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Abstract— Transformer performance and efficiency can be enhanced by effectively address the properties of its 
insulation system. The power transformer insulation system weakens as a result of operational thermal stresses 
brought on by dynamic loading and shifting environmental patterns. Winding hot spot temperature is a crucial 
metric that must be maintained below the prescribed limit while power transformers are operating so as to 
maintained power system reliability. This is due to the fact that, among other variables, the time-dependent aging 
effect of insulation depends on transitions in hot spot temperatures. Due to the non‐linear nature of the 
conventional mathematical models used to determine these temperatures, and complexity of thermal 
phenomena, investigations still need to be exercised to fully understand the variables that associate with hot spot 
temperature computation with minimum error. This paper explores the possibilities of enhancing top oil and hot 
spot temperature estimation accuracy through the use of an adaptive neuro-fuzzy inference (ANFIS) technique. 
The paper presents an adaptive neuro fuzzy model to approximate the hot spot temperature of a mineral oil-
filled power transformer based on loading, and established top oil temperature. Initially, a sub-ANFIS top oil 
temperature estimation model based on loading and ambient temperature as inputs is established. Using a hybrid 
optimization technique, the ANFIS membership functions were fine-tuned throughout the training process to 
reduce the difference between the actual and anticipated outcomes. The correctness and reliability of the created 
adaptive neural fuzzy model have been verified using real-world field data from a 60/90MVA, 132kV power 
transformers under dynamic operating regimes. The ANFIS model results were validated against field measured 
values and literature-based electrical-thermal analogous models, establishing a precise input-output correlation. 
The developed ANFIS model achieves the highest coefficient of determination for both TOT and HST (0.98 and 
0.96) and the lowest mean square error (7.8 and 10.3) among the compared thermal models. Correct 
determination of HST can help asset managers in thermal analysis trending of the in-service transformers, 
helping them to make proper loading recommendations for safeguarding the asset.  
 
Keywords— Hot Spot Temperature, Top oil temperature, Adaptive Neuro-fuzzy Inference System, Dynamic 
loading, Power transformer, Soft Computing, Thermal model.   
     

1. INTRODUCTION  

 Power transformers are among the most capital-intensive assets of the electrical power 

system and their life management scheme is vital for the continuous and reliable operational of 

the power grid. Due to increase demand for energy in different sectors of the world and load 

growth, power system assets in particular transformers, are being stretched to the limits leading 

to accelerated deterioration to their conditions. Stressing a power transformer for a long period 

can lead to untimely faulting or failure, thus, interrupting continuous power flow to consumers. 

However, addressing transformer life threatening variables through the timely condition based 

or scheduled maintenance can improve the remnant life span of a power transformer. In 

literature, it is reported that typical transformer faulting likelihood is linked to the transformer 

load-ability regime [1]. Load increase has contributed to the continuous rise of the transformer’s 

maximum temperature in which the windings and the insulation system suffers. These 

temperatures are normally referred to as the hot spot temperature (HST). There is a direct 

correlation amongst HST, the deterioration of the transformer insulation and to the faulting 

probability of the transformer’s components [2-4]. Thus, monitoring, predicting and controlling 

HSTs under dynamic loading conditions and different ambient temperatures enable the 
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prevention of the transformer’s untimely thermal incipient faults, thereby enhancing longevity 

of power transformers technical life.  

 The power transformer loading capacity is vividly associated with its variant thermal 

conditions, which can be projected using dynamic thermal models. As highlighted in different 

manuscripts, thermal models illuminated the intricate heat transfer phenomena within the 

transformer in the form of simplified differential equations with a notion of representing 

primarily the top oil temperature (TOT) and the HST [5]. Winding hot spot temperature is 

directly corelated with the technical lifespan of the power transformer via the thermal stress 

imparted to the insulation system. It is therefore of paramount importance to correctly measure 

and control this parameter. It is observed that use of optical fiber sensors in the linings of phase 

windings can accurately determine the thermal hot spots of the transformer windings [6-10]. 

However, this technique is capital intensive and also not practically applicable to in-service and 

aged transformers without retiring them from operation which may disrupt the continuous 

supply of power. This has technically enforced continued adoption of winding temperature 

indicators (WTI) as the hot spot temperature measurement practice in aged and some new 

transformers. Consequently, different thermal models have been formulated so as to aid in the 

estimation of transformer TOT and HST. In [3], it is reported that thermal models can be 

grouped as physical models, semi-physical models or computational fluid dynamic based 

models. 

 Findings reported in literature have contributed immensely in improving the accuracy of 

dynamic models by considering different variables associated with thermal behavior of power 

transformers. The environmental aspect in the form of wind-speed, and its direction was 

considered in improving the estimation accuracy of the thermal model as reported in [11]. 

