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Abstract

In this paper, the numerical effects of asset price fluctuation on the value of an
option using a two-dimensional Black-Scholes-Merton partial differential equation
have been investigated. The equation governing the value of an option was solved
numerically using the Crank-Nicolson finite difference scheme and simulated in
MATLAB software to obtain the profiles of the option values. The numerical
results obtained from the present study have been presented graphically and also
discussed. The effects of varying risk-free interest rate, the volatility of the two
assets prices, correlation coefficient between the two asset prices, and dividend
payout on the value of an option have been determined. It was observed that an
increase in volatility of the two asset prices results in an increase in the values of
both the call and put options. It was also noted that an increase in risk-free interest
rate results in an increase in the value of a call option but a decrease in the value
of a put option. Furthermore, the results revealed that an increase in the dividend
payout and correlation coefficient between the two asset prices results in a decrease
in the value of a call option but an increase in the value of a put option. The results
obtained from the present study are useful for investors wishing to maximize the
profits from their investments.
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1. INTRODUCTION

The trading of options has gained a lot of interest from various researchers due to
imperfect market liquidity, which results in fluctuations in prices of the underlying asset.
In the nineteenth century, a contemporary of Einstein applied random phenomenon (i.e.,
a stochastic process) on the theory of speculation and the concept of Brownian motion to
price the value of options. Black, Scholes, and Merton later came up with the celebrated
modern partial differential equation for option pricing. Thus, Black-Scholes-Merton
model became the most powerful and significant tool for the valuation of an option. Due
to the fluctuations in market prices of the underlying asset, rigorous mathematical and
probabilistic concepts through the theory of stochastic process (also known as Wiener
process) resolving old challenges and giving mathematical ideas to new problems in
engineering and finance and other different fields were formulated.

There was a further rigorous treatment to stochastic process and stochastic differential
equations which ended up with the laws that govern stochastic integration and solutions
to stochastic differential equations. Stochastic differential equations are fundamental
in describing and understanding random phenomena in different areas in physics,
engineering, finance, economics, and other areas. In particular, they serve as a
model for asset price fluctuation in finance and is the driving force behind the famous
Black-Scholes-Merton option pricing partial differential equation.

In his study on the linear stochastic price securities adjustments, [9] developed a
logistical equation for security asset consideration. The study discovered that assets
security prices rarely rise up exponentially because of the controlling factors that might
inhibit the asset prices. [11] numerically investigated a linear Black-Scholes model
using finite difference method based on full and semi-discrete schemes for European
call and put option. The study revealed that as the price of the asset increases the call
option value also increases.

[7] investigated the correlation trading strategies and found that an increase in volatility
leads to an increase in the option value. The study also found that an increase in
volatility lowers the value of the call option if the correlation coefficient is increased
and vice versa. In their study on the numerical investigations of the effects of variable
transaction costs on the value of an option, [10] analyzed an option pricing model
of nonlinear Black-Scholes equation with stochastic transaction prices. The study
indicated that the Black-Scholes model can be interpreted by transforming it fully
from parabolic nonlinear equation into a parabolic quasi-linear equation for the second
derivative of the price of an option. The study further revealed that as the price of the
underlying asset increases the corresponding value of an option also increases.
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[2] numerically investigated the generalized Black-Scholes-Merton pricing in an
illiquid market with transaction costs. The study revealed that the existence of
transactions costs, price slippage and large traders in a financial market that is not
perfectly liquid impact heavily on option prices. The study also noted that an increase
in the price of the underlying asset leads to an increase in the value of a call option
and a decrease in the value of a put option. The study concluded that European options
become more volatile due to a rise in transaction costs and the price impact from an
illiquid market.

[8] developed a financial mathematical analysis model to obtain market options prices
with changing volatilities. The results showed that the approximations by the Heston
model perfectly performs but experiences a big challenge only if pricing options which
take longer time to maturity and also yielding unrealistic prices when the moneyless is
less than one. The study also revealed that if correlation coefficient is negative, then
volatility will increase as the asset price return decreases. Conversely, if correlation
coefficient is positive the volatility will increase leading to the decrease in asset price
return.

