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Abstract—This paper considers a cost function level analysis of
the Sum-squared Autocorrelation Minimization (SAM) channel
shortening algorithm. We point out that the actual cost the blind
adaptive stochastic gradient descent algorithm is minimizing is
only indirectly related to the sum squared autocorrelation. We
study the asymptotic regimes under which the actual cost yields
a reliable surrogate for the sum squared autocorrelation. We
investigate the relationship between the minima of the actual
cost and sum squared autocorrelation. We also study the upper
bound of the approximate cost as a function of the window size
used in the approximate autocorrelation calculation.

I. INTRODUCTION
Channel shortening is important in both single and multi-

carrier communication systems. In the former it reduces the
complexity of maximum likelihood sequence detection [1]
while in the latter it reduces inter-carrier and inter-symbol
interference (ICI and ISI) [2].
In multicarrier systems, a cyclic prefix (CP) is prepended

to each data block before transmission to combat the delay
spread of the channel. If the length of the cyclic prefix is ν

and the length of the channel is ≤ ν + 1, then no ISI or ICI
occurs.
To combat the effects of ISI and/or ICI, a channel shortener

can be employed at the front-end of the receiver to ensure the
effective channel length ≤ ν + 1.

II. SYSTEM MODEL

The input signal x(n) is transmitted over a channel modeled
as an FIR filter h = [h0, . . . , hLh

]T . The received signal is
r(n) = x(n)∗h(n)+u(n) where u(n) is additive noise. r(n)
is passed through a channel shortener w = [w0, . . . , wLw

]T to
yield the output y(n) = r(n) ∗ w(n). The taps of the channel
shortener are adapted to ensure that the significant nonzero
taps of the effective channel are within a contiguous block of
length ν + 1.
We make the following assumptions:
A1 The input signal x(n) is zero mean, i.i.d and with
unit variance.
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A2 The noise u(n) and input signal are statistically
independent.
A3 The noise is zero mean, i.i.d with variance σ2

u.

III. SUM-SQUARED AUTOCORRELATION MINIMIZATION

The Sum-squared Autocorrelation Minimization (SAM) al-
gorithm is a blind adaptive channel shortening algorithm that
shortens the channel by minimizing the autocorrelation of
the output signal outside a desired window [3]. Let c =
h ∗w = [c0, . . . , cLc

]T be the effective channel response. The
autocorrelation of c is given by

Rcc(l) =

Lc∑
k=0

c(k)c(k + l). (1)

If the channel coefficients are zero outside a window of length
ν + 1, then

Rcc(l) = 0 for |l| ≥ ν + 1 (2)

This motivates the choice of the SAM cost function as

JSAM =
∑

l≥ν+1

|Rcc(l)|
2. (3)

If JSAM is minimized to zero, then the significant non-zero
coefficients of the channel response are within a contiguous
block of length ν + 1.
Since h is unknown, we can not use (3) directly. It can be

shown that if y(n) is the shortener output,

Ryy(l) = Rcc(l) + σ2
uRww(l). (4)

Where σ2
u is the variance of the channel noise and Rww(l)

is the autocorrelation of the shortener w at lag l [3]. In the
absence of channel noise we have Ryy(l) = Rcc(l). Even in
the presence of noise, we can use the following approximate
cost function.

ĴSAM =
∑

l≥ν+1

|Ryy(l)|2. (5)
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The adaptive algorithm finds the shortener which minimizes
(5) by stochastic gradient descent over the cost surface. The
shortener coefficients are updated according to

wnew = wold − μ∇w[ĴSAM ]. (6)

To prevent the trivial w = 0 solution, we impose a unit norm
constraint on the shortener or the effective channel, that is
||w||2 = 1 or ||c||2 = 1. The unit norm shortener constraint
is imposed by dividing the updated shortener by its norm
after every iteration. If the source is assumed white, then
||c||22 ≈ E[y2(n)] and we can impose the ||c||22 = 1 constraint
by monitoring the energy of the output [3].
In implementation, the expectation is approximated by a

moving average over a window of length N as follows

Ĵ
(k)
SAM =

∑
l≥ν+1

{
(k+1)N−1∑

n=kN

y(n)y(n + l)

N

}2

. (7)

The update equation is given by

wk+1 = wk − μ∇w[Ĵ
(k)
SAM ] (8)

which can be considered to be a stochastic gradient descent
on E[Ĵ

(k)
SAM ].