Additionally, the solar radiation intensity which was overlooked in the IEC and IEEE 

standardized loading guides [12, 13] in determining transformer temperature changes was 

considered in models developed in [14-17]. It was further confirmed through applications that 

solar radiation can lead to transformer top oil temperature rise by about 3.7oC, [17]. Other 

variables considered by different researchers in thermal dynamic model modifications for TOT 

and HST estimation to improve on adequacy and accuracy are not limited to tap-changer 

position, oil viscosity, harmonics in loading, insulation water content, constant or variable 

thermal resistances taking into account the type, design and capacity of the transformer [5], [16-

21]. 

 As the data related to the transformer thermal behavior are progressively accessible, it is 

possible to formulate a transformer thermal model based on soft computing techniques 

regardless of thermal attributes. Power transformer estimation and prediction thermal models 

based on the available data were developed through exploitation of artificial neural network 

(ANN) and the obtained results were superior to the one obtained through conventional 

approaches, but well comparable to the practical-measured data [22-25]. In addition, the 

support vector machine (SVM) [26], fuzzy [27-28] fuzzy-NN [29], were investigated in 

estimating the hot-spot temperature for a power transformer. Nevertheless, long-term 

performance of the artificial intelligent-based approaches, particularly ANN, over the years, 

and across different assets, were not adopted due to inaccessibility of field measurement data. 

However, harnessing the advantages brought by the aspects of soft computing techniques and 
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availability of data will enhance the precision and accuracy of thermal models for hot spot 

temperature estimation and prediction. The principal drive in transformer thermal modeling 

through TOT and HST forecasting is in establishing measures to extend the technical calendar 

life duration of the in-service transformer insulation system subjected to thermal stresses. 

Though there have been innovative contributions for estimating the hot spot temperatures 

centered on modified thermo-electric analogy methods or hybridized methodologies, it is 

necessary to investigate these methods for more accurate and effective HST valuation models. 

 Given the difficulty in creating highly accurate deterministic models, a number of recent 

publications have used black box models to perform thermal modeling that are developed 

using historical data. History-based techniques such as neural networks and fuzzy systems, 

which can handle uncertain data and learn complex nonlinear relationships, have been 

demonstrated to be effective in thermal modeling. However, each of these individual models 

is missing a crucial element, "adaptability', that would limit their applicability to evolving 

transformer thermal behavior. It is anticipated that the behavior of the transformer will evolve 

as a result of variations in external inputs, structural modifications, different maintenance 

strategies, and other factors. Therefore, if the attributes or the structure of the model do not 

adapt to account for these changes over time, the model may become invalid.  

This paper suggests the use of the ANFIS model to perform thermal modeling of power 

transformers. The objective is to predict the transformer winding hot spot temperature using 

current and past data. The main contribution of the present work focuses on the efficacious 

optimization, validation, and development of intelligent ANFIS model that estimate the power 

transformer TOT and HST.  The benefit of this model is its adaptability to system changes, 

which makes it a competitive choice for use in practical situations where the behavior of the 

transformer performance may vary over time. This paper further explores on the accuracy and 

adequacy of the transformer thermal model (TOT and HST estimation) by harnessing the merits 

of the Adaptive Neuro Fuzzy Inference System (ANFIS) for transformer thermal condition 

valuation. The variables adopted in the formulation of this model are the dynamic transformer 

loading regime, environmental parameters in the form of ambient temperature. A significant 

forte of the proposed thermal estimation model in this study is the adoption of the entwined 

effect of these two often measured attributes for top oil temperature estimation. Thus, a soft 

computing intelligent strategy that considers the adaptive fine-tuning of rules formulated on 

gathered data and knowledge of the actual measurements of the parameters involved is utilized 

in decision mapping of the outcome. An additional noteworthy implication of this study is the 

potential utilization of the ANFIS models as a robust alternative to conventional mathematical 

thermal tools in the context of power transformer thermal analysis. 

 The remaining sections of the paper is structured follows; Section 2 details the brief literature 

on conventional methodologies employed in transformer thermal analysis. Section 3 describes 

some of the established soft computing techniques in transformer thermal analysis. Section 4 

articulates the procedure in establishing the ANFIS transformer thermal model. Section 5 

addresses the simulation results and comparisons. Finally, the conclusions and further 

prospective developments are summarized in Section 6. 

2. BRIEF REVIEW OF CONVENTIONAL TRANSFORMER THERMAL ANALYSIS 
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     Thermal stress, which is primarily influenced by loading circumstances and ambient 

temperature, has a direct impact on how well a transformer's insulation holds up over time. 

