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Abstract
We present an approach to speaker identification using noisy
speech observations where the speech enhancement and speaker
identification tasks are performed jointly. This is motivated by
the belief that human beings perform these tasks jointly andthat
optimality may be sacrificed if sequential processing is used.
We employ a Bayesian approach where the speech features are
modeled using a mixture of Gaussians prior. A Gibbs sampler
is used to estimate the speech source and the identity of the
speaker. Preliminary experimental results are presented com-
paring our approach to a maximum likelihood approach and
demonstrating the ability of our method to both enhance speech
and identify speakers.
Index Terms: Speaker identification, Markov chain Monte
Carlo methods, speech enhancement.

1. Introduction
Robust speaker recognition systems would go a long way in in-
creasing the use of human-machine interfaces and speech based
biometric systems. In most situations a speech signal is ob-
served in the presence of noise from various sources and the
speech signal is also altered by the impulse response of the
acoustic channel between the speaker and the microphone.

Human beings are able to accurately recognize other speak-
ers in a wide variety of acoustic environments ranging from
nearly ideal (low noise and short reverberation times) to adverse
conditions (noisy and long reverberation times). Unfortunately,
the performance of current automatic speaker recognition sys-
tems severely degrades when used in noisy rooms or rooms with
even moderate reverberation times. As a result the problem of
robust speaker recognition continues to attract research inter-
est (for example see [1]). Approaches include the use of robust
features [2, 3] and the use of speech enhancement algorithms
where the speech signal captured at the microphone is first en-
hanced to reduce the effects of noise and reverberation before
speaker identification is performed.

Even with the use of robust features it is impossible to train
models for all possible acoustic environments. Also, when the
observed signal is first enhanced then processed to identifythe
speaker it is not clear whether optimality is sacrificed by per-
forming the enhancement and identification tasks separately.
Here we explore employing a Bayesian approach to perform
the enhancement and identification tasks jointly. In particular
we employ Markov chain Monte Carlo (MCMC) sampling tech-
niques to mitigate the effects of noise in speaker identification
systems while simultaneously enhancing the speech. Recently
MCMC methods have been successfully applied to several sig-

nal processing problems such as source separation [4] and to
language processing problems [5]. This provides motivation for
the work presented here.

2. Problem Formulation
We consider the problem of identifying a speaker using noisy
speech samples. We model speech as a time varying autore-
gressive (AR) process of order P. For a given block of speech
samplesS = [s0, . . . , sN−1]

T we have

sn =
P

∑

p=1

apsn−p + εn = a
T
sn−1 + εn (1)

wherea = [a1, . . . , aP ]T , sn−1 = [sn−1, . . . , sn−P ]T and
εn ∼ N (εn; 0, τ−1

ε ) whereτε is the noise precision ( inverse
variance). The AR coefficients are speaker dependent and can
be used as features for speaker identification. However cep-
stral coefficients are frequently used because they are known to
be a more robust set of features [6]. In this work we use the
AR coefficients themselves in order to demonstrate that within
a Bayesian framework even simple features prove to be useful.

The signal observed at the microphone is

xn = sn + ηn (2)

whereηn ∼ N (ηn; 0, τ−1
η ) is additive white Gaussian noise

with precisionτη. We can write (1) and (2) in state space form
as

sn = Asn−1 + e1εn εn ∼ N (εn; 0, τ
−1
ε ), (3)

xn = h
T
sn + ηn ηn ∼ N (ηn; 0, τ

−1
η ), (4)

with
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h = [1, 0, . . . , 0]T , ande1 is the first column of theP × P

identity matrix.

3. Probabilistic Model
From (1) and (2) we have

p(sn|sn−1,a, τε) = N (sn;aT
sn−1, τ

−1
ε ),

p(xn|sn,h, τη) = N (xn; sn, τ
−1
η ).



The likelihood of the observationsX = [x0, . . . , xN−1]
T

corresponding to the source samplesS = [s0, . . . , sN−1]
T is

given by

p(X|S, τη) =

N−1
∏

n=0

p(xn|sn, τη). (6)

Also,

p(S|a, τε) =

N−1
∏

n=0

p(sn|sn−1,a, τε). (7)

To complete the probabilistic formulation we require priors over
τη,a, andτε. The speaker dependence is introduced by the prior
overa. We model the prior overa given speaker̀ as a mixture
of Gaussians

p(a|` = i) =

M
∑

m=1

πimN (a; µim,Σim) (8)

where` ∈ L = {1, 2, . . . , |L|} with L being the library of
known speakers. Letπi = [πi1, . . . , πiM ]T . We introduce an
indicator variablez = [z1, . . . , zM ]T which is anM ×1 binary
vector with a single non-zero entry such that the distribution of
a conditioned oǹ andz is Gaussian. That is

p(a|` = i, z) =
M
∏

m=1

[

N (a; µim,Σim)
]zm

, (9)

and

p(z|` = i) =

M
∏

m=1

[πim]zm . (10)

The priors overτη, τε are gamma distributions:

p(τη) = Gam(τη; aη, bη),

p(τε) = Gam(τε; aε, bε).

