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Abstract
Maize (Zea mays L.) productivity in Kenya has witnessed a decline attributed

to the effects of climate change and biophysical constraints. The assessment of

agronomic practices across agroecological zones (AEZs) is limited by inadequate

data quality, hindering a precise evaluation of maize yield on a large scale. In

this study, we employed the DSSAT-CERES-Maize crop model (where CERES is

Crop Environment Resource Synthesis and DSSAT is Decision Support System for

Agrotechnology Transfer) to investigate the impacts of different agronomic prac-

tices on maize yield across different AEZs in two counties of Kenya. The model

was calibrated and evaluated with observed grain yield, biomass, leaf area index,

phenology, and soil water content from 2-year experiments. Remote sensing (RS)

images derived from the Sentinel-2 satellite were integrated to delineate maize areas,

Abbreviations: AEZ, agroecological zone; CERES, Crop Environment Resource Synthesis; DSSAT, Decision Support System for Agrotechnology Transfer;
GEE, Google Earth Engine; GEOGLAM, Group on Earth Observations Global Agricultural Monitoring Initiative; OK, ordinary kriging; RS, remote sensing;
SDs, sowing dates.
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and the resulting information was merged with DSSAT-CERES-Maize yield simula-

tions. This facilitated a comprehensive quantification of various agronomic measures

at pixel scales. Evaluation of agronomic measures revealed that sowing dates and

cultivar types significantly influenced maize yield across the AEZs. Notably, AEZ

II and AEZ III exhibited elevated yields when implementing combined practices of

early sowing and cultivar H614. The impacts of optimal management practices var-

ied across the AEZs, resulting in yield increases of 81, 115, and 202 kg ha−1 in

AEZ I, AEZ II, and AEZ III, respectively. This study underscores the potential of the

CERES-Maize model and high-resolution RS data in estimating production at larger

scales. Furthermore, this integrated approach holds promise for supporting agricul-

tural decision-making and designing optimal strategies to enhance productivity while

accounting for site-specific conditions.

1 INTRODUCTION

Agriculture is vital for the economic and social well-being of
most African economies and livelihoods. In Kenya, the agri-
cultural sector accounts for approximately 26% of the gross
domestic product (GDP) directly and 25% indirectly (World
Bank Group, 2018). It also employs approximately 75% of
Kenya’s population, working part-time or full-time (CIA,
2022). Among the crops grown in Kenya, maize (Zea mays L.)
is a widely cultivated cereal crop essential for alleviating food
insecurity. The crop covers approximately 2 million ha with
over 3 million metric tonnes of production based on recent
statistics (FAO, 2020). It is grown by over 3 million small-
holder farmers, accounting for 70% of the nation’s output
(D’Alessandro et al., 2015). In recent years, maize production
has encountered many challenges, including the high cost of
inputs, declining soil fertility, pest and disease invasions, and
poor coordination of extension service delivery (Kinyanjui,
2019; Tittonell et al., 2008). The challenges faced by rainfed
maize production are further exacerbated by climate change
(Salami et al., 2010). The impacts of climate change are inher-
ently heterogeneous, inducing varied effects on maize growth
and yield across cultivated landscapes (Herrero et al., 2010).

Agricultural production is shaped by socio-economic,
political, and technological factors and environmental condi-
tions that vary in space and time. Farming systems are unique
in different agroecologies, influenced by technological sets
and environmental effects (Asante et al., 2019). Thus, to max-
imize production in a given environment, understanding the
local variation of landscape characteristics and various crop
requirements enables the optimization of production (Mujić
& Ljuša, 2023). Agroecological zones (AEZs) have emerged
as vital units for evaluating and assessing the physical and
biological potential of natural resources for sustainable devel-
opment planning (Greenland et al., 1997; Mkonda, 2021).
Including the AEZ concept brings to attention the specific

characteristics of a region and inherent production con-
straints that can be addressed using appropriate agricultural
technologies.

Consequently, the Food and Agricultural Organization
(FAO) has adopted the concept of AEZs in various regions
to analyze solutions for sustainable agricultural development
(FAO, 1996). Similarly, agricultural landscape characteriza-
tion using agroclimatic zoning has been adopted to upscale
crop yield by examining production heterogeneities within
and between zones (van Wart et al., 2013). In analyzing these
responsive differences, previous studies have established sig-
nificant differences in agricultural productivity across various
AEZs using statistical and process-based models (Asante
et al., 2019; Kouame et al., 2023). The variability in pro-
duction stems from differences in management practices,
weather conditions, soil characteristics, and agricultural land-
scapes (Musafiri et al., 2022), and their influences vary across
humid, semihumid, semiarid, and arid AEZs. In response
to unpredictable weather patterns, recent studies have advo-
cated optimizing agronomic practices to sustainably enhance
production (Kogo et al., 2022; Rahut et al., 2021). Such
agronomic practices are useful in the context of low-input
production environments in sub-Saharan Africa (SSA). These
practices include nutrient management, sowing window vari-
ation, water management, land preparation and conservation
measures (Agoungbome et al., 2023; MacCarthy et al., 2018;
Ten Berge et al., 2019). Agronomic practices can potentially
enhance the resilience of cropping systems and moderate cli-
mate change effects, therefore, boosting social, economic,
and environmental benefits such as net crop income, crop
yield, soil fertility, and biodiversity richness (Jamil et al.,
2021; Wekesa et al., 2018). Empirical evidence shows that
contextualizing these practices based on biophysical and cli-
matic conditions can help promote their adoption and deliver
increased benefits (Autio et al., 2021; Nyang’au et al., 2021).
Furthermore, understanding the impacts of these practices
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across various environmental contexts provides insights for
scaling and promoting sustainable agriculture intensification.

Techniques such as field experiments and household sur-
veys have been extensively used to assess the influence of
agronomic practices at small scales (Chivenge et al., 2022;
Rurinda et al., 2020; Tambo & Mockshell, 2018; Thierfelder
& Mhlanga, 2022). Previous studies have utilized process-
based crop models to assess technically feasible agronomic
practices, estimate yield gaps, and evaluate maximum yield
potential compared to conventional farmer practices. These
studies, conducted in different regions, have explored tailored
management practices and region-specific guidelines to sus-
tain yields over time. Some agronomic practices explored
include planting dates and cultivar maturity (Massigoge et al.,
2023), nitrogen fertilization (Feleke et al., 2023), organic
amendments (Lana et al., 2017), and supplemental irrigation
(Volk et al., 2021), among other measures. Improved crop
and soil management practices enhance agricultural produc-
tion and contribute substantial yield gains in various parts of
the world (Rizzo et al., 2022).

