformed Lenet-5 and won the LSVRC challenge by reducing the top-
5 error from 26.2% to 15.3%. Use Rectified Linear Unit (Relu) [1] instead of
Hyperbolic Tangent (Tanh) [2] to add non-linearity and accelerates the speed
by 6 times. Droupout was employed to reduce over-fitting in the fully-connected
layers. Overlap pooling was used to reduce the size of the network while reducing
top-1 error by 0.4% and top-5 error by 0.3%.

Lin et al. [36] created a Network in Network (NIN) which inspired the incep-
tion architecture of googlenet. In their paper, they replaced the linear filters
with nonlinear multi linear perceptrons that had better feature extraction and
accuracy. They also replaced the fully connected layers with activation maps and
global average pooling. This move helped reduce the parameters and network
complexity.

In their article Paszke et al. [37] introduced an Efficient Neural Network
(ENet) for running on low-power mobile devices while achieving state-of-the-
art results. ENet architecture is largely based on ResNets. The structure has
one master and several branches that separate from the master but concatenate
back.

In their work Zeiler and Fergus [38] created ZFNet which won a ILSVRC
2013 [25] image classification. It was able to achieve a top-5 rate of 14.8% an
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improvement of the AlexNet. They were able to do this by tweaking the hyper-
parameters of AlexNet while maintaining the same structure with additional
deep learning elements. There is no record observed of use of ZFNet in agricul-
tural systems despite the accuracy improvement. Each branch consists of three
convolutional layers. The ‘first’ 1×1 projection reduces the dimensionality while
the latter 1 × 1 projection expands the dimensionality. In between these con-
volutions, a regular (no annotation/asymmetric X), dilated (dilated X) or full
convolution (no annotation) takes place. Batch normalization [60] and PReLU
[61] are placed between all convolutions. As regularizer in the bottleneck, Spatial
Dropout is used. MaxPooling on the master is added only when the bottleneck
is downsampling which is true.

GoogleNet, a 2014 ILSVRC image classification winner, was inspired by
LeNet but implemented a novel inception module. The Inception cell performs
series of convolutions at different scales and subsequently aggregate the results.
This module is based on several very small convolutions in order to drastically
reduce the number of parameters. There has been tremendous efforts done to
improve the performance of the architecture: (a) Inception v1 [39] which per-
forms convolution on an input, with 3 different sizes of filters (1 × 1, 3 × 3,
5 × 5). Additionally, max pooling is also performed. The outputs are concate-
nated and sent to the next inception module. (b) Inception v2 and Inception v3
[41] factorize 5 × 5 convolution to two 3 × 3 convolution operations to improve
computational speed. Although this may seem counterintuitive, a 5 × 5 con-
volution is 2.78 times more expensive than a 3 × 3 convolution. So stacking
two 3 × 3 convolutions infact leads to a boost in performance. (c) In Inception
v4 and Inception-ResNet [44] the initial set of operations were modified before
introducing the Inception blocks.

Simonyan and Zisserman created VGGNet while doing investigation on the
effect of convolutional network depth on its accuracy in the large-scale image
recognition setting. The VGGNet took the second place after GoogLeNet in the
competition. The model is made up of 16 convolutional layers which is similar to
[35] but with many filters. There have been a number of update to the VGGNet
archtecture starting with pioneer VGG-11(11 layers) which obtained 10.4% error
rate [40]. VGG-13 (13 layers) obtains 9.9% error rate, which means the addi-
tional convolutional layers helps the classification accuracy. VGG-16(16 layers)
obtained a 9.4% error rate, which means the additional 3×1×1 conv layers help
the classification accuracy. 1 × 1 convolution helps increase non-linearity of the
decision function, without changing the dimensions of input and output, 1 × 1
convolution is able to do the projection mapping in the same high dimension-
ality. This approach is used in NIN [36] GoogLeNet [39] and ResNet [42]. After
updating to VGG-16 it obtained 8.8% error rate which means the deep learning
network was still improving by adding number of layers. VGG-19 (19 layers) was
developed to further improve the performance but it obtained 9.0% showing no
improvement even after adding more layers.