[1] quantified the effects of the temporal and spatial analysis of the Black-Scholes
equation on option pricing. He expanded the model by relaxing these assumptions
and derived an option pricing formula in a more realistic financial environment. He
introduced a new hedging strategy and the remodeling of stock prices to reflect some
activities and consequences of modern trading markets. The study revealed that as
volatility increases the value of both the call and put options also increases. The study
also revealed that an increase in the risk-free interest rate results in an increase in the
value of a call option but a decrease in the value of a put option.

[5] investigated the drawbacks and limitations of Black-Scholes model for option
pricing. The study found that the most serious problem with the model is the issue of
constant volatility, which is considerably disrupted in practice. The study also revealed
that using stochastic and deterministic volatility yields the most accurate option contract
price. The study recommended that the Black-Scholes model should be revised by
including non-constant volatility, either deterministic or stochastic.

[6] studied pricing an option under the jump diffusion and multifactor stochastic
processes. The study found that the price of an option increases with an increase in
the volatility value and jump rate. Furthermore, the study discovered that price of an
option reduces with the slow-scale rate and goes up with the fast-scale rate, and that
the result of fast-scale volatility in the long run is lower than the effect of slow-scale
volatility. Variance swap of the strike price was also found to be negatively correlated
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with the time to maturity. The study recommended that it is important to carry out the
investigation numerically to get more accurate solutions of higher dimensional partial
differential equations governing the price of an option.

[3] studied simple formulas for pricing and hedging European options in the finite
moment log-stable model. The study revealed that as stability parameters increase, the
value of both the put and call options also increases. However, the study assumed that
the market parameters such as risk-free interest rate, volatilities among other parameters
are constant.

From the above literature on option pricing, it is noted that analysis of option pricing
using one-dimensional Black-Scholes-Merton partial differential equation (BSMPDE)
has been the focus of several researchers. Furthermore, most studies assumed constant
market parameters. Thus, there is need to numerically investigate the effects of varying
risk-free interest rate, correlation coefficient between the two assets prices, volatility
of two asset prices and dividend payout on the value of an option considering a
two-dimensional BSMPDE, which is the focus of the present study. The precise
computation of the value of an option is essential in a structured and full-fledged
financial economy.

The rest of the paper is organized as follows: section 2 presents the model description
and mathematical analysis, section 3 presents the numerical technique used to solve the
corresponding model, section 4 presents the results of the present study, and section 5
presents the conclusions drawn from the present study.

2. MATHEMATICAL FORMULATION

In this study, the underlying assets (S1 and S2) follow a log-normal random world with
delta hedging done continuously to eliminate the risks. It is assumed that there are no
transaction costs on the underlying assets and no arbitrage opportunities. Under the
assumptions, the two-dimensional Black-Scholes-Merton partial differential equation
(1) governing the value of an option is given by:
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where V represents option value, r is the risk-free interest rate, ρ is the correlation
coefficient between the two assets, σ1 and σ2 are the volatilities of the underlying
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assets S1 and S2, respectively. The derivation of equation (1) is shown in the appendix,
considering the geometric Brownian motion (Wiener process). Equation (1) is subject
to the following boundary conditions.

2.1. Boundary conditions for call option


V (0, 0, t) = 0, given 0 ≤ t ≤ T

V (x, y, t) = max(x, y)−Ke−r(T−t) as x, y →∞
V (x, y, T ) = max(x−K, y −K, 0) when t = T

K = 50, T = 1 year

2.2. Boundary conditions for put option


V (0, 0, t) = Ke−r(T−t), given 0 ≤ t ≤ T

V (x, y, t)→ 0 as x, y →∞
V (x, y, T ) = max(K − x,K − y, 0) when t = T

K = 50, T = 1 year

2.3. Dividend payout and change of variables

Suppose the underlying assets, S1 and S2, receive constant dividend payout, d1 and d2,
respectively. This means that in a time dt each asset receives an amount of d1S1dt and
d2S2dt, respectively. Thus, introducing a dividend payout on each of the underlying
assets from equation (1) yields the standard two-dimensional BSMPDE:
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We introduce the following transformations of the independent variables according to
[4]:
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Thus, equation (2) reduces to
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Assuming d1 = d2 = d represents the dividend payout on both assets and σ1 = σ2 = σ,
equation (3) reduces to:
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Equation (4) is solved numerically using finite difference method based on
Crank-Nicolson scheme.