One of the most crucial components for determining the state of a transformer is a thorough 

analysis of transformer thermal behavior in the form of hot spot temperatures. To offer 

direction on identifying suitable ratings and operation modes for transformers, many 

transformer loading recommendations have been presented. The popularly adopted 

conventional thermal models for estimating transformer hot spot temperatures are briefly 

discussed. Although many thermal model improvements have emerged, most of them rely on 

the foundation of models outlined by the IEEE model, Swift’s model and Susa’s models which 

are discussed in this section.  

2.1.1.  IEEE Models 

     As estimated by IEEE loading guides [13], oil and winding temperature rise can be due to 

rise in loading regimes that activates the increase in winding currents. The top oil temperature 

rise is calculated as per expressions (1) and (2) which resembles an exponential response 

behavior [13].  

𝜏𝑜,𝑅
𝑑∆𝜃𝑜

𝑑𝑡
= ∆𝜃𝑜,𝑈 − ∆𝜃𝑜,𝐼           (1) 

∆𝜃𝑜,𝑈 = ∆𝜃𝑜,𝑅 . (
1+𝑅𝐾2

1+𝑅
)           (2) 

where  ∆𝜃𝑜,𝐼  is the initial top oil temperature rise, ∆𝜃𝑜,𝑈  represents the ultimate top oil 

temperature rise, 𝜏𝑜,𝑅 denotes rated oil time constant, ∆𝜃𝑜  represents the top oil temperature 

rise, R shows the ratio between transformer load loss and loss of transformer during no load 

test, K denotes the ratio between load current and rated winding current.  

      Similar to top oil temperature calculations, the exponential response from the initial hot 

spot temperature-rise over top oil temperature (∆𝜃ℎ𝑠,𝐼) to the ultimate hot spot temperature 

rise over the top oil temperature (∆𝜃ℎ𝑠,𝑈)  is employed in the transformer hot spot temperature 

rise calculations as highlighted in [13] by expressions (3) and (4): 

𝜏𝑤𝑑,𝑅
𝑑∆𝜃ℎ𝑠

𝑑𝑡
= ∆𝜃ℎ𝑠,𝑈 − ∆𝜃ℎ𝑠,𝐼                (3) 

∆𝜃ℎ𝑠,𝑈 =  ∆𝜃ℎ𝑠,𝑅 . (𝐾2𝑚)                 (4) 

where, 𝜏𝑤𝑑,𝑅  is the rated winding temperature time constant and 𝑚 is a constant for the 

nonlinearity of hot spot thermal resistance for different cooling modes. After some 

mathematical formulations, the final HST equation is formulated as a combination of variables 

highlighted in expression (5), [13]: 

𝜃ℎ𝑠 = 𝜃𝑎 + ∆𝜃𝑜 + ∆𝜃ℎ𝑠                               (5) 

where, 𝜃ℎ𝑠 shows hot spot temperature, the hot spot temperature rise is noted by ∆𝜃ℎ𝑠 and  

𝜃𝑎  symbolizes environmental temperature. Through further study, Lesieutre et al., [30] 

updated the IEEE models as in (6) and (7). 

𝜏𝑜,𝑅
𝑑∆𝜃𝑜

𝑑𝑡
= ∆𝜃𝑜,𝑈 + 𝜃𝑎 − ∆𝜃𝑜,𝐼         (6) 

𝜃ℎ𝑠 = 𝜃𝑜 + ∆𝜃ℎ𝑠                                                 (7) 

Jo
urn

al 
Pre-

pro
of



 

2.1.2. Swift’s Model 

     Centered on heat transfer theory, Swift et al., [31-32] formulated an equivalent circuit for 

the transformer thermal model. In this model, the top oil and HST were determined by 

considering mineral oil nonlinear thermal resistance. The final dynamic thermal expressions 

for TOT and HST formulated from the equivalent circuit are stated as in (8) and (9). 

𝐾2𝑅+1

𝑅+1
. ∆𝜃𝑜,𝑅

1

𝑛 = 𝜏𝑜,𝑅
𝑑𝜃𝑜

𝑑𝑡
+ (𝜃𝑜 − 𝜃𝑎)

1

𝑛            (8) 

𝐾2∆𝜃
ℎ𝑠,𝑅

1

𝑚 = 𝜏𝑤𝑑,𝑅
𝑑𝜃ℎ𝑠

𝑑𝑡
+ (𝜃ℎ𝑠 − 𝜃𝑜)

1

𝑚            (9) 

where, 𝑛  and 𝑚  are constant signifying nonlinearity in oil thermal resistance for diverse 

cooling modes. 