We can write the joint distribution of all the parameters and
observations in the model as

p(X,S,a, `, z, τη, τε)

= p(X|S, τη)p(S|a, τε)p(a|`, z)p(z|`)p(`)p(τη)p(τε). (11)

For compactness we represent all the parameters and latent vari-

ables asΘ
def
= {S, a, `, z, τη, τε}. We would like to compute

the posteriorp(`|X) in order to determine the identity of the
speaker responsible for generating the observed speech. We
assume that parameters{µim,Σim, πi} for the distribution
p(a|`) have been obtained in advance from a corpus of clean
speech for each of the speakersi = 1, . . . , |L|.

4. The Gibbs Sampler
In a Bayesian framework, the parameters of our probabilistic
model are treated as random variables governed by a priorp(Θ).
We can write the joint distributionp(X, Θ) as a product of the
likelihood and the prior, that isp(X,Θ) = p(X|Θ)p(Θ). The
posteriorp(Θ|X), which is a central quantity in Bayesian infer-
ence, is given by [7]

p(Θ|X) =
p(X|Θ)p(Θ)

∫

p(X|Θ)p(Θ)dΘ
.

Using this posterior, estimates ofΘ are obtained that mini-
mize approriate cost functions. For example the minimum mean
square errror estimate is obtained as follows [8]

Θ̂MMSE =

∫

Θp(Θ|X)dΘ. (12)

Unfortunately in most cases the posterior is intractable making
it infeasible to compute integrals such as (12). One way around
this is to use MCMC methods to draw a sequence of samples
Θ0, Θ1, Θ2, . . . such that the sequence forms a Markov chain
whose stationary distribution is the posterior distribution [9].
We can then approximate (12) by

Θ̂MMSE '
1

K − Kb

K
∑

k=Kb+1

Θk (13)

whereKb is the burn-in interval which is the number of samples
that must be drawn before the distribution converges to the sta-
tionary distribution. There are a number of techniques to draw
samples from a Markov chain whose stationary distribution is
the target distributionp(Θ|X). In this work we use the Gibbs
sampler.

If Θ = {θ1, . . . , θm} we can draw samples fromp(Θ|X)
by drawing samples from the full conditional distributionsof
the individual elements ofΘ. In order to use the Gibbs sampler
to obtain samples for our model, we must obtain expressions for
the full conditionals. The full conditionals of the parameters in
our model are now derived. We have

p(τη|Θ \ τη,X) ∝ p(X|S,h, τη)p(τη)

∝ τ
aη+ N

2
−1

η exp{−τη[bη

+
1

2

N−1
∑

n=0

(xn − sn)2]}

and we conclude that

p(τη|Θ \ τη,X) = Gam(τη|a
∗
η, b

∗
η)

with

a
∗
η = aη +

N

2
,

b
∗
η = bη +

1

2

N−1
∑

n=0

(xn − sn)2.

Similarly

p(τε|Θ \ τε, X) = Gam(τε|a
∗
ε , b

∗
ε )

with

a
∗
ε = aε +

N

2
,

b
∗
ε = bε +

1

2

N−1
∑

n=0

(sn − a
T
sn−1)

2
.

For the AR coefficients we have

p(a|Θ \ a,X) ∝ p(S|a, τε)p(a|` = i, z)

=

N−1
∏

n=0

√

τε

2π
exp[−

τε

2
(sn − a

T
sn−1)

2]

×
M
∏

m=1

[

N (a; µim,Σim)
]zm

∝
M
∏

m=1

[

τ
N
2

ε exp
{ τε

2

N−1
∑

n=0

(sn − a
T
sn−1)

2

−
1

2
(a − µim)T

Σ
−1
im(a− µim)

}]zm

.



We conclude that

p(a|Θ \ a,X) =
M
∏

m=1

[

N (a; µ∗
m,Σ

∗
m)

]zm

with

Σ
∗
m =

[

τε

N−1
∑

n=0

sn−1s
T
n−1 + Σ

−1

im

]−1

,

µ
∗
m = Σ

∗
m

{

τε

N−1
∑

n=0

snsn−1 + Σ
−1

imµim

}

.

For the indicator variable we have

p(z|Θ \ z, X) ∝ p(a|` = i, z)p(z|` = i)

=
M
∏

m=1

[

πimN (a; µim,Σim)
]zm

.

Thus

p(z|Θ \ z,X) =

M
∏

m=1

[ρim]zm (14)

with

ρim =
πimN (a; µim,Σim)

∑M

m′=1
πim′N (a; µim′ ,Σim′)

.

Turning to the full conditional for̀ we have

p(` = i|Θ \ `,X) ∝ p(a|` = i, z)p(z|` = i)p(` = i)

∝ p(a|` = i, z)p(z|` = i)

=
M
∏

m=1

[

πimN (a; µim, Σim)
]zm

⇒

p(` = i|Θ \ `,X) =
πim∗N (a; µim∗ ,Σim∗ )

∑|L|
j=1

πjm∗N (a; µjm∗ ,Σjm∗ )
.

wherem∗ is the index of the nonzero element ofz. We have
assumed that the speakers are equally likely.