3. NUMERICAL PROCEDURE

The initial boundary value problem (IBVP) in equation (4) is solved numerically using
Crank-Nicolson finite difference scheme. In this scheme, the spatial computational
domain defined by Ω = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} is partitioned into nx and ny

equal sub-intervals based on a linear Cartesian mesh and uniform grid. The discrete
approximation of V (x, y, t) at the grid point (i∆x, j∆y, n∆t) is denoted by V n

i,j for

i = 1, 2, · · · , nx; j = 1, 2, · · · , ny; n = 0, 1, 2, · · · , where ∆x =
1

nx

is the grid

size in x-direction, ∆y =
1

ny

is the grid size in y-direction, and ∆t represents the

increment in time. The nodes at i = 1, j = 1 and i = nx, j = ny define the
boundary. The time derivative is approximated using forward difference scheme while
the spatial derivatives in x and y directions are approximated by the average of the
central difference approximations at nth and (n+ 1)th levels. The values of the nodes at
the nth level are known while the values of the nodes at the (n+ 1)th level are unknown.
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Thus using the Crank-Nicolson scheme, we have the proposed averages for the
derivatives involved in equation (4) as:
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Substituting equations (5)-(11) into equation (4), multiplying through by ∆t and
rearranging yields
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The corresponding finite difference approximations of the boundary conditions are
given by:

3.0.1 Call optionV n+1
0,0 = 0, for all n

V n+1
nx,ny

= max(nx∆x, ny∆y)−Ke−r(n+1)∆t for all n

3.0.2 Put option V n+1
0,0 = Ke−r(n+1)∆t, for all n

V n+1
nx,ny

= 0 for all n

For n = 0 and i = 1, 2, · · · , nx− 1; j = 1, 2, · · · , ny− 1, equation (12) yields a system
of (nx − 1) × (ny − 1) linear equations for the (nx − 1) × (ny − 1) unknown values
in the first time row in terms of the initial values and the boundary values. Similarly,
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for n = 1, n = 2, and so on. Thus, for each time row, we have to solve a system of
(nx − 1)× (ny − 1) algebraic equations resulting from (12).

The numerical simulations are performed using uniform grid with a mesh width ∆x =

∆y = 0.1 and time step-size ∆t = 0.01, with the aid of MATLAB software. The steady
state numerical solutions for different values of σ, ρ, r and d are obtained at specific
values of n. The simulation results are presented graphically and discussed in the next
section.

4. RESULTS AND DISCUSSION

The simulation results, which are presented in form of graphs, focus on the effects
of varying the correlation coefficient (ρ), volatility (σ), risk-free interest rate (r), and
dividend payout (d) on both call and put option values.

4.1. Effects of varying correlation coefficient on option value

(a) Call option value (b) Put option value

Figure 1: Graph of option value against asset price at varying correlation coefficient
when K = 50, T = 1, σ = 0.1, r = 0.02, and d = 0.04

Fig. 1(a) shows that as correlation coefficient between the assets prices increases,
the call option value will decrease. This is because an increase in the correlation
coefficient implies that the investor will not be comfortable buying an option with a
closer relationship since this doesn’t help in promoting diversification, which is very
critical for any investor to realize high returns from the investments. For instance, if
an investor holds assets having a positive correlation and are declining in the value, the
investor will experience huge losses when he buys such an asset.