Furthermore, soil water conservation and enhancement
practices such as minimum tillage and irrigation affect soil
water balance and modify evapotranspiration, thus enhanc-
ing yields. Tillage practices also influence the yield of various
crops. Although with varied influence across locations, tillage
affects the structure of the soil, which in turn affects the capac-
ity for water and nutrient conservation (Jug et al., 2021). On
the contrary, barriers to yield increase emanate from subop-
timal input use and a lack of improved technologies (Assefa
et al., 2020). For instance, low fertilizer application and lack
of improved seeds contribute to the largest technical and
resource yield gaps in the SSA region (Assefa et al., 2020).

Although process-based crop models provide cost-effective
approaches for assessing agronomic practices at large scales
spanning diverse landscapes and environments, incorporating
geospatial information on crop type coverage enables exten-
sive scale assessments and trade-offs of various agronomic
measures (Prestele & Verburg, 2020). Furthermore, crop
models integrate biophysical factors, biochemical and physio-
logical processes, and interactions between plant, atmosphere,
and soil continuum to robustly model crop growth, develop-
ment, and yield. Therefore, combining remote sensing (RS),
geographical information systems (GIS), and crop model-
ing techniques provides insights into areas where certain
agronomic practices can be targeted for enhanced crop pro-
ductivity. Accurate data on crop type information provide
an essential platform for assessing maize yield response to
agronomic practices using crop modeling systems. Addi-
tionally, these data improve precision when targeting the
allocation of resources. Eventually, the information is crucial
for the national and county governments’ extension officers in
terms of the provision of services and knowledge transfer to
farmers.

Core Ideas
∙ The influence of agronomic practices on maize

production was analyzed using the CERES-Maize
model (where CERES is Crop Environment
Resource Synthesis).

∙ Crop type information was combined with the
CERES-Maize model to analyze the trade-off of
various agronomic measures.

∙ Sowing dates and cultivar type significantly influ-
enced maize yield in the region.

∙ Average yield increase ranges between 81 and
202 kg ha−1, considering optimal agronomic prac-
tices.

∙ The assessment indicates a potential of +5.7% in
maize production from the current production in
the study area.

This study seeks to address the aforementioned limitations
by integrating on-farm experiments, RS, and crop modeling
techniques to assess agronomic practices and to investigate
their responses across various AEZs in two maize-growing
counties in Kenya. The main research aim of the study is to
assess whether the impacts of agronomic practices on maize
production vary across AEZs. Furthermore, the study seeks
to identify the optimal agronomic practices in each AEZ and
determine the potential of the practices vis-à-vis alternative
practices. Thus, the specific objectives of this study are to (i)
simulate maize production under various agronomic practices
in various AEZs, (ii) assess the optimal agronomic practices
in various AEZs, and (iii) evaluate the trade-off of various
agronomic practices at AEZs from simulated yields and maize
cultivated areas. The study findings are of utmost importance
to agricultural planning departments at both the county and
national levels in responding to the location-specific needs of
farmers. The results will further enhance the dissemination
of routine extension services and increase farmer aware-
ness about best management practice combinations that will
improve productivity.

2 MATERIALS AND METHODS

2.1 Study area

The study covers Trans Nzoia and Uasin-Gishu Counties in
the northwestern part of Kenya (Figure 1). Maize, wheat,
sugarcane, tea, coffee, and horticultural crops are the pri-
mary agricultural products in these counties. AEZs I–III cover
approximately 98% of the study area, while AEZ IV covers the
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4 of 21 KIPKULEI ET AL.

F I G U R E 1 Map of the study area showing (a) the location of Trans Nzoia and Uasin Gishu Counties and bordering counties, the context of
Trans Nzoia and Uasin Gishu Counties in Kenya. The agroecological zones (AEZs) are classified as I—humid, II—subhumid, III—semihumid, and
IV—transitional zone. A 30 m horizontal resolution Shuttle Radar Transmission Mission (SRTM) digital elevation model (DEM) is superimposed on
the study area to show elevation variation. The DEM is a global digital elevation product is freely available via the United States Geological Survey
(USGS) earth resources observation and science archive.

T A B L E 1 Agroecological zone characterization of the study area.

Agroecological
zone

Moisture
index (%) Classification Cultivated crops

I >80 Humid Tea (Camellia sinensis), coffee (Coffea arabica), sugarcane (Saccharum officinarum),
wheat (Triticum aestivum L.), and maize (Zea mays L.)

II 65–80 Subhumid Wheat, maize, beans (Phaseolus vulgaris L.), and potatoes (Solanum tuberosum L.)

III 50–65 Semihumid Beans, maize, wheat, cotton (Gossypium hirsutum L.), and cassava (Manihot esculenta
Crantz)

IV 40–50 Semihumid to
semiarid

Beans, pigeon peas, Cajanus cajan (L.), sweet potatoes, Ipomoea batatas (L.),
sorghum, Sorghum bicolor (L.) Moench, and millet, Eleusine coracana (L.) Gaertn

Source: Sombroek et al. (1982).

remaining portion. Consequently, the study was restricted to
AEZs I–III. The AEZs are classified based on moisture index
expressed as a percentage of annual rainfall to potential evapo-
ration (Sombroek et al., 1982). The classification, biophysical
characterization, and cropping systems of the AEZs covering
the area are shown in Table 1.

2.2 Climatic conditions

Climatically, Uasin Gishu County has an average annual rain-
fall of 900 mm. The temperature range is between 9˚C and

25˚C. The elevation ranges between 1500 and 2600 m above
sea level (Murgor, 2021). Trans Nzoia has an annual rainfall
between 900 and 1800 mm, with an average rainfall of approx-
imately 1300 mm. The mean annual minimum and maximum
temperatures are 12˚C and 26˚C, respectively. The elevation
in the county varies from 1500 to 4226 m at the peak of Mount
Elgon (Nyberg et al., 2020). The dominant soil types in Uasin
Gishu County are Humic Nitisols and Haplic Ferralsols, while
those in Trans Nzoia County are Humic Nitisols and Humic
Ferralsols (Dijkshoorn, 2007). Agriculture is the main eco-
nomic activity and source of livelihood for many smallholder
farmers both counties.
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2.3 Sources of data