2.1.3. Susa’s Model 

      Susa upgraded Swift’s model by incorporating the non-linear thermal resistance of mineral 

oil which depends also on temperature, oil viscosity and loss variation [19], [33-34]. Susa’s 

computational top oil temperature model is denoted by (10): 

𝐾2𝑅+1

𝑅+1
. ∆𝜃𝑜,𝑅 = 𝜏𝑜,𝑅

𝑑𝜃𝑜

𝑑𝑡
+

(𝜃𝑜−𝜃𝑎)

∆𝜃𝑜,𝑅
𝑛 .𝜇𝑝𝑢

𝑛

1+𝑛
         (10) 

where, 𝜇𝑝𝑢 represents the ratio of oil viscosity between current measured temperature and 

rated top oil temperature. Susa’s final hot spot temperature thermal equation is expressed as 

in (11): 

𝐾2. 𝑃𝐶𝑢.𝑝𝑢. ∆𝜃𝑜,𝑅 = 𝜏𝑤𝑑,𝑅
𝑑𝜃ℎ𝑠

𝑑𝑡
+

(𝜃ℎ𝑠−𝜃𝑜)

∆𝜃ℎ𝑠,𝑅
𝑚 .𝜇𝑝𝑢

𝑚

1+𝑚
    (11) 

where, 𝑃𝐶𝑢.𝑝𝑢 signifies the transformer winding copper losses values in per unit. 

     To take into account the effect of water content in the solid insulation in temperature 

variations on transformer thermal behavior, Cui et al., [20] updated Susa’s model and the 

resultant models are demonstrated in equations (12) and (13). In [16], the aspect of the solar 

irradiation and moisture effect on the top oil temperature was taken into account and the 

resulting model is articulated in expression (14) 

     [
𝐾2.𝑅+1

𝑅+1
] . ∆𝜃𝑜,𝑅 = 𝜏𝑜,𝑅 .

𝑑𝜃𝑜

𝑑𝑡
+ [

(𝜃𝑜−𝜃𝑎)𝑛+1

∆𝜃𝑜,𝑅
𝑛 .

1+𝜂𝑅

𝜇𝑝𝑢
𝑛 +𝜂𝑅.𝓇𝑝𝑢[

∆𝜃𝑜
∆𝜃𝑜,𝑅

]
𝑛]            (12) 

𝐾2𝑃𝑊𝑛𝑑,𝑝𝑢. ∆𝜃ℎ𝑠,𝑅 =  𝜏𝑤𝑑,𝑅 .
𝑑𝜃ℎ𝑠

𝑑𝑡
[

(𝜃ℎ𝑠−𝜃𝑜)𝑚+1

∆𝜃ℎ𝑠,𝑅
𝑚 .

1+𝜂𝑅

𝜇𝑝𝑢
𝑚 +𝜂𝑅.𝓇𝑝𝑢[

∆𝜃ℎ𝑠
∆𝜃ℎ𝑠,𝑅

]
𝑚]        (13) 

[[
𝐾2.𝑅+1

𝑅+1
] +

𝑞𝑅𝑎𝑑

𝑞𝐹𝑒+𝑞𝐶𝑢
] . ∆𝜃𝑜,𝑅 =  𝜏𝑜,𝑅 .

𝑑𝜃𝑜

𝑑𝑡
[

(𝜃𝑜−𝜃𝑎)𝑛+1

∆𝜃𝑜,𝑅
𝑛 .

1+𝜂𝑅

𝜇𝑝𝑢
𝑛 +𝜂𝑅.𝓇𝑝𝑢[

∆𝜃𝑜
∆𝜃𝑜,𝑅

]
𝑛]     (14) 
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where, 𝓇𝑝𝑢  denotes the ratio of cellulose thermal resistance between any temperature and 

rated temperature, 𝜂𝑅 shows the ratio of rated thermal resistance of solid insulation (cellulose) 

and rated thermal resistance of liquid insulation (oil). 

3. BRIEF REVIEW OF SOFT COMPUTING TECHNIQUES IN TRANSFORMER 
THERMAL ANALYSIS 

 The possibility of a valid and accurate "one size fits all" mathematical model is unlikely given 

the complexity and variability in transformer design and operation. Also, some other factors 

for the implementation of the aforementioned thermal dynamic models may need to be 

acquired beforehand from the manufacturers, like “heat run test" [26]. These parameters might 

not be readily accessible, notably for those aged transformers. Statistical machine learning 

methods are the foundation of an innovative hot spot temperature measurement strategy [37]. 

With the aid of a historical dataset for a transformer (such as hot spot temperature, TOT, load 

current, ambient temperature, bottom oil temperature, etc.), soft computing techniques such as 

ANN and SVR are able to recognize the intricate and nonlinear patterns in the time series of 

transformer thermal profile and predict hot spot temperature over a given period of time. 