When deeper networks starts converging, a degradation problem is exposed:
with the network depth increasing, accuracy gets saturated and then degrades
rapidly. Deep Residual Neural Network(ResNet) created by He al. [42] introduced
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a norvel architecture with insert shortcut connections which turn the network
into its counterpart residual version. This was a breakthrough which enabled the
development of much deeper networks. The residual function is a refinement step
in which the network learn how to adjust the input feature map for higher quality
features. Following this intuition, the network residual block was refined and
proposed a pre-activation variant of residual block [45], in which the gradients
can flow through the shortcut connections to any other earlier layer unimpeded.
Each ResNet block is either 2 layer deep (used in small networks like ResNet
18, 34) or 3 layer deep (ResNet 50, 101, 152). This technique is able to train
a network with 152 layers while still having lower complexity than VGGNet. It
achieves a top-5 error rate of 3.57% which beats human-level performance on
this dataset. Although the original ResNet paper focused on creating a network
architecture to enable deeper structures by alleviating the degradation problem,
other researchers have since pointed out that increasing the network’s width
(channel depth) can be a more efficient way of expanding the overall capacity of
the network.

In DenseNet which is a logical extension of ResNet, there is improved effi-
ciency by concatenating each layer feature map to every successive layer within a
dense block [43]. This allows later layers within the network to directly leverage
the features from earlier layers, encouraging feature reuse within the network.
For each layer, the feature-maps of all preceding layers are used as inputs, and
its own feature-maps are used as inputs into all subsequent layers, this helps
alleviate the vanishing-gradient problem, feature reuse and reduce number of
parameters.

3.1 Proposed Agricultural Issues Classification Taxonomy

Many agricultural CNN solutions have been developed depending on specific
agriculture issues. For the study purpose, a classification taxonomy tailored to
CNN application in the smart farming was developed as shown Fig. 2. In this
section, we categorize use of state-of-the-art CNN based on the agricultural issue
they solve:

(a) Plant management includes solutions geared towards crop welfare and pro-
duction. This includes classification (species), detection (disease and pest)
and prediction (yield production).

(b) Livestock management address solutions for livestock production (predic-
tion and quality management) and animal welfare (animal identification,
species detection and disease and pest control).

(c) Environment management addresses solutions for land and water manage-
ment.

3.2 Use of State-of-the-Art CNN in Smart Farms

The Table 1, shows use of state-of-the-art CNN in agriculture and in particular
the areas of plant and leaf disease detection, animal face identification, plant
recognition, land cover classification, fruit counting and identification of weeds.
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Fig. 2. Proposed classification taxonomy for CNN use in smart farm

It consist of 5 columns to show: the problem description, size of data used, accu-
racy according to the metrics used, the state-of-the-art CNN used and reference
literature.

In their paper, Amara et al. [54] use the LeNet architecture to classify the
banana leaves diseases. The model was able to effectively classify the leaves after
several experiments. The approach was able to classify leaves images with differ-
ent illumination, complex background, resolution, size, pose, and orientation. We
also reviewed use of CaffeNet archtecture [59] in agricultural application, which
is a 1-GPU version of AlexNet. The success of this model at LSVRC 2012 [24]
encourage many computer vision community to explore more on the application
of deep learning in computer vision. Mohanty et al. [7] combined both AlexNet
and GoogLeNet to identify 14 crop species and 26 diseases(or absence thereof)
from a dataset of 54,305 images. The approach records an impressive accuracy of
99.35% demonstrating the feasibility of the state-of-the-art CNN architectures.
Other areas AlexNet has been used with high accuracy record include; identify
plants using different plant views [49], identify plant species [48], identify obsta-
cles in the farm [50] and leaf disease detection [3]. Because of its achievement to
improve utilization of the computing resources GoogLeNet has been used in fruit
count [53] and plant species classification [7]. VGGNet has been used in classi-
fying weed [56], detect obstacles in the farm [51], fruit detection [47] and animal
face recognition [55]. Like ResNet, DenseNet is a recent model that explains why
it has not been employed significantly in farming, nevertheless it has been used
in thistle identification in winter wheat and spring barley [52]. Since ResNet is
a such a recent model, it have only been used by one author in fruit counting
[53]. Many of the CNN developed for agricultural use depend on the problem or
challenge they solve.
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Table 1. Use of state-of-the-art CNN in Smart Farm