Various data sources were used to drive the DSSAT-CERES-
Maize simulations (where CERES is Crop Environment
Resource Synthesis and DSSAT is Decision Support Sys-
tem for Agrotechnology Transfer) across the study region.
Standard local management practices, such as a sowing spac-
ing of 25 × 75 cm and the recommended nitrogen level of
75 kg N ha−1, were maintained. The soil profiles for the study
region were obtained from the high-resolution global soil
profile database for crop modeling applications (Han et al.,
2015). The database was developed by synergistically com-
bining soil data from the International Soil Reference and
Information Centre (ISRIC) and the Africa Soil Information
Service (AfSIS) projects. The soil properties (bulk density,
organic carbon, percentage of clay and silt, soil pH, and cation
exchange capacity) available from the original SoilGrids of
ISRIC and AfSIS were directly used to develop DSSAT soil
profiles at a spatial resolution of approximately 0.1˚ × 0.1˚
(∼10 km). Other soil properties from the database include
soil hydraulic conductivity, saturation, drainage upper limit,
and crop lower limit, estimated using pedo-transfer functions.
Point data at the centroid of each grid were used to identify the
individual soil profiles defining the study area. The weather
data were derived from the National Aeronautics and Space
Administration Prediction of Worldwide Energy Resource
(NASA POWER; https://power.larc.nasa.gov/) and the Cli-
mate Hazards Group InfraRed Precipitation (CHIRPS; http://
ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/) (Funk
et al., 2015). The NASA POWER data were obtained from
the NASA Langley Research Center POWER Project funded
through the NASA Earth Science Directorate Applied Sci-
ence Program. The data derived included solar radiation
(∼1˚ × 1˚ spatial resolution), maximum temperature, and
minimum temperature (0.5˚ × 0.5˚). The daily precipita-
tion was mainly obtained from CHIRPS because of its
high resolution (0.05˚ × 0.05˚) (Ocampo-Marulanda et al.,
2022).

Due to the extensive coverage of the study area, the weather
variable retrieval and preparation of weather files into DSSAT
weather file format were implemented using the bestiapop
Python package (Ojeda et al., 2020). The program automat-
ically extracts and processes Scientific Information for Land
Owners and NASA POWER gridded climate data for crop
modeling by converting the data to files that can be directly
ingested into crop models. The precipitation columns of the
prepared weather files for all locations were replaced with the
values from the CHIRPS data, as the bestiapop package is
based only on the NASA POWER data. The downloaded data
and simulations were conducted for 2021, covering the period
within which the on-farm experiments and RS data acquisi-
tion were conducted. The methodology adopted in the study
is summarized in Figure 2.

2.4 Crop-type classification

The crop-type classification and mapping followed a two-step
process. First, a cropland mask for the study area was gener-
ated by combining land cover products from the FAO, the crop
mapping initiative for GEOGLAM (Group on Earth Obser-
vations Global Agricultural Monitoring Initiative) Kenya
country-level support, and a prior land use and land cover
change analysis conducted by Kipkulei, Bellingrath-Kimura,
Lana, Ghazaryan, Boitt et al. (2022). The second step involved
identifying the dominant crops through crop type classifica-
tion analysis. The crop mapping initiative for GEOGLAM
Kenya country-level support developed a crop-type product
for the larger agricultural region in Kenya, including our
study area (ECJRC, 2021). Although most crop types in the
study area were well represented compared with our refer-
ence data, we noted minor inconsistencies in mapped crops
such as sorghum, maize, wheat, millet, and coffee. There-
fore, we combined field reference data from the earlier project
with detailed reference data collected in 2021 and generated
a refined crop-type map for the study area.

We used Sentinel-2 satellite images to characterize differ-
ent crop types in the study area. The images are acquired by
the Multispectral Instrument on board S2A and S2B satellites
with a total of 13 spectral bands having a spatial resolution
between 10 and 60 m. For this study, we accessed level-2A
surface reflectance products from the Google Earth Engine
(GEE) platform corrected for radiometric and atmospheric
artefacts. We used all available images with cloud cover below
80%, acquired between March 1, 2021, and September 31,
2021, corresponding to the long growing season in the region.
We applied quality assurance bands to exclude low-quality
pixels with clouds, cloud shadows, and cirrus, among other
defects, from further analyses.

We performed supervised classification using the random
forest (RF) classifier algorithm. RF consists of a collection
of classifiers structured in trees h (x, k), k = 1, n. . . where
k values are identically distributed random vectors (Breiman,
2001). The ensemble learning algorithm combines decision
trees, where each tree contributes a single vote to assign the
most frequent class to the input vector (Rodriguez-Galiano
et al., 2012). It uses the Gini index as a suitable attribute
selection measure to maximize dissimilarity between classes
and measures the impurity of an attribute in relation to the
classes. The pixel is randomly selected and assigned to some
class Ci in training. The Gini index can be written as shown
in Equation 1:

∑∑
𝑗≠𝑖

(
𝑓
(
𝐶𝑖, 𝑇

)
∕ |𝑇 |) (𝑓 (

𝐶𝑗, 𝑇
)
∕ |𝑇 |) (1)

where f (Ci, T)/|T| is the probability that the selected pixel
belongs to class C. RF has several advantages, including a

 26396696, 2024, 1, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/agg2.20478 by D

E
D

A
N

 K
IM

A
T

H
I U

N
IV

E
R

SIT
Y

, W
iley O

nline L
ibrary on [25/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://power.larc.nasa.gov/
http://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/
http://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/


6 of 21 KIPKULEI ET AL.

F I G U R E 2 Methodology and approach utilized in the study. AEZ, agroecological zone; CERES, Crop Environment Resource Synthesis.

robust nature, lack of complex parameterization, the possibil-
ity of handling nonlinear effects of complex data, the ability
to accommodate imbalanced data and few training samples,
and the possibility of processing large amounts of data with
high accuracy.

The reference data that aided the RS classification were
acquired during a field study conducted between April 2021
and August 2021. During the study, major crop and noncrop
types were mapped using a handheld Garmin geographical
positioning system (Garmin etrex 10) with locational accu-
racy of around 3 meters. Additional reference data were
supplemented by scanning and digitizing high-resolution
imagery from the Google Earth application. We also relied on
land use experts’ knowledge to obtain crop types characteri-
zation in the region. We created a vector file of the reference
data for import into the GEE for further analysis. The spec-
tral bands of the Sentinel-2 satellite data used to build the
RF model included blue, green, red, near-infrared, red edge,
and shortwave infrared. Additionally, we calculated several
vegetation indices and their temporal composites as inputs
for the RF classification. The indices calculated included
the normalized difference vegetation index (NDVI) (Rouse
et al., 1974), normalized difference moisture index (Wilson
& Sader, 2002), green chromatic coordinate (Reid et al.,

2016), and enhanced vegetation index (Liu & Huete, 1995).
These indices were used because they have been proven useful
in vegetation condition monitoring, agricultural applications,
land use classification, and land cover classification. We spec-
ified a 70/30 split of the reference data for model training
(in-bag samples) and model testing out-of-bag samples.