 Several researchers are focusing their studies on the application of artificial intelligence 

algorithms to predict the HST in accordance with the transformer operation data in order to 

quickly and effectively estimate the transformer winding HST. The benefit of using an artificial 

intelligence-based algorithm to determine HST in a transformer is that the trained model can 

be used to estimate HST in an operating transformer while taking into account variables like 

the transformer's structure, the material's non-uniformity, and the impact of environmental 

conditions. This can improve the utilization of the transformer's capacity while maintaining its 

dependability. Additionally, a comparison of the hot spot temperature between the expected 

and actual measurements may reveal any anomalies in the transformers. In [38-40], transformer 

top oil temperature estimation was achieved through the use of ANN, in which the ambient 

temperature and the load current were mainly employed as inputs.  

 Using a radial basis function neural network (RBFN), Galdi and Ippolito were able to 

accurately detect the HST of a 25kVA distribution transformer than the IEEE empirical 

calculation [41]. The results of Q. He’s [22] discussion of the viability of three different neural 

networks for transformer TOT detection demonstrate that temporal processing networks can 

produce the most precise predictions. The HST transformer was also detected using a fuzzy 

neural system, which has superior accuracy and computational efficiency compared to RBFN 

and multilayer neural networks [42-43]. Villacci [44] used the idea of grey systems in 

transformer HST valuation and realized that the IEEE empirical formula and machine learning 

technique can be cascaded to improve on model accuracy. The performance of three widely 

used models (IEEE model, Swift's model, and Susa's model) for forecasting transformer top oil 

temperature is compared in [45] on the basis of support vector regression optimized using 

genetic algorithm (GA). 

 In addition to the aforementioned intelligent analysis technique, the HST pattern of the 

transformer can also be achieved by employing the support vector machine model.   Estimation 

of the HST of an oil submerged transformer, was established via a support vector regression 

(SVR) with gradient descent optimization approach as highlighted in [46]. Additionally, in [47] 

Jo
urn

al 
Pre-

pro
of



 

a 750MVA/500kV power transformer's HST was found using the SVR approach, and the 

method had good detection success. Cui [26], suggested a SVR method that uses information 

granulation to predict the HST of a 15MVA, Oil Directed Air Forced Cooling (ODAF) 

transformer and this approach surpasses several already adopted thermal model-based 

techniques. With effective parameter optimization of the SVR model, Deng et al., [48], managed 

to predict HST for a 100kVA/10kV oil submerged transformer. The model has a maximum 

temperature difference of 3oC after comparing with the field obtained data, showing the 

viability of the established model. An inversion detection technique for transformer transient 

hot spot temperature was established in [49]. The results of this methodology outperform the 

outcome of GA-BPNN method in HST determination. The aforementioned techniques 

demonstrate the efficacy of an AI system in the computation of transformer winding HST, 

nevertheless, the transformer thermal behavior and modeling has not yet been exhaustively 

explored. 

4.1  TRANSFORMER THERMAL MODEL 

 Mathematical models have been accepted in the estimation of transformers hottest point; 

however, they also have their limitations. The adaptive neuro fuzzy inference system (ANFIS) 

has emerged to be an alluring, powerful, general modelling tool, compounding well established 

learning principles of ANNs and the linguistic transparency of fuzzy logic theory. Thus, the 

ANFIS is given the learning ability from training data in the same way that an ANN does by 

using the ANN technique to update the Takagi-Sugeno type inference model's parameters. As 

a result, the outcome that have been mapped into a fuzzy inference system (FIS) can be 

expressed using linguistic labels (fuzzy sets). In the ANFIS network, a FIS can therefore exactly 

determine the nodes and the hidden layers. This improves the prediction ability of ANN 

models while also minimizing challenge of detecting the hidden layer.  

 To further explore the possibilities of enhancing accuracy in transformer thermal estimation, 

this article presents a non-intrusive soft computing method based on the adaptive neuro fuzzy 

inference system to map the HST of a power transformer centered on routinely measured 

parameters. By harnessing the unique performance of neural networks and fuzzy inference 

system, the ANFIS technique is able to explicitly learn from the expert knowledge, thereby 

enabling it to enhance its performance in addressing nonlinear and complex problems. As 

discussed in [35-36], the formulation of a fuzzy inference system relies on the natural language 

rule formulation established as per expert's interpretation from provided data. Additionally, 

unless modified by the user, partitioned ranges and the allotted membership functions shape 

remain fixed. By modifying their parameters in response to any change in the input/output 

data, ANFIS enables the adaptive fine-tuning of the membership functions [36]. As a result, the 

ANFIS responds quickly and can adjust to changing data and learn from it. Additionally, 

ANFIS is taken into consideration since it doesn't need a complicated mathematical model, it is 

quick and adaptive, and the generated prediction tool can be deployed quickly, which is crucial 

for estimating transformer thermal profile. A characteristic ANFIS structure is depicted in Fig. 