No. Smartfarm problem

description

Data used Accuracy CNN

framework

used

Article

1 Fruit detection Images of three

fruit varieties:

apples (726),

almonds (385) and

mangoes (1154)

F1 (precision score)

of 0.904 (apples)

0.908 (mango) 0.775

(almonds)

VGGNet [46]

2 Detection of sweet pepper and

rock melon fruits

122 images 0.838 (F1) VGGNet [47]

3 Recognize different plant

species

Data set of 44

classes

99.60% (CA - correct

prediction)

AlexNet [48]

4 Recognize different plant 91 759 images 48.60% (LC-correct

species classification)

AlexNet [49]

5 Identify obstacles in row crops

and grass mowing

437 images 99.9% in row crops

and 90.8% in grass

mowing (CA)

AlexNet [50]

6 Identify crop species and

diseases

54 306 images 0.9935 (F1) AlexNet +

GoogLeNet

[7]

7 Detect obstacles that are

distant, heavily occluded and

unknown

48 images 0.72 (F1) AlexNet +

VGG

[51]

8 Leaf disease detection 4483 images 96.30% (CA) CaffeNet [3]

9 Identify thistle in winter wheat

and spring barley images

4500 images 97.00% (CA) DenseNet [52]

10 Predict number of tomatoes in

images

24 000 images 91% (RFC-Ratio of

total fruits counted)

on real images, 93%

(RFC) on synthetic

images

GoogLeNet +

ResNet

[53]

11 Classify banana leaf diseases 3700 images 96% (CA), 0.968 (F1) LeNet [54]

12 Identify pig face 1553 images 96.7% (CA) VGGNet [55]

13 Classify weed from crop

species based on 22 different

species in total

10413 images 86.20% (CA) VGGNet [56]

14 Detecting and categorizing the

criticalness of Fusarium wilt of

radish based on thresholding a

range of color features

1500 images GoogLeNet [57]

15 Fruit counting 24 000 images 91% accuracy Inception-

ResNet

[53]

16 Automatic Plant disease

diagnosis for early disease

symptoms

8178 images Overall improvement

of the balanced

accuracy from 0.78 to

0.87 from previous

2017 study

Deep ResNet [58]

4 Conclusions and Recommendations

Despite remarkable achievement in use state-of-the-art CNN in agriculture in
general, there exist grey areas in relation to smart farm that future researchers
may look at. These areas may include; real-time image classification, interactive
image classification and interactive object detection. State-of-the-art CNN is rel-
atively a new technology that explain why the finding of the study about their
use in smart farm is relatively small. However, its is important to note that mod-
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els built from state-of-the-art architectures have a impressive record of better
precision performance. In this paper, we aimed at establishing the potential of
state-of-the-art CNN in IoT based smart farms. In particular we first discussed
the architectures of state-of-the-art CNNs and their respective prediction accu-
racy at the ILSVRC challenge. Then a survey on application of the identified
CNNs in Agriculture was performed; to examine the particular application in
a smart farm, listed technical details of the architecture employed and overall
prediction accuracy achieved according to the author precision metrics. From
the study its evident of continuous accuracy improvement of the state-of-the-art
CNN architectures as computer vision community put effort to perfect the meth-
ods. The findings indicate that state-of-the-art CNN has achieved better preci-
sion in all the cases applied in the agricultural domain, scoring higher accuracy
in majority of the problem as compared to other image-processing techniques.
Considering that the state-of-the-art CNN has achieved state-of-the-art results
in prediction in general and high precision in the few farming cases observed,
there is great potential that can be achieved in using the methods in smart farm-
ing. It has been observed that many authors apply more than one architecture
in order to optimize the performance of the network without compromising the
expected accuracy. This approach is very efficient in the observed cases, and we
recommend similar hybrid approach when building robust IoT based networks
which are computationally fair to the mobile devices. This study aims to moti-
vate researchers to experiment and apply the state-of-the-art methods in smart
farms problems related to computer vision and data analysis in general.
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10. Kamilaris, A., Prenafeta Boldú, F.: A review of the use of convolutional neural
networks in agriculture. J. Agric. Sci. 156, 312–322 (2018). https://doi.org/10.
1017/S0021859618000436

https://doi.org/10.1017/S0021859618000436
https://doi.org/10.1017/S0021859618000436