IV. COST FUNCTION ANALYSIS
Since N is a design parameter, it is important to quantify

the performance of the algorithm as a function of N . In
particular, it is important to investigate how the difference
between E[Ĵ

(k)
SAM ] (the actual cost over which the gradient

descent is performed) and
∑

l≥ν+1 |Rcc(l)|
2 is related to the

window size. This will allow users of SAM to determine how
large N must be for good performance. Also, since Ĵ

(k)
SAM is

obtained by first approximating Rcc(l) by Ryy(l) and then
approximating the computation of Ryy(l), it is important to
study the validity of this approximation.
Towards this end we investigate the quantity E[Ĵ

(k)
SAM ]. We

have

E[Ĵ
(k)
SAM ] =

1

N2
E

{ ∑
l≥ν+1

(k+1)N−1∑
n=kN

(k+1)N−1∑
m=kN

[y(n)y(m)

×y(n + l)y(m + l)]

}

=
1

N2

{ ∑
l≥ν+1

(k+1)N−1∑
n=kN

(k+1)N−1∑
m=kN

E[y(n)y(m)

×y(n + l)y(m + l)]

}
(9)

Based on the system model, the ouput y(n) can be written
as the sum of two terms, one due to the input and the other
due to noise. We have

y(n) = x(n) ∗ c(n) + u(n) ∗ w(n) = yx(n) + yu(n)

where c(n) is the effective channel impulse response and w(n)
is the impulse response of the shortener.

We have

E[y(k)y(l)y(m)y(n)] = Ryyyy(k, l, m, n)

= E[(yx(k) + yu(k))(yx(l) + yu(l))

×(yx(m) + yu(m))(yx(n) + yu(n))] (10)

Which simplifies to (we denote Ryyyy(k, l, m, n) by
R4

y(k, l, m, n))

R4
y(k, l, m, n) = R4

yx
(k, l, m, n)

+Ryxyx
(k, l)Ryuyu

(m, n) + Ryxyx
(k, n)Ryuyu

(l, m)

+Ryxyx
(l, m)Ryuyu

(k, n) + Ryxyx
(k, m)Ryuyu

(l, n)

+Ryxyx
(l, n)Ryuyu

(k, m) + Ryxyx
(m, n)Ryuyu

(k, l)

+R4
yu

(k, l, m, n) (11)

where we have made use of assumptions A1, A2 and A3.
The moments appearing in (11) can be determined from the

corresponding moments of the input and the noise [4, p. 405].
We have

R4
yx

(k, l, m, n) =

Lc∑
p=0

Lc∑
q=0

Lc∑
r=0

Lc∑
s=0

{
c(p)c(q)

×c(r)c(s)R4
x(k − p, l − q, m − r, n − s)

}
(12)

and

R4
yu

(k, l, m, n) =

Lw∑
p=0

Lw∑
q=0

Lw∑
r=0

Lw∑
s=0

{
w(p)w(q)

×w(r)w(s)R4
u(k − p, l − q, m − r, n − s)

}
. (13)

The second order moments in (11) take the form

Ryxyx
(k, l) =

Lc∑
p=0

Lc∑
q=0

c(p)c(q)Rxx(k − p, l − q) (14)

and

Ryuyu
(k, l) =

Lw∑
p=0

Lw∑
q=0

w(p)w(q)Ruu(k − p, l − q). (15)

A. White and wide sense stationary input

If the input is white and wide sense stationary (WSS) then

R4
x =

⎧⎨⎩
m4 k = l = m = n

σ4
x k = l, m = n or k = m, l = n or k = n,

l = m and δ[k − l]δ[l − m]δ[m − n] �= 1

where m4 = E[x4(k)].
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From (12) we get

R4
yx

(k, l, m, n) = (m4 − 3σ4
x)×{

Lc∑
s=0

c(s − τ3)c(τ1 − τ3 + s)c(τ2 − τ3 + s)c(s)