Fig. 1(b) shows that an increase in correlation coefficient between the two assets prices
increases the put option value. This is because for a put option the investors will be
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more comfortable dealing with options that are mostly related, which will help them
in enjoying economies of scale especially for the options whose markets are readily
available.

4.2. Effects of varying volatility on an option value

(a) Call option value (b) Put option value

Figure 2: Graph of option value against asset price at varying volatility when
K = 50, T = 1, ρ = 0.2, r = 0.02, and d = 0.04

Fig. 2(a) shows that an increase in the volatility results in an increase in the call option
value. Fig. 2(b) shows that an increase in the volatility results in an increase in the the
put option value. These imply that there will be higher probability of price fluctuations.
In reality, market uncertainties are also costly and therefore, its value will be higher
than that of both the call and put options.

4.3. Effects of varying risk-free interest rate on an option value

(a) Call option value (b) Put option value

Figure 3: Graph of option value against asset price at varying risk-free interest rate
when K = 50, T = 1, ρ = 0.2, σ = 0.1, and d = 0.04
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Fig. 3(a) shows that an increase in the risk-free interest rate increases the call option
value. This is because as the risk-free interest rate increases, the expected interest
income and the associated costs of owning the underlying asset would also rise.
Therefore, this would make the value of a call option to be more preferable and
attractive. Fig. 3(b) shows that an increase in the risk-free interest rate decreases the
put option value. This is because as the risk-free interest rate increases, the chances that
the investor will make profits will significantly reduce.

4.4. Effects of varying dividend payout on an option value

(a) Call option value (b) Put option value

Figure 4: Graph of option value against asset price at varying dividend payout when
K = 50, T = 1, ρ = 0.2, σ = 0.1, and r = 0.02

It is observed from Fig. 4(a) that an increase in the dividend payout results in a
decrease in the call option value. This is because as the dividend payout for a call
option increases, the expected benefits of acquiring the underlying asset will reduce.
It is observed from Fig. 4(b) that an increase in the dividend payout increases the put
option value. This is because as the dividend payout increases, the owning put options
on dividend paying stocks will be more desirable.

5. CONCLUSION

This study leads to a conclusion that the market parameters such as volatilities, risk-free
interest rate, correlation coefficient between the underlying asset prices, and dividend
payout are pertinent when studying options as they lead to increased or decreased option
value. Thus, these parameters shouldn’t be assumed constant in any option pricing
model.
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APPENDIX

DERIVATION OF TWO-DIMENSIONAL BSMPDE

Consider the standard BSMPDE for an option with two assets with a dynamic market,
ideal liquidity and payments of zero dividends before the option’s maturity period.
Using a European option whose pay-off depends on the prices of two underlying assets
S1 and S2, the geometric Brownian motion becomes

dS1 = µ1S1dt+ σ1S1dz1

dS2 = µ2S2dt+ σ2S2dz2

, (13)

where µ1, µ2 represent the drift coefficients and z1, z2 represent the Wiener processes.

Suppose that the random numbers dS1 and dS2 are correlated such that E [dS1, dS2] =

ρdt. Constructing the portfolio (π) for the two underlying assets S1 and S2, we have;

π = V −∆1S1 −∆2S2 (14)

The change on the value of the portfolio (14) from t to dt is given by:

dπ = dV −∆1dS1 −∆2dS2 (15)

From Itô’s lemma with two variables, we have

dV =
∂V
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2

]
dt (16)

Choosing ∆1 =
∂V

∂S1

, ∆2 =
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∂S2

and substituting equation (16) into equation (15), the

portfolio changes by the amount

dπ =

[
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1
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2
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∂2V

∂S2
2

]
dt (17)

This change is completely risk-less. Thus, it must be the same as the growth we would
get if we put the equivalent amount of cash in a risk-free interest-bearing account:

dπ = rπdt = r

[
V − ∂V

∂S1

S1 −
∂V

∂S2

S2

]
dt (18)

Substituting equation (17) into (18) and rearranging yields the two-dimensional
BSMPDE (1). This completes the proof.
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