Modern CNNs for IoT Based Farms 77

11. Weber, R.H., Weber, R.: Internet of Things: Legal Perspectives. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-11710-7

12. Ray, A.S.: Remote sensing in agriculture. Int. J. Environ. Agric. Biotechnol.
(IJEAB) 1(3) (2016)

13. Jinbo, C., Xiangliang, C., Han-Chi, F., et al.: Clust. Comput. https://doi.org/10.
1007/s10586-018-2022-5

14. Chi, M., Plaza, A., Benediktsson, J.A., Sun, Z., Shen, J., Zhu, Y.: Big data for
remote sensing: challenges and opportunities. Proc. IEEE 104, 2207–2219 (2016)

15. Waga, D., Rabah, K.: Environmental conditions’ big data management and cloud
computing analytics for sustainable agriculture. World J. Comput. Appl. Technol.
2, 73–81 (2017)

16. Chen, M., Mao, S., Liu, Y.: Big data: a survey. MONET 19, 171–209 (2014)
17. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J.

Comput. Vis. 115, 211–252 (2015)
18. Liang, M., Hu, X.: Recurrent convolutional neural network for object recognition.

In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
3367–3375 (2015)

19. Poria, S., Cambria, E., Gelbukh, A.F.: Aspect extraction for opinion mining with
a deep convolutional neural network. Knowl.-Based Syst. 108, 42–49 (2016)

20. Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep learning. Nature 521, 436–444
(2015)

21. Bhandare, A., Bhide, M., Gokhale, P., Chandavarkar, R. Applications of convolu-
tional neural networks (2016)

22. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61,
85–117 (2015)

23. http://image-net.org/challenges/LSVRC/2017. Accessed 02 Sept 2018
24. http://image-net.org/challenges/LSVRC/2012/. Accessed 02 Sept 2018
25. http://image-net.org/challenges/LSVRC/2013/. Accessed 02 Sept 2018
26. ImageNet. http://image-net.org. Accessed 21 Oct 2018
27. Zahangir, M.A., et al.: The history began from AlexNet: a comprehensive survey

on deep learning approaches. https://arxiv.org/pdf/1803.01164
28. Kamilaris, A., Prenafeta-Boldu, F.X.: Deep learning in agriculture: a survey. Com-

put. Electron. Agric. 147, 70–90 (2018)
29. Zhang, C., Yue, P., Liping, D., Zhaoyan, W.: Automatic identification of center

pivot irrigation systems from landsat images using convolutional neural networks.
Agriculture 8, 147 (2018)

30. Chebet, E., Yujian, L., Njuki, S., Yingchun, L.: A comparative study of fine-tuning
deep learning models for plant disease identification. Comput. Electron. Agric.
https://doi.org/10.1016/j.compag.2018.03.032

31. Andri, R., Cavigelli, L., Rossi, D., Benini, L.: Hyperdrive: a systolically scalable
binary-weight CNN inference engine for mW IoT end-nodes. In: 2018 IEEE Com-
puter Society Annual Symposium on VLSI (ISVLSI), pp. 509–515 (2018)

32. Canziani, A., Paszke, A., Culurciello, E.: An analysis of deep neural network models
for practical applications. CoRR, abs/1605.07678 (2016)

33. HasanPour, S.H., Rouhani, M., Fayyaz, M., Sabokrou, M., Adeli, E.: Towards
principled design of deep convolutional networks: introducing SimpNet. CoRR,
abs/1802.06205 (2018)

34. LeCun, Y., Bottou, L., Bengio, Y.: Gradient-based learning applied to document
recognition. Proc. IEEE 86(11), 2278–2324 (1998)

35. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. Commun. ACM 60, 84–90 (2012)

https://doi.org/10.1007/978-3-642-11710-7
https://doi.org/10.1007/s10586-018-2022-5
https://doi.org/10.1007/s10586-018-2022-5
http://image-net.org/challenges/LSVRC/2017
http://image-net.org/challenges/LSVRC/2012/
http://image-net.org/challenges/LSVRC/2013/
http://image-net.org
https://arxiv.org/pdf/1803.01164
https://doi.org/10.1016/j.compag.2018.03.032


78 P. K. Gikunda and N. Jouandeau

36. Lin, M., Chen, Q., Yan, S.: Network in network. CoRR, abs/1312.4400 (2013)
37. Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: ENet: a deep neural network

architecture for real-time semantic segmentation. CoRR, abs/1606.02147 (2016)
38. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.