2.5 Accuracy assessment

The accuracy of the classification process was assessed
using metrics calculated from the confusion matrix. The pro-
cess involved evaluating the correspondence of the observed
ground features with the classified map. Therefore, overall
accuracy (OA), producer accuracy (PA), user accuracy (UA),
and F score were used for the accuracy assessment (Congal-
ton, 1991). The OA indicates the proportion of the correctly
mapped classes. This value shows how much the classified
map reflects the actual ground features. An OA of 1 indi-
cates that the classification perfectly corresponds with actual
ground features. Producer accuracy depicts how often actual
features in the study area are correctly shown on the classi-
fication map, while user accuracy illustrates how often the
class in the classification map is shown on the ground. The

 26396696, 2024, 1, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/agg2.20478 by D

E
D

A
N

 K
IM

A
T

H
I U

N
IV

E
R

SIT
Y

, W
iley O

nline L
ibrary on [25/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



KIPKULEI ET AL. 7 of 21

F1 score (Equation 2) is a mean metric of precision (PA)
and recall (UA). The metric is useful where the distribution
of datasets across the sample training data is unequal (Sun
et al., 2019), a characteristic of our reference samples. A
value of 100% indicates perfect precision of the model and
recall of all the test data, and a value close to 0 indicates the
inverse.

𝐹 score = 2 × PA × UA
UA + PA

(2)

2.6 DSSAT-CERES-Maize model
application

2.6.1 On-farm experiments

The study used data from two seasons of on-farm experiments
to parameterize and evaluate the DSSAT-CERES-Maize
model version 4.7.5. The experiments were conducted in the
2015 and 2021 maize growing seasons in 42 field blocks
across three major sites (Katuke, Sabwani, and Olngatongo)
in Trans Nzoia County. The typical field sizes in the county
range from 0.8 ha for small-scale farming to 22.6 ha for
large scale farming, and the average farm size is approxi-
mately 4.7 ha (MoALFC, 2021). The H614 maize cultivar
was parameterized and evaluated using the DSSAT-CERES-
Maize model. The cultivar is popular among farmers given its
suitability for growing conditions in the Kenyan highlands,
high resistance to pest attacks, and high production poten-
tial (Almekinders et al., 2021; Smale & Olwande, 2014).
Databases of weather, soil, cultivars, and crop management
required to simulate crop growth and development were
obtained. Weather variables, including solar radiation, pre-
cipitation, and maximum and minimum temperature, were
collected from three weather stations across the study area.
However, two weather stations had missing values, and thus
complete weather coverage from one weather station was used
as a representative station for the fields sampled in the region.

The crop management data (i.e., agronomic data) required
by the model include land preparation, planting date, planting
density, row spacing, planting depth, and fertilizer application
dates and amounts. Land preparation across all sites was con-
ducted between January and March, and planting was done in
March/April in both seasons. The crop management informa-
tion and records of key phenological stages across the sites are
described in Table S1. Soil sampling was conducted to deter-
mine the soil’s physical and chemical properties defining the
soils in the study field sites. The sampling was conducted in
both seasons before sowing to obtain the initial soil conditions
before any fertilization enhancement. The analyzed data were
used to design the soil files using the SBUILD program in the
DSSAT program. More details of the experiments and cultivar
information are described in Kipkulei, Bellingrath-Kimura,

Lana, Ghazaryan, Baatz et al. (2022), including Supporting
Information.

The data acquired in the 2021 and 2015 growing seasons
were used to parameterize and evaluate the DSSAT-CERES-
Maize model, respectively. Data collection was conducted
based on the minimum dataset requirement recommended
by Jones et al. (2003) for crop model application. The rec-
ommendations define variables such as soil physical and
chemical properties, weather variables, plant biomass, leaf
area index, and soil moisture as the necessary variables
for model calibration and parameterization/evaluation. The
experimental fields were optimally managed, and necessary
measures, including weed control, fertilizer application, and
pest and disease control, were applied based on standard
agronomic practices. Fertilization was applied at a rate of
75 kg N ha−1 with a similar amount of top dressing 6
weeks after sowing. Maize spacing was based on the rec-
ommended practice of 25 cm between plants and 75 cm
between rows, yielding an approximate population of 53,000
plants ha−1.

2.6.2 Model calibration and evaluation

The experimental fields, which showed minimum water and
nitrogen stress, were used for model parameterization. Subse-
quently, 36 field blocks were used for DSSAT-CERES-Maize
model parameterization in the 2021 maize growing season.
The parameterization and evaluation process was necessary
to ensure that the model accounted for the genetic, environ-
mental, and management practice variability, affecting maize
growth in the study region. This process results in cultivar
coefficients that govern the accumulation of temperature heat
units and plant development from emergence to physiological
maturity. The parameters are divided into growth (G2, G3,
and phyllochron interval) and development (P1, P2, and P5)
(Chisanga et al., 2015; Chisanga et al., 2020). The parame-
terization was conducted using the Generalized Likelihood
Estimator program in DSSAT software version 4.7.5. First,
management data were entered using the XBuild module in
DSSAT. The weather variables at all the experimental sites
were formatted using the WeatherMan module in DSSAT and
used to create the weather station data (Pickering et al., 1994).
Soil variables at five depths (0–20, 20–40, 40–60, 60–80, and
80–100 cm) were entered into the SBuild module in DSSAT.
The measured leaf area index and harvested dry mass yield
for the sampled locations were input into the ATCreate mod-
ule. The calibration began by specifying an arbitrary cultivar
in the genotype file in DSSAT using a previously calibrated
long-maturing cultivar adopted from the DSSAT genotype
file.

In addition to the calibrated coefficients from the on-farm
experiments, the study also assessed the H612 cultivar, for
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8 of 21 KIPKULEI ET AL.

which the cultivar coefficients were calibrated and tested in
the southern highlands of Tanzania, a region with comparable
climatic and environmental conditions to those of our study
area (Mfwango et al., 2018). The model’s performance for
the H614 and H612 cultivars has been evaluated by Kipkulei,
Bellingrath-Kimura, Lana, Ghazaryan, Baatz et al. (2022) and
Mfwango et al. (2018), respectively.

2.7 Model application and spatial
assessment

2.7.1 Evaluation of agronomic practices

The study used the parameterized DSSAT-CERES-Maize
model to evaluate various agronomic practices, namely,
adjusting sowing dates (SDs) and cultivars, incorporating
organic amendments with the recommended nitrogen fertil-
izer levels and tillage practices, and supplementing rainfed
agriculture with varying levels of irrigation. Adjusting SDs
is an inexpensive approach to adapting agriculture to chang-
ing climates. Farmers can ensure that key crop phenological
stages are consistent with seasons of optimal weather condi-
tions. One such critical stage is grain-filling, which requires
sufficient moisture to ensure higher yields. Therefore, this
study assessed six SDs at 15-day intervals from February 15,
2021 (SD1), to May 1, 2021 (SD6). The dates coincide with
the onset of the rainy season and maize growing season in the
study area.