1 [36]. 
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Fig. 1. ANFIS topology 

Layer 1: Membership grades (ex. Gaussian) 

𝑂𝐿1𝐴𝑖
= 𝜇𝐴𝑖

(𝑥) = exp [(
𝑥 − 𝑐𝐴𝑖

𝜎𝐴𝑖

)

2

] 

Layer 2: Firing strengths 

𝑂𝐿2,𝑖 = 𝜔𝑖 = 𝜇𝐴𝑖
(𝑥) × 𝜇𝐵𝑖

(𝑦),     𝑖 = 1, 2 

Layer 3: Normalized firing strengths 

𝑂𝐿3,𝑖 =  𝜔𝑖𝑛 =
𝜔𝑖

𝜔1 + 𝜔2
  , 𝑖 = 1, 2 

Layer 4: Consequent rules 

𝑂𝐿4,𝑖 = 𝜔𝑖𝑛 × 𝑓𝑖(𝑥, 𝑦),     𝑖 = 1, 2 

Layer 5: ANFIS output 

𝑂𝐿5 = ∑ 𝜔𝑖𝑛

2

𝑖

× 𝑓𝑖(𝑥, 𝑦)  

 In determining the HST, firstly a sub-ANFIS model for the top oil temperature was realized 

by keying load profile data and the measured ambient temperature for various transformers 

operating subjected to diverse environments which are then mapped into an output of top oil 

temperature value. Field data consisting of the loading profile (p.u), ambient temperature and 

TOT from installed temperature indicators obtained from at least 5 transformers for a 

continuously hourly period for at least three (3) months for each transformer was divided into 

data sets, 70% for training and 30% for testing. Using a hybrid optimization technique, the 

ANFIS membership functions were fine-tuned throughout the training process to reduce the 

difference between the actual and anticipated outcomes. However, the results presented in this 

paper are based on one of the case study transformers (60/90MVA, 132kV). The proposed 

procedure for building an ANFIS model for transformer top oil and hot spot temperature 

estimation is highlighted in Fig. 2.  

 The procedure for ANFIS modelling for transformer temperature estimation involves three 

primary stages as noted below: 
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[1]. Data Preparation: This involves preparation and processing of data that links to 

transformer TOT and hot HST. The data analyzed include loading profile, measured 

ambient, TOT and HST. The data attained from at least 5 transformers for a period of 3 

months are then divided into training and testing datasets, 70% datasets used for training, 

and 30% datasets used to evaluate the developed model. 

[2]. ANFIS Modelling: The ANFIS model is constructed using the training dataset. Finding 

the ideal combination of Membership Function is the following stage (MF). The input’s MF 

number and type are chosen, the training dataset is employed to train each combination's 

model, and then each model is assessed to determine which combination works best. 

[3]. Accuracy Valuation: The proposed model is evaluated with the testing datasets, and the 

error from both training and testing is computed. 

 

Fig. 2. ANFIS flowchart for modelling transformer temperature estimation 
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The deviation between the expected outcome (TOT) and the measured temperature in the form 
of the training error is depicted in Fig. 3. 

 

Fig. 3. Training error 

 The structure of the created ANFIS model is depicted in Fig. 4. The model's utilized input 

elements are the transformer loading regime (p.u) and the magnitude of the measured ambient 

temperature, and the expected output variable is the projected top oil temperature value. In 

Fig. 5, the populated rules allied with the established ANFIS model are represented. 

 

Fig. 4. Generated ANFIS structure 
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Fig. 5. Rules for the established TOT ANFIS model. 

 Analogous to the formulation concept for the top oil temperature model, the ANFIS model 

for hot spot temperature consists of loading profile and TOT values as inputs. The TOT values 

used were those of the ANFIS sub model for top oil temperature. In Fig. 6 the populated rules 

associated with the developed HST ANFIS models are graphically represented. The SIMULINK 

sub-models for the developed Adaptive Neuro Fuzzy Inference system and the other 

conventional models for transformer top oil and hot spot temperatures are portrayed in Fig. 7. 

 

Fig. 6. Rules for the established HST ANFIS model. 
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Fig. 7. The Simulink model for HST. 

 

4.2.   Performance Evaluation  

 Through computation of adequacy and accuracy metrics [50] for the estimated TOT and 

HST, with reference to on-site measurements, three traditional thermal models and the 

proposed thermal models were statistically compared. Equation (15) illustrates the coefficient 

of determination (R2) to determine sufficiency, and equation (16) represents the mean squared 

error (MSE) to determine accuracy and expression (17) illustrates the Root Mean Squared Error 

(RMSE) value. 