In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS,
vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10590-1 53

39. Szegedy, C., et al.: Going deeper with convolutions. In: IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 1–9 (2015)

40. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556 (2014)

41. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 2818–2826 (2016)

42. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778 (2015)

43. Huang, G., Liu, Z., Maaten, L.V., Weinberger, K.Q.: Densely connected convo-
lutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2261–2269 (2017)

44. Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4. In: Inception-ResNet and the
Impact of Residual Connections on Learning. AAAI (2017)

45. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In:
Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp.
630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0 38

46. Bargoti, S., Underwood, J.P.: Deep fruit detection in orchards. In: 2017 IEEE
International Conference on Robotics and Automation (ICRA), pp. 3626–3633
(2017)

47. Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., McCool, C.: DeepFruits: a fruit
detection system using deep neural networks. Sensors 16, 1222 (2016)

48. Lee, S.H., Chan, C.S., Wilkin, P., Remagnino, P.: Deep-plant: plant identification
with convolutional neural networks. In: 2015 IEEE International Conference on
Image Processing (ICIP), pp. 452–456 (2015)

49. Reyes, A.K., Caicedo, J.C., Camargo, J.E.: Fine-tuning deep convolutional net-
works for plant recognition. In: CLEF (2015)

50. Steen, K.A., Christiansen, P., Karstoft, H., Jørgensen, R.N.: Using deep learning
to challenge safety standard for highly autonomous machines in agriculture. J.
Imaging 2, 6 (2016)

51. Christiansen, P., Nielsen, L.N., Steen, K.A., Jørgensen, R.N., Karstoft, H.: Deep-
Anomaly: combining background subtraction and deep learning for detecting obsta-
cles and anomalies in an agricultural field. Sensors 16, 1904 (2016)

52. Sørensen, R.A., Rasmussen, J., Nielsen, J., Jørgensen, R.N.: Thistle detection using
convolutional neural networks. In: EFITA WCCA 2017 Conference, Montpellier
Supagro, Montpellier, France, 2–6 July 2017

53. Rahnemoonfar, M., Sheppard, C.: Deep count: fruit counting based on deep sim-
ulated learning. Sensors 17, 905 (2017)

54. Amara, J., Bouaziz, B., Algergawy, A.: A deep learning-based approach for banana
leaf diseases classification. In: BTW (2017)

55. Hansen, M.F., et al.: Towards on-farm pig face recognition using convolutional
neural networks. Comput. Ind. 98, 145–152 (2018)

https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-46493-0_38


Modern CNNs for IoT Based Farms 79

56. Dyrmann, M., Karstoft, H., Midtiby, H.: Plant species classification using deep
convolutional neural network. Biosyst. Eng. 151, 72–80 (2016)

57. Hyun, J., Ibrahim. H., Irfan, M., Minh, L., Suhyeon, I.: UAV based wilt detection
system via convolutional neural networks. Sustain. Comput. Inform. Syst. https://
doi.org/10.1016/j.suscom.2018.05.010

58. Picona, A., Alvarez, A., Seitz, M., Ortiz, O., Echazarra, J., Johannes, A.: Deep
convolutional neural networks for mobile capture device-based crop disease classi-
fication in the wild. Comput. Electron. Agric. https://doi.org/10.1016/j.compag.
2018.04.002

59. Jia, Y., et al.: Convolutional architecture for fast feature embedding. In: ACM
Multimedia (2014)

60. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: ICML (2015)

61. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-
level performance on ImageNet classification. In: 2015 IEEE International Confer-
ence on Computer Vision (ICCV), pp. 1026–1034 (2015)

https://doi.org/10.1016/j.suscom.2018.05.010
https://doi.org/10.1016/j.suscom.2018.05.010
https://doi.org/10.1016/j.compag.2018.04.002
https://doi.org/10.1016/j.compag.2018.04.002

	Modern CNNs for IoT Based Farms
	1 Introduction
	2 Methodology
	3 State-of-the-Art CNN: An Overview
	3.1 Proposed Agricultural Issues Classification Taxonomy
	3.2 Use of State-of-the-Art CNN in Smart Farms

	4 Conclusions and Recommendations
	References