Additionally, the study assessed the incorporation of
organic amendments and the government’s recommended
nitrogen fertilization rate of 75 kg N ha−1. The organic amend-
ments evaluated in other studies include the use of farmyard
manure, compost, leguminous trees, or the incorporation of
organic inputs (Chebet et al., 2017; Nekesa et al., 2007).
Therefore, the supply of organic inputs at a rate of 10 tonnes
ha−1 was evaluated in the model in combination with 38 kg N
ha−1 of the fertilizer for top dressing 6 weeks after sowing in
the form of calcium ammonium nitrate as the usual practice
in the study area (De Groote et al., 2007). Another practice
evaluated in the study was the implementation of irrigation to
increase the soil moisture content. The study assessed a single
irrigation application of 100 mm. The model was configured
to apply the irrigation amounts automatically when required
by the crop. Such a configuration triggers water to be applied
to crops when water stress is encountered or the water in the
root zone falls below a certain threshold (Malik et al., 2019).

Tillage measures were also assessed in the DSSAT-
CERES-Maize model. The minimum tillage practice was
configured by specifying drilling without tillage to reduce soil
disturbance and improve soil structure. The depth of the drill
was estimated at 15 cm (Sijtsma et al., 1998). Conventional
tillage involved a disc plough used to prepare the seedbed

before sowing. The final agronomic practice evaluated was
the adoption of an alternative hybrid cultivar in the region.
The cultivar H612 was first released in Kenya and calibrated
and evaluated using the DSSAT-CERES-Maize model in the
southern highlands of Tanzania (Mfwango et al., 2018). The
region has similar climatic characteristics to those in the area
in this study, as it is tropical cool and sub humid to humid,
according to Sebastian (2009). The temperature units indi-
cated by the genotypic coefficients showed that the cultivar
requires fewer temperature degree units to reach maturity
compared to the H614 cultivar. The assessment of the prac-
tices was focused on the various AEZs that characterize the
study region.

2.7.2 Statistical analysis of agronomic
practices

The simulations from the calibrated DSSAT-CERES-Maize
model for the various agronomic practices were subjected to
factorial analysis of variance (ANOVA). The hypothesis for
the study was that maize yield is highly influenced by vari-
ous agronomic practices across the AEZs. Therefore, factorial
ANOVA was used to study the production impacts of agro-
nomic practices and their interactions across the AEZs. A
posteriori analysis was performed using the least significance
difference test based on the hypothesis outcome to compare
the mean yield under various agronomic practices. The test
was performed for practices and interactions with significant
differences at p < 0.05. The test was implemented using the
Agricolae package in R statistical software (de Mendiburu &
Simon, 2015).

2.7.3 Mapping yield predictions

Maize yield distribution in the study region was charac-
terized by interpolating the point-based simulations from
the DSSAT-CERES-Maize model using the ordinary kriging
(OK) spatial interpolation in ArcGIS (Equation 3).

[𝑍
(
𝑆𝑜

)
=

𝑁∑
𝑖=1

𝜆𝑖 𝑍
(
𝑆𝑖

)
] (3)

where Z(So) is the predicted value at the unmeasured posi-
tion So, Z(Si) is the measured value at Si, λi is the unknown
weight for the measured value at the location So, and n is
the number of positions within the neighborhood searching.
OK predicts new values at unsampled locations by calculat-
ing the weighted mean of the sampled locations (Lloyd, 2005).
The weights depend on the distance to the location of the
prediction and the spatial relationships among the measured
values. Thus, OK does consider not only distance but also the
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KIPKULEI ET AL. 9 of 21

T A B L E 2 Cultivar-specific parameters for H614 and H612 cultivars.

Cultivar P1 (˚C day) P2 (day) P5 (˚C day) G2 (No. of kernels per ear) G3 (mg day−1) PHINT (˚C day)
H614 290.8 0.471 921.2 796.8 5.26 39.74

H612 130.0 0.500 390.0 825.0 10.15 75.00

Note: P1, thermal time from seedling emergence to the end of the juvenile phase (expressed in degree days above a base temperature of 8˚C) during which the plant is not
responsive to changes in photoperiod; P2, extent to which development (expressed as days) is delayed for each hour increase in photoperiod above the longest photoperiod
at which development proceeds at a maximum rate (which is considered to be 12.5 h); P5, thermal time from silking to physiological maturity (expressed in degree days
above a base temperature of 8˚C); G2, maximum possible number of kernels per plant; G3, Kernel filling rate during the linear grain filling stage and under optimum
conditions (mg day−1); PHINT, phyllochron interval, the interval in thermal time (degree days) between successive leaf tip appearances.

spatial distribution of the sampled locations to account for
spatial dependence among the samples. A spherical semi-
variogram model was fitted to obtain the variance of the
weights at different distances to estimate model parameters,
including the sill, nugget, and range. OK was implemented
using the geostatistical package in ArcGIS software version
10.8.1. The yield prediction was performed for the combina-
tions of the optimal agronomic measures. The surfaces were
clipped using the Sentinel-2 derived maize mask to quan-
tify modeled yield in the harvested areas. Subsequently, the
obtained yield was aggregated to the AEZ level to gener-
ate the spatial explicit yield maps across the region. Finally,
the aggregated surfaces of various measures were used for
trade-off analysis.

3 RESULTS

3.1 RS-based classification

The RF classifier characterized the study area’s crop types,
and maize-cultivated areas were generated from the crop type
map (Figure 3). The maize crop mask shows an even distri-
bution of maize in AEZ II and III. However, maize coverage
in AEZ I was less in both counties. Maize covered approxi-
mately 235,201 ha in the study region, 115,895 ha in Trans
Nzoia, and 119,306 ha in Uasin Gishu County. The distribu-
tion of the main crop types across the study area is found in
Figure S1.

Maize-cultivated areas were mapped with high accuracies.
The producer accuracy was approximately 94%, and the user
accuracy was 92%, showing the potential of the RF classifier
in maize mapping in the region. Similarly, the classification
of other crop types defining the study area indicated excellent
user, producer, and overall accuracies and F scores (Table S2).

3.2 Model calibration and evaluation

The DSSAT-CERES-Maize cultivar-specific parameters for
the cultivars are shown in Table 2. The DSSAT-CERES-

F I G U R E 3 Maize-cultivated areas generated from the remote
sensing classification. I, II, and III are the humid, subhumid, and
semihumid agroecological zones, respectively.