 𝑅2 =
∑ (𝜃𝑖−�̅�)2𝑛

𝑖=1 −∑ (𝜃𝑖−�̃�(𝑖))2𝑛
𝑖=1

∑ (𝜃𝑖−�̅�)2𝑛
𝑖=1

                      (15) 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝜃𝑖 − �̃�(𝑖))2𝑛

𝑖=1                         (16) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝜃𝑖 − �̃�(𝑖))2𝑛

𝑖=1                   (17) 

where, 𝜃𝑖  and �̃�(𝑖)  represent the measured and estimated temperatures, �̅�  denotes the mean 

value of the measured temperature, 𝑛 is sample size. 

5. CASE STUDY AND RESULTS 

 This section expounds on the expected outcome from the established ANFIS model to 

estimate the transformer top oil and hot spot temperature of a selected 60/90MVA power 

transformer. The ANFIS model's performance was compared with some chosen existing 

thermal models.  

5.1 Configuration of the Case Study Transformer 
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      A three-phase power transformer with a capacity 60/90MVA under Oil Natural Air 

Natural/Oil Natural Air Forced (ONAN/ONAF) cooling mode was utilized for the purpose of 

data collection for this study. An hourly sampling rate was used to obtain online data of top oil 

temperature, winding temperature, loading and ambient temperatures from a monitoring 

system. An assumption is made in this study that the collected data used for training the model 

was accurate to a level of 95% confidence interval to take care of some processing and 

instrument inaccuracies. Table 1 highlights a summary of the specifications and thermal model 

characteristics of the transformer. 
Table 1: Variables for Thermal Modelling 

Parameter Description 

Cooling Mode ONAN/ONAF 

Rated Power (MVA) 60/90 

Rated Voltage (kV) 132/33 

Rated Current (A) 393.6/1574.6 

R 6.5 

∆𝜽𝒐.𝑹 47.3oC 

∆𝜽𝒉𝒔,𝑹 20.3oC 

𝝉𝒐,𝑹 (mins) 108 

𝝉𝒘𝒅,𝑹 (mins) 6 

Total number of fans 10 

Frequency 50 Hz 

Manufacture Year 2016 

5.2 Results and Discussions 

 Figs. 8 and 9 display the power transformer's three-month loading profile and ambient 

temperature. Fig. 8 shows that the transformer delivery is below the 50% mark of its ultimate 

capacity, and the load conditions change regularly. This signifies that the transformer was 

operating under light loading period. It is acknowledged that there is a second unit running in 

the same substation to split the load. This had the dual purpose of lowering thermal stress (high 

temperatures) and extending the lifespan of both transformers and also allow continuity of 

power flow during faults or maintenance of the other unit.  

 
Fig. 8. Loading profile in the off-peak load season. 
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Fig. 9. Ambient temperature profile 

 Fig. 10 demonstrates comparisons between various thermal model output and 

field measurements of top oil temperatures for the case study transformer. Projected hot spot 

temperatures from the various models, including measured hot spot temperatures, are shown 

in Fig. 11.  Comparisons include Swift [31], Susa [19], and Moisture-Dependent Thermal Model 

(MDTM) [20]. The proposed thermal models' simulated results (Figs. 10 and 11) concur with 

the values that have been measured. It is observed that MDTM was also quite similar to the 

field recorded data since they considered the impact of moisture in computing the non-linear 

thermal resistance of transformer insulation. The developed ANFIS based model managed to 

track well the temperature profile of the measured field reading as it takes advantage of 

adaptive learning and mapping of inputs into projected output. Thus, the proposed model 

outperforms the other models.  

 
Fig. 10: Comparison between modelled and measured top oil temperature of the case study transformer. 

 
Fig. 11. Measured and Modelled Hot spot temperatures. 

 A magnified view of the modelled and observed hot spot and top oil temperatures from 100 

to 140 hours in Fig. 11 is depicted in Fig. 12. This enabled a better analogy of hot spot 

temperatures determined by various models. Compared to measured top oil temperatures, 

calculated average percentage errors for Swift, Susa, MTDM and proposed ANFIS models are 

7.4%, 5.2%, 3.8% and 2.1%, respectively. Swift's models exhibit seemingly large TOT and HST 

estimation errors of 7.4% and 6.6%, as illustrated in Figures 10 and 11, which is consistent with 

the observations reported in [16], [20] and [51]. Although, there is a deviation between the 

measured top oil and hot spot temperatures, the average margin of error of all the modelled 
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temperatures are within the allowable industrial error range, illustrating the adequacy of all 

the models compared in this paper. 

 
Fig. 12. Magnified modelled and measured hot spot temperature. 