}

+σ4
x

{
Lc∑

p=0

Lc∑
r=0

c(p)c(r)c(p + τ1)c(r + τ3 − τ2)

+

Lc∑
p=0

Lc∑
q=0

c(p)c(q)c(p + τ2)c(q + τ3 − τ1)

+

Lc∑
p=0

Lc∑
q=0

c(p)c(q)c(p + τ3)c(q + τ2 − τ1)

}
(16)

where τ1 = l − k, τ2 = m − k, τ3 = n − k.
Also

Ryxyx
(k, l) = σ2

x

Lw∑
p=0

c(p)c(p + τ) τ = l − k (17)

B. White and Gaussian noise

If the noise is white and Gaussian, we have

Ryuyu
(k, l) = σ2

u

Lw∑
p=0

w(p)w(p + τ) τ = l − k (18)

and

R4
yu

(k, l, m, n) =

σ4
u

{
Lw∑
p=0

Lw∑
r=0

w(p)w(r)w(p + τ1)w(r + τ3 − τ2)

+

Lw∑
p=0

Lw∑
q=0

w(p)w(q)w(p + τ2)w(q + τ3 − τ1)

+

Lw∑
p=0

Lw∑
q=0

w(p)w(q)w(p + τ3)w(q + τ2 − τ1)

}
(19)

where τ1 = l − k, τ2 = m − k, τ3 = n − k.
Returning to the expression for E[Ĵ

(k)
SAM ] and assuming that

there is no noise and the input is Gaussian with variance 1 we
can write

E[Ĵ
(k)
SAM ] =

1

N2

∑
l≥ν+1

(k+1)N−1∑
n=kN

(k+1)N−1∑
m=kN{

Lc∑
p=0

Lc∑
r=0

c(p)c(r)c(p + λ1)c(r + λ1)

+

Lc∑
p=0

Lc∑
q=0

c(p)c(q)c(p + l)c(q + l)

+

Lc∑
p=0

Lc∑
q=0

c(p)c(q)c(p + λ1 + l)c(q − λ1 + l)

}
(20)

where λ1 = m − n. (20) can be simplified to

E[Ĵ
(k)
SAM ] =

∑
l≥ν+1

|Rcc(l)|
2

+
1

N2

∑
l≥ν+1

{
(k+1)N−1∑

n=kN

(k+1)N−1∑
m=kN

|Rcc(m − n)|2

+

(k+1)N−1∑
n=kN

(k+1)N−1∑
m=kN

Rcc(l + λ1)Rcc(l − λ1)

}
. (21)

Let r = [Rcc(0), Rcc(1), . . . , Rcc(Lc)]
T and assume N ≥

Lc + 1. Then

1

N2

∑
l≥ν+1

{
(k+1)N−1∑

n=kN

(k+1)N−1∑
m=kN

|Rcc(m − n)|2

}
= rT Ar.

where A = diag( (Lc−ν)
N

,
2(Lc−ν)(N−1)

N2 , . . . ,
2(Lc−ν)(N−Lc)

N2 ).
Also

1

N2

∑
l≥ν+1

{
(k+1)N−1∑

n=kN

(k+1)N−1∑
m=kN

Rcc(l + λ1)Rcc(l − λ1)

}
= rT Br

where

B =

Lc∑
l=ν+1

Bl

with Bl being the Lc + 1 by Lc + 1 matrix whose entries are
all zero except1

bl+1,l+1 =
1

N

bl+i+1,|l−i|+1 =
2(N − i)

N2
i = 1, 2, . . . , Lc − l

Therefore we can write

E[Ĵ
(k)
SAM ] = JSAM + rT Cr (22)

where C = A + B and the first term on the right hand side
of (21) is recognized as JSAM (3).