Maize model calibration of the H614 cultivar showed good
consistency between the simulated and observed yields. The
mean calibrated grain yield was 4134 kg ha−1, while the mean
observed grain yield was 4150 kg ha−1. The model also accu-
rately estimated the observed dates for the other phenological
variables, such as the number of days from sowing to anthe-
sis and from sowing to physiological maturity. The deviation
between the simulated and observed values was less than 10
days for each phenological variable, indicating the model’s
reliability in simulating maize growth and yield. Similarly,
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10 of 21 KIPKULEI ET AL.

F I G U R E 4 Maize yield variability as simulated by the
DSSAT-CERES-Maize model (where DSSAT is Decision Support
System for Agrotechnology Transfer and CERES is Crop Environment
Resource Synthesis) across the various agroecological zones (AEZs) in
response to different cultivars. Error bars indicate the standard
deviation. Treatments sharing the same letter are not significantly
different (p < 0.05).

the evaluation of the model using independent on-farm exper-
iments conducted in the 2015 growing season showed good
model performance for maize yield simulation with a coeffi-
cient of determination of 0.8 and root mean square error of
642 kg ha−1.

3.3 Influence of agronomic practices

The calibrated and evaluated DSSAT-CERES-Maize model
simulations were used to assess the impacts of the agronomic
practices across various AEZs in the study area. The sim-
ulations performed across 107 locations representing AEZs
I–III revealed that AEZs largely shaped maize yields and that
sowing and cultivar practices significantly influenced yield
variability across the AEZs (Table S3). Other practices, such
as tillage, organic amendments, and irrigation, significantly
influenced maize yields independently, but their interactions
with other factors were not statistically significant across the
AEZs (Figures 4–5).

The results showed that maize yield was significantly
higher for the H614 cultivar than for the H612 cultivar
(Figure 4). Furthermore, the H614 cultivar yield significantly
differed across the AEZs. AEZ II showed a higher average
yield than AEZ I and III. The average yield in AEZ II was
5312 kg ha−1, which was 3.4% and 7.6% higher than in AEZ
III and AEZ I, respectively. However, the yield of the H612
cultivar was low across all the AEZs. Furthermore, the cul-

tivar’s production was not significantly different across the
AEZs.

The interaction effect of the SDs and cultivars was sig-
nificant across the AEZs, as shown in Figure 5. The H614
cultivar interaction with early SDs resulted in high grain yield
across all the AEZs. The results further revealed that early and
late sowing showed a more marked response on yield than
mid-sowing. The optimal practices in AEZ II include sow-
ing in early May and the H614 cultivar. However, the sowing
window is not significantly different from sowing conducted
in early March. A similar observation is noted in AEZ III,
whereby sowing in early May and early March is preferable to
sowing in mid-March, early April, and mid-April. However,
in AEZ I, the sowing window is large, with sowing between
early March and mid-March and early May preferable. For the
H612 cultivar, sowing in mid-March demonstrated high yield
potential in all the AEZs.

3.4 Cumulative probability functions

Figure 6 illustrates the cumulative probability distributions
(CPDs) of the simulated grain yield in response to various
SDs. The plots demonstrate the likelihood of achieving maize
yield below a certain threshold. As a reference, we used
5000 kg ha−1, the potentially attainable yield in the study area.
The frequency distribution shows that the probability of low
yield increases away from the optimal SDs in all the AEZs.
The results indicate that SD1, SD2, and SD6 are preferable
SDs across the study area. SD4 and SD5 showed a higher
probability (>75%) of obtaining a yield less than the 5000 kg
ha−1 threshold in all the AEZs. SD6 favored AEZ I and AEZ II
with a low probability of yield below the threshold compared
to AEZ III. The early SDs (SD1 and SD2) and the delayed
SD (SD6) resulted in a low probability that ranges between
50% and 60% of obtaining a yield of less than 5000 kg ha−1.
A medium SD between mid-February and early April yielded
moderate effects on maize yield. In general, there was less
variability in the yields for all SDs across the AEZs. The coef-
ficient of variation was 22.4%, 25.9%, and 28.2% for AEZ I,
AEZ II, and AEZ III, respectively.

Based on the cultivar type, cultivar H612 indicated a high
probability of low production compared to the set thresh-
old (Figure 7). The likelihood of yield below 5000 kg ha−1

was above 90% in all the AEZs. In contrast, the probabil-
ity of obtaining the same quantity with the H614 cultivar
was reduced by almost half in the three AEZs. The result
indicates that the H614 cultivar had a reduced likelihood
of yield decline in the study region. The CPD curves for
the H612 cultivar flattened faster than those for the H614
cultivar, indicating higher probabilities of low yields. Over-
all, the H614 cultivar performed better than the H612
cultivar.
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KIPKULEI ET AL. 11 of 21

F I G U R E 5 Interaction effect of sowing dates (SDs) and cultivars on maize yield response as simulated by the DSSAT-CERES-Maize model
(where DSSAT is Decision Support System for Agrotechnology Transfer and CERES is Crop Environment Resource Synthesis) across the various
agroecological zones (AEZs). C1 is the H612 cultivar, and C2 is the H614 cultivar. Error bars indicate the standard deviation. Treatments sharing the
same letter are not significantly different (p < 0.05).

3.5 Yield maps and domains across the
AEZs

The optimal agronomic practices were evaluated for their
responses across the study area. Therefore, the model simu-
lations were used to derive spatial yield maps for the H614
cultivar and the optimal SDs. The analysis was restricted to the
optimal agronomic practices evaluated based on their signifi-
cant contribution to yield from the factorial ANOVA analysis.
Therefore, we restricted our geographical analysis to culti-
var H614 and SD1, SD2 and SD6, which displayed a higher
impact on yield than other agronomic measures. The maize
crop map generated from the crop-type mapping analysis was
used to determine the trade-off between the optimal practices.
The trade-off analysis of the optimal agronomic practices esti-
mated the percentage increase in production in reference to
an alternative strategy. The yield maps (Figure 8a–c) indicate
that early sowing was most beneficial in most regions in the
AEZ I. However, the model simulated low yields in this zone.
In contrast, late sowing (SD6) was most beneficial in most
parts of the AEZ II. However, the eastern and northwestern
parts of AEZ II, especially in Uasin Gishu County, appeared to
benefit more from early sowing than late sowing (Figure 8b,c).

Considering the 5000 kg ha−1 threshold, the yield maps
indicate that most parts of the study area benefited from early
sowing (Figure 8a,b) rather than late sowing. However, the
effect is heterogeneous, as indicated by the variation in the
yields across the study region. The observed pattern confirms
that the factors driving maize production are spatial and vary
from location to location. Thus, the maps show specific areas
where production efforts need to be optimized for increased
productivity.