 The comparison curve between the HST measured, the modelled ANFIS values and the 

prediction error margin of the 160-hour group test samples are shown in Fig. 13. The maximum 

temperature difference of test samples of the three months hourly data-set with ANFIS method 

is 7.3 ◦C.  Due to its ability to learn and adjust the membership function during training of the 

data set, the ANFIS model managed to track well the measured temperature profile with an 

average error margin of 2.1%. Although, the ANFIS model was superior in performance as 

compared to conventional methods, it still has challenges in the aspect in which the learning is 

engaged. This is because it has a fixed structure defined during the training step. Thus, other 

evolving fuzzy models which has characteristics of continuous or incremental learning without 

demanding a training step can be explored in this area of transformer hot spot temperature 

prediction. Nevertheless, the ANFIS model can be adopted in the determination of hot spot 

temperatures in transformer thermal analysis. 

 

Fig. 13. ANFIS Model vs Measured HST 

 The proposed model's performance is evaluated statistically in comparison to other thermal-

electric analogy models (Swift, Susa, and Moisture-Dependent Thermal Model (MDTM)) by 

computing adequacy and accuracy metrics for the projected top oil temperature and hot spot 

temperatures using equations noted in Section 4.2. Table 2 and 3 respectively shows the 

outcome of the performance matrix. The developed ANFIS model achieves the highest 

coefficient of determination for both TOT and HST (0.98 and 0.96) among the four thermal 

models, as shown in Table 2. This shows that the ANFIS model is adequate and capable of 

further projecting top oil and hot spot temperatures. As seen in Table 3, the established ANFIS 

has the lowest mean squared error. This is another strength that the ANFIS model can 
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consistently estimate the transformer TOT and HST with the highest degree of accuracy as 

compared to the three models. The three conventional thermal models' reliance on intuitive 

parameter determination could have led to some degree of uncertainty. In turn, it will 

consequently result in some errors in the estimation of hot spot temperature. Additionally, the 

ANFIS based model was strictly optimized for this specific unit, thanks to the learning process 

that used comprehensive real data from a notable time frame period, hence, superior results.  

 The conventional models, on the other hand, are distinctive in that they normally perform 

better for full-load (or even over-load) applications than for units with low loads. A key concern 

is the accuracy of the data from the heat-run test. Since measured data are reliable during 

factory tests, they could drastically differ during actual use, which could lead to glaring 

inaccuracies in temperature modeling utilizing those parameters. Thus, all of its inputs, 

including those from the heat-run tests, should be evaluated in the appropriate time steps in 

order to reduce the error introduced by the conventional models.  

Table 2. Suitability Metrics of the models 

R2 Swift Susa MDTM ANFISM 

TOT 0.77 0.86 0.92 0.98 

HST 0.73 0.83 0.94 0.96 

 

Table 3. Accuracy Metrics of the models 

MSE      Swift Susa   MDTM ANFISM 

TOT 54.7 30.6 13.4 7.8 

HST 43.5 22.1 15.8 10.3 

 

      As confirmed by the performance matrix, the established ANFIS technique has established 

more accurate top oil and hot spot temperatures compared to the current Swift, Susa and 

MDTM methodologies. Though the thermal models that are in existence can estimate and track 

the thermal behavior of power transformers, it was observed that the proposed and the other 

models can be further extended to determine the transformer thermal temperatures of in-

service transformers by fully determining variables not limited to the thermal parameters, 

measurement of oil temperature and moisture motion, the acquisition of dynamic loading 

trends, tap changing and environmental temperature among other parameters. 

6 CONCLUSIONS 

      In this study, a framework based on the ANFIS algorithm for the dynamic thermal 

behavior of in-service power transformers has been proposed. The suggested approach has 

been simulated and verified using a case study of a low-loaded mineral oil filled substation 

power transformer unit. The simulation results demonstrated that using ANFIS' explicit 

learning capability from the expert knowledge dataset to improve its performance prediction 

capabilities led to a hot spot temperature determination that was more accurate than those 

produced by the traditional Swift model, Swift's model, and Moisture Dependent Thermal 

model. 

     Although the approach considered in this study demonstrated high accuracy of TOT and 

HST prediction, temperature by itself cannot provide explicitly essential information about the 
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transformers’ general technical state. Consequently, it ought to be considered as one of the 

many variables that are examined collectively to complete the transformer's technical state 

assessment aiding in asset management. The quality of the learning data set is a major issue 

that the suggested approach can further address because it is very susceptible to the use of 

inaccurate or incomplete data. Therefore, there is need to involve data processing and cleaning 

techniques before subjecting that data for training and testing purposes. Also, another area of 

improvement is incorporating more variables like solar radiation, wind speed, and water 

content (moisture) if the data is available. This can also improve the accuracy of utilizing soft 

computing techniques in transformer thermal analysis models. Nevertheless, the proposed 

scheme can aid asset managers in predicting correctly the thermal behavior of a mineral oil-

filled power transformer.    
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