The full conditional for the source samples is given by

p(S|Θ \ S,X) ∝ p(X|S,h, τη)p(S|a, τε)

∝ exp
[

−
τε

2

N−1
∑

n=0

(sn − a
T
sn−1)

2

−
τη

2

N−1
∑

n=0

(xn − h
T
sn)2

]

.

We can obtain samples of the sources by using the mean state
sequence from a Kalman filter and Rauch-Tung-Striebel (RTS)
smoother [10] with the current values of noise variances andAR
coefficients. Here we take advantage of the state space formu-
lation in (3) and (4). The overall algorithm is summarized in
algorithm 1.

5. Experimental Results
5.1. Preliminary Experiments

In this section we present preliminary experimental results that
verify the performance of the proposed algorithm. In the sim-
ulations we use the data set provided for the interspeech 2006

Initialize Θ0 = {S0,a0, `0, z0, τ 0
η , τ 0

ε };
for k = 1 : K + Kb do

Sample fromp(S|τk−1
η ,ak−1, τk−1

ε ,X) using an
RTS smoother;
a

k ∼ p(a|Sk, `k−1
z

k−1, τk−1
ε ,X);

τk
η ∼ p(τη|S

k,hk, X);
τk

ε ∼ p(τε|S
k,ak, X);

z
k ∼ p(z|ak, `k−1);

`k ∼ p(`|ak, zk);
end

Algorithm 1 : Gibbs Sampling

speech separation challenge [11]. This data set contains sen-
tences from 34 speakers. For our initial experiments we used
30 sentences from two male speakers (designated 1 and 2) in
the data base. 20 sentences from each speaker were used for
training the speaker model and the remaining sentences used
for testing. We assume that the AR order is two and the number
of mixture coefficients is four. To obtain training data we divide
the speech into 20ms frames over which the AR parameters are
assumed fixed. The speaker model parameters are determined
using the expectation-maximization (EM) algorithm [12]. Dur-
ing testing the speech is also processed framewise.

Before running the Gibbs sampler we initialize the param-
eters as follows:z = [1, 0, 0, 0]T , a = [0, 0]T , τη = τε = 0.1.
Also, we intentionally initializè to the wrong speaker.

For this problem we are mainly interested in the samples of
` so that we can determine the speaker responsible for a given
utterance. However samples from other quantities are useful in
determining convergence of the Gibbs sampler.

Figure 1 shows a typical plot of samples ofa obtained from
test data from speaker 1 with the noise variance set so that the
input SNR is 33dB. For illustrative purposes we run the Gibbs
sampler for only 100 iterations. From visual inspection of the
samples ofa we setKb = 20 and use the last 80 samples to
estimate the parameters. In order to determine whether useful
parameter estimates have been obtained we compare the AR
coefficient estimates obtained using the Gibbs sampler to those
obtained using Matlab’s lpc analysis routine. From the Gibbs
sampler we obtain̂a = [1.4703, −0.4772]T while Matlab’s
routine yieldsâ = [1.8682, −0.8734]T . These are promising
results and we see that good results are obtained with random
initialization. The output SNR is 37dB verifying that enhance-
ment has been achieved.

The posterior probability of the speakers is determined from
the samples of̀ as follows: let`k, k = 1, 2, . . . , K + Kb be
the samples of̀ then

p(` = i|X) '
1

K

K+Kb
∑

k=Kb+1

1{`k = i} (15)

for i ∈ L, where1{.} is the indicator function. We can then es-
timate the speaker responsible for the utterance using the maxi-
muma posteriori(MAP) criterion. Figure 2 shows the posterior
speaker probability for values of SNR ranging from 3-30dB us-
ing test data from speaker 1. We see that the MAP estimate is
correct in all cases.

5.2. Speaker Identification Experiments

We now present speaker identification results for the test data.
We compare the results of our MCMC based algorithm to a



maximum likelihood (ML) approach. LetA = {a1,a2, . . .}
be a sequence of AR coefficient vectors corresponding to a test
utterance determined using the Levinson-Durbin algorithm. In
the ML approach the estimated speakerˆ̀ is given by

ˆ̀= arg max
i∈L

p(A|i)

wherep(A|i) is the likelihood of the observed vectors assuming
eachak is distributed as in (8).

Table 1 shows the recognition rates (%) for the ten test ut-
terances from speaker 1 for different values of SNR.

Table 1: Recognition results.

6dB 8dB 10dB 12dB 20dB
ML 0 0 30 80 100

MCMC 10 50 100 100 100
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Figure 1: Samples ofa.
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Figure 2: Posterior speaker probability for various valuesof
SNR.

6. Discussion and Conclusion
The experimental results presented in section 5 verify the per-
formance of our joint speech enhancement and speaker identifi-
cation algorithm. We see that our Bayesian