The maize mask generated from the classified crop-type
map of the study area was used to conduct agronomic measure
trade-off analysis and assess each practice marginal effects.
The mask was used to evaluate the yield increase/decrease rate
resulting from an alternative practice. Therefore, three sur-
faces were created from the maize crop mask, which in this
case represented the actual cultivated areas, allowing for an
overall estimate of yield production.

The agronomic measures trade-off analysis of the assessed
practices reveals varied trends, as shown in Figure 9a–c.
Adopting SD1 as the reference, the assessment indicates that
Trans Nzoia County benefits from early sowing (SD1). In
contrast, the southern parts of Uasin Gishu County experi-
ence positive gains from SD2 and SD6. Furthermore, analysis
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12 of 21 KIPKULEI ET AL.

F I G U R E 6 Cumulative probability distributions of maize grain yields as simulated by the DSSAT-CERES-Maize model (where DSSAT is
Decision Support System for Agrotechnology Transfer and CERES is Crop Environment Resource Synthesis) across (a) agroecological zone (AEZ)
I, (b) AEZ II, and (c) AEZ III in response to sowing dates (SDs).

indicates that SD6 can increase production by up to approx-
imately 28% in some parts of AEZ II. Moreover, SD6 shows
more positive effects than SD1 and SD2 in the western parts
of Trans Nzoia County. A comparison of SD1 and SD2 indi-
cates a minimal effect, as SD2 performs better in Uasin Gishu
County (yield increase by up to 13%) (Figure 9a), whereas
SD2 appears to result in yield decline in Trans Nzoia County.
SD2 and SD6 are most beneficial in almost all parts of AEZ I,
II, and III in Uasin Gishu County. SD1 is most beneficial in the
northern parts of AEZ III of Uasin Gishu County. However,
in the same region, SD2 also performs better than SD6. The
mean spatial effect from the trade-off analysis shows that SD6
can increase yield by an average of 284 kg ha−1 in AEZ II. The
results further show that relative to SD 1, SD 2 portrays a uni-
form effect on yield increase across all the AEZs. For SD2, the
yield increase is, on average, 116, 115, and 86 kg ha−1 in the
AEZ I, AEZ II, and AEZ III, respectively. The yield increase

is also higher in the AEZ II and AEZ III for SD6. The south-
ern parts of Uasin Gishu, mainly covering AEZ II and AEZ
III, can record an average yield increase of 218 kg ha−1. Con-
sidering these marginal benefits and the mapped area under
maize crops, the study found that the potential yield increases
in AEZ I, AEZ II, and AEZ III are 1120, 1148, and 35,658
tonnes, respectively. The total yield increase accounts for an
approximately 5.7% increase from the current production of
0.67 Tg in the two counties.

4 DISCUSSION

4.1 Crop-type mapping

Crop-type maps provide useful inventories for decision-
making regarding agricultural planning and production. One
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KIPKULEI ET AL. 13 of 21

F I G U R E 7 Cumulative probability distributions of maize grain yields as simulated by the DSSAT-CERES-Maize model (where DSSAT is
Decision Support System for Agrotechnology Transfer and CERES is Crop Environment Resource Synthesis) across (a) agroecological zone (AEZ)
I, (b) AEZ II, and (c) AEZ III in response to cultivar type.

major challenge in agricultural landscape monitoring is that
these maps are not readily available, especially in the SSA
region (Vancutsem et al., 2013). Another limitation is that
the available crop-type maps in most countries are outdated
(Waldner et al., 2017). Nonetheless, RS techniques have
enabled the generation of crop-type maps and improved har-
vested area estimates for various agricultural applications
(Mashaba-Munghemezulu et al., 2021). The results from the
Sentinel-2-based classification showed that the crops that
define the study region are well represented based on the
high accuracies obtained. The spatial distribution patterns of
various crops were mapped with accuracies comparable to
those obtained by other related studies (Ibrahim et al., 2021;
Zhang et al., 2020). The OA was excellent and corroborated

other crop-type classifications involving regions with distinc-
tive regional cropping patterns (Ibrahim et al., 2021; Maponya
et al., 2020).

The RF model generally performed well in character-
izing the various crop types in the region, as indicated
by the model accuracy estimates. Our findings corrobo-
rate research conducted in other regions that used machine
learning techniques to map various crop types (Kpienbaareh
et al., 2021; Mashaba-Munghemezulu et al., 2021; Rao
et al., 2021). Compared to other machine learning algo-
rithms, the RF model is highly accurate in distinguishing
between crop and noncrop cover types and retrieving maize-
grown areas from Sentinel-2 images (Chen et al., 2021; Zhang
et al., 2020).
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14 of 21 KIPKULEI ET AL.

F I G U R E 8 Yield maps of the H614 maize variety under optimal sowing dates (SDs): (a) SD1, (b) SD2, and (c) SD6 in the study area. I, II, and
III are the humid, subhumid, and semihumid agroecological zones, respectively.

4.2 Influence of agronomic practices

The simulated yield from the calibrated and evaluated
DSSAT-CERES-MAIZE crop model revealed that vari-
ous agronomic practices have varied influences on pro-

duction across the AEZs. The results showed that SDs
and cultivars are the main agronomic practices influ-
encing the maize yield dynamics acting independently
and in their interactions in the region. SDs and other
farm management decisions determine the intersection of
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KIPKULEI ET AL. 15 of 21

F I G U R E 9 Percentage yield difference for H614 maize variety considering various sowing dates (SDs): (a) SD2 relative to SD1, (b) SD6
relative to SD1, and (c) SD6 relative to SD2. I, II, and III are the humid, subhumid, and semihumid agroecological zones, respectively.

critical phenological stages with favorable weather conditions
(Feleke et al., 2023; Perondi et al., 2019). Maize requires suf-
ficient precipitation during the tasseling, pollination, silking,
and grain stages (Ramirez-Cabral et al., 2017). In addition,
high temperatures during the same period induce thermal

stress, limiting pollen viability and affecting silk receptiv-
ity (Waqas et al., 2021). Also, evidence of varied cultivar
responses on maize production and stability was found in
some studies, for instance, Lana et al. (2017) and Rezende
et al. (2020). Despite the two cultivars being among the top
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cross hybrids in the East Africa region, the model calibration
results indicated that H614 require more heat units to attain
anthesis and reach physiological maturity. Longer growth
duration in long-maturing varieties compounded by optimal
weather conditions at critical crop phases increases dry matter
accumulation and allocation to kernels, thus improving crop
productivity (G. Liu et al., 2023; Zhiipao et al., 2023). The
varied response of SDs and cultivars on maize yield aligns
with other studies conducted in the African agricultural sys-
tems (Adnan et al., 2017; Tesfaye et al., 2017; Tofa et al.,
2020).