C. Illustrative example of the cost surface

In order to investigate the minima of (21) as a function of
N relative to the minima of JSAM , we plot the cost surface
for various values of N. The channel in this example2 is given
by h = [1, 0.3, 0.2]T which we desire to shorten to two taps
using a three tap shortener w = [w0, w1, w2]

T . If we impose
the constraint ||w|| = 1, we can represent the shortener taps
in spherical coordinates as w0 = sin(φ) cos(θ), w1 = cos(φ),
and w2 = sin(φ) sin(θ).
Contour plots of E[Ĵ

(k)
SAM ] are shown in Figs. 1(a)-1(c)

for N=1,100, and 1000. The SAM cost surface is shown in
fig. 1(d) for comparison. In the figures, minima of JSAM

are indicated by ‘*’ while the local minima of E[Ĵ
(k)
SAM ] are

1The rows and columns of matrices in this paper are indexed from 1.
2This example is taken from [3].
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indicated by ‘x’. The sam cost is invariant to the reversal of
the elements of the shortener and to the negation of shortener
coefficients [3]. Thus the local minima occur in quadruples as
shown in the plots. Code from [5] was modified to generate
these plots.
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Fig. 1.

From these plots it is seen that the nature of the cost surface
E[Ĵ

(k)
SAM ] changes significantly as N varies. The position and

number of the minima of E[Ĵ
(k)
SAM ] also depends on N and

these minima do not coincide with the minima of JSAM .
The minima of E[Ĵ

(k)
SAM ] appear to be moving towards those

of JSAM asN increases. Indeed, the two costs become exactly
equal to one another in the limit as N → ∞ due to the weak
law of large numbers. However, significant differences remain
between the two costs even for the relatively large value N =
1000 in this low dimensional example.

V. COST FUNCTION ANALYSIS UNDER UNIT NORM
EFFECTIVE CHANNEL CONSTRAINT

If we impose the condition ||c||2 = 1 during implemen-
tation, we can investigate the relationship between E[Ĵ

(k)
SAM ]

and JSAM using (22).
From the system model we have c = HTw where H is the

convolution matrix of the channel. Therefore, c is constrained
to lie in the intersection of the row space of H and the unit
sphere. However, by employing fractionally-spaced equalizers,
we can achieve any point c on the unit sphere provided the
conditions for strong perfect equalization are satisfied [6].
Let R be the set of possible autocorrelation vectors subject

to the constraint ||c||2 = 1. In order to find the upper bound
of E[Ĵ

(k)
SAM ] for a given JSAM for various values of N, we

must solve the program

maximize E[Ĵ
(k)
SAM ]

subject to JSAM ≤ k

r ∈ R. (23)

If we can find a polytope P such that R ⊂ P we can relax
the problem and replace the constraint r ∈ R by a set of linear
equality and inequality constraints.

A. Solution to optimization problem

From (1) we can write Rcc(l) =
∑Lc

k=0 c(k)c(k + l) =
cT Ulc where U is the shift matrix. Thus maxcT c=1 Rcc(l) =
1
2λmax({Ul}T + Ul) where λmax(.) is the maximum eigen-
value of the matrix argument. Similarly mincT c=1 Rcc(l) =
1
2λmin({Ul}T + Ul). We can therefore form a vector b with
these upper and lower bounds and a matrix P such that
P = {r|Pr ≤ b}. Thus program (23) can be bounded by

maximize E[Ĵ
(k)
SAM ] = rT Ar + rT Cr = rT C̃r

subject to JSAM = rT Ar ≤ k

Pr ≤ b

Rcc(0) = 1. (24)

If ν ≥ 0 then Ae1 = 0 where e1 is the first column of the
identity matrix. Also, as a result of the constriant Rcc(0) = 1
we can rewrite (24) as

minimize − (c̃11 + 2r∗T c∗1 + r∗T ˜̃
Cr∗)

subject to r∗T Ãr∗ ≤ k

P̃r∗ ≤ b (25)

where c̃11 = [C̃]11, r∗ = [Rcc(1), . . . , Rcc(Lc)]
T , ˜̃

C and Ã

are the submatrices formed from deleting the first row and
column of C̃ and A respectively, P̃ is obtained by deleting
the first column of P and c∗1 is obtained by deleting the first
entry of the first column of C̃.
The Lagrangian associated with problem (25) is

L(r∗, λ, μ) = −(c̃11 + 2r∗T c∗1 + r∗T ˜̃
Cr∗)

+λ(r∗T Ãr∗ − k) + μT (P̃r∗ − b) (26)
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and

∇r∗L = −2(c∗1 +
˜̃
Cr∗) + 2λÃr∗ +

n∑
i=1

μipi (27)

with P̃T = [p1,p2, . . . ,pn], μi ≥ 0 and λ ≥ 0. If λ �= 0 then
r∗T Ãr∗ = k and if μi �= 0 then pT

i r∗ = bi.
Let S = {i|pT

i r∗ = bi} then S ⊂ {1, 2, . . . , n}. Let PS

be the matrix formed from the rows of P̃ contained in S and
bS the vector formed from the elements of b contained in S.
Then PSr∗ = bS .
Any minima of the objective function in (25) must satisfy

∇r∗L = 0. This can be compactly represented as[
−2

˜̃
C + 2λÃ PT

S

PS 0

]
︸ ︷︷ ︸

M

[
r∗

μS

]
=

[
2c∗1
bS

]
. (28)

Assume M is full rank and S corresponds to a set of
simultaneously satisfiable constraints. If we can find a solution
for r∗ which satisfies (28), r∗T Ãr∗ = k and P̃r∗ ≤ b

then the corresponding value of E[Ĵ
(k)
SAM ] is a candidate for a

maximum.
If λ is a generalized eigenvalue ofM then a solution to (28)

exists if
[

2c∗1
bS

]
is in the range of M. The solution r∗sol is a

sum of a particular solution rpart and a homogeneous solution
which is a scalar multiple of the eigenvector coresponding to
λ. The scalar is determined by ensuring r∗T Ãr∗ = k. The
corresponding value of E[Ĵ

(k)
SAM ] is a candidate for a maximum

if P̃r∗sol ≤ b.
We now present the algorithm used to solve (25):
1) For a set S ⊂ {1, 2, . . . , n} corresponding to simultane-
ously satisfiable constraints form M.

2) Solve (28) for r∗ in terms of λ and solve for λ to
ensure r∗T Ãr∗ = k. For those λ that are not generalized
eigenvalues of M determine the corresponding value
of r∗ and compute E[Ĵ

(k)
SAM ]. This is a candidate for

a maximum provided P̃r∗ ≤ b.
3) For those λ that are generalized eigenvalues ofM check

that
[

2c∗1
bS

]
is in the range of M. That is if

MM†

[
2c∗1
bS

]
=

[
2c∗1
bS

]
where M† is the pseudoinverse of M.
The solution rsol is a sum of the particular solution

rpart = M†

[
2c∗1
bS

]
and a homogeneous solution

which is a scalar multiple of the eigenvector correspond-
ing to λ. That is rsol = rpart+γv. Determine γ such that
rsolÃrsol = k. The corresponding value of E[Ĵ

(k)
SAM ] is

a candidate for a maximum provided P̃r∗ ≤ b.
4) Form another subset and go to 1. If all subsets have been
considered go to 5.

5) Select the maximum value among all the candidates.

Using this algorithm, the behaviour of max E[Ĵ
(k)
SAM ] as a

function of N was investigated for various values of JSAM

for Lc = 4 and ν = 1. The results are illustrated in figure 2.
The E[Ĵ

(k)
SAM ] = JSAM surface is also shown and it is seen

that max E[Ĵ
(k)
SAM ] approaches JSAM as N grows.
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Fig. 2. max E[Ĵ
(k)
SAM

] as a function of N for different values of JSAM

VI. CONCLUSION
In this paper we have studied the relationship between the

actual cost the blind adaptive stochastic gradient descent SAM
algorithm is minimizing and the sum squared autocorrelation.
We have shown that as the window size N used in the
approximate autocorrelation calculation becomes large the
distance between the minima of the two costs decreases. We
have also studied the upper bound of E[Ĵ

(k)
SAM ] assuming the

input is Gaussian and shown that even for finite N this value
is close to the true value of JSAM . Results obtained in [7]
bounding the output SIR in terms of JSAM can be used to
extend the results of this paper to relate E[Ĵ

(k)
SAM ] and the

SIR.
Using our algorithm for computation of the upper bound,

a user can determine an appropriate value of N for use in a
given implementation.
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