The study found that yield can be enhanced beyond the
current average production in all the AEZ zones in the study
area by adjusting SDs and adopting the H614 cultivar. How-
ever, the increment is possible if the nutrient management
aligns with the government-recommended nitrogen fertiliza-
tion of 75 kg N ha−1 (Chebet et al., 2017). The H614 cultivar
is one of the superior cultivars in the region and has been
evaluated by Kipkulei, Bellingrath-Kimura, Lana, Ghazaryan,
Baatz et al. (2022). The modeling results showed that the
least feasible yield for the cultivar in the study area was
4400 kg ha−1, an estimate slightly higher than the govern-
ment statistics of 3700 kg ha−1 in Uasin Gishu County and
4000 kg ha−1 in Trans Nzoia County (MoA&LD, 2020). The
slight discrepancy can be attributed to the low input appli-
cation by the farmers with no consideration of site-specific
conditions or government-recommended applications. For
instance, Chebet et al. (2017) found that, on average, farmers
apply 60 kg N ha−1 with no additional supplements such as
manure.

Regarding the influence of AEZs, the study found var-
ied effects of sowing and cultivars. A possible explanation
for this variation is the different susceptibility of the zones
to varying weather conditions. For instance, AEZ I is less
sensitive to varying weather conditions, and the high and
even distribution of precipitation in this zone is a catalyst
for growth acceleration and yield stability. The findings cor-
roborate the results of other studies in similar environments
in SSA, which found that weather variability in different
AEZs affects yield variability (Amikuzino & Donkoh, 2012;
Mugandani et al., 2012). Furthermore, a high average yield
was simulated for AEZ II compared to other zones. This
result may be explained by the fact that climatic conditions in
the zone are moderate compared to those in different zones.
Despite AEZ I receiving high rainfall, the zone is charac-
terized by poorly drained soils in most parts, which might
result in yield decline. Another possible reason is that zone
I lies in a low-temperature gradient bordering Mount Elgon
in Trans Nzoia and a section of the Mau Forest complex in
Uasin Gishu. This disadvantages maize performance, which
usually requires temperatures above 20˚C for germination and
rapid growth (Waqas et al., 2021). As for the zone, there-
fore, the seed germination and development rate may be

suppressed, leading to a low plant population. Maize growth
and development thrive under optimal temperatures beyond
which a marked decline in yield occurs (Chemura et al., 2022).
AEZ III, on the other hand, experiences low rainfall and is
characterized by highly weathered, leached Ferralsols with
poor water-holding capacity (Amikuzino & Donkoh, 2012).
Low rainfall amounts and low soil fertility influence sowing
and other agronomic practices in rainfed cropping systems
(Rurinda et al., 2015).

The study revealed distinct impacts of early and late sow-
ing practices across the AEZs, influenced by rainfall patterns
characterized by onsets and cessation. In AEZ III, a delay in
sowing led to decreased yield in comparison to AEZs I and
II. Early sowing particularly benefited the eastern and north-
western parts of AEZ II, aligning with the observations of
Kibii and Kipkorir (2018), who highlighted early precipitation
onset in the region. The western parts of Trans Nzoia County,
which mainly covers AEZ I and northern Uasin Gishu County,
appeared to be affected by late sowing. A possible explanation
for this trend might be in the prevailing weather conditions,
including variable onset and cessation patterns in the region,
causing diverse influences on the growth and development
of maize (Mugalavai et al., 2008). On the other hand, the
southern parts of both counties appeared to benefit from late
sowing. The effect can be attributed to higher and relatively
stable precipitation in the zones. The average rainfall in these
zones is between 1200 and 1800 mm, with an even distribution
across the growing season (Jaetzold et al., 2010). Moreover,
these zones are characterized by nitisols and deep and produc-
tive soils typical of tropical environments (NAAIAP & KARI,
2014).

The influence of organic amendments, irrigation, and
tillage practices did not significantly affect maize yield across
the AEZs. A possible explanation for this result is that the
additional nitrogen from organic amendments may not have
been in sufficient quantities to contribute to yield increase.
Other studies have found significant effects of organic amend-
ments, especially when provided in larger quantities (Naderi
et al., 2016). However, other research findings on the influ-
ence of tillage practices are consistent with our research (Khan
et al., 2007; Naderi et al., 2016). Studies conducted in SSA,
where agronomic practices are adjusted as measures against
climate change effects, show that AEZs largely characterize
maize yield.

4.3 Yield maps and domains across the
AEZs

This study found that agronomic practices had variable
responses in maize production in the study area. The high
response effect of AEZ I over a large range of SDs and sta-
bility in production in the zone can be attributed to high
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and stable annual precipitation compared to AEZs II and III
(Kabubo-Mariara & Karanja, 2007). However, yield benefits
were more pronounced in AEZ II than in the other zones. This
finding may be due to the combined influence of tempera-
ture and precipitation, favoring a greater yield increase. AEZ I
exhibits low minimum temperatures, sometimes falling below
10˚C, constraining maize germination and vegetative growth
(Ramirez-Cabral et al., 2017).

4.4 Limitations

One limitation of the study is that we used dual seasonal data
to calibrate and evaluate the DSSAT-CERES-Maize model.
Although two seasons present a minimum period for such
assessments, future research will explore on-farm experi-
ments spanning more seasons to obtain a better response of
the model to diverse environmental and management scenar-
ios. In addition, although the model has been found to perform
well in representing crop growth, the DSSAT-CERES-Maize
model cannot account for factors such as weed infestations,
pests and diseases, and extreme weather conditions such as
droughts and floods.

5 CONCLUSIONS

The present study aimed to assess agronomic practices using
the DSSAT-CERES Maize model and to assess the impact of
these practices on maize yield across various AEZs in Uasin
Gishu and Trans Nzoia Counties in Kenya. Our results indi-
cate that the influence of agronomic practices varies with the
AEZs. The study found that adopting the optimal SD and the
H614 cultivar could increase yield by 1120 tonnes in AEZ
I, 11,478 tonnes in AEZ II, and 35,658 tonnes in AEZ III.
Cumulatively, the AEZs can account for a 5.7% increase in
maize production from the current production. Although early
sowing spanning to the end of March provides good potential
for high yields, we established that some areas in the southern
parts of Uasin Gishu could have significant yield increases if
sowing is conducted in early May.

The outcome of this research offers an opportunity for
farmers and the government to better understand the poten-
tial practices across the maize-cultivated areas. The study also
helps to strengthen policies and improve resource allocation
regarding agricultural planning at the county and national lev-
els. Future research will focus on upscaling these measures
and assessing a broad range of agronomic practices, including
other cultivars that have not been calibrated and evaluated in
the study area. The study provides a useful knowledge base to
support sustainable crop production in rainfed cropping sys-
tems and under production constraints such as climate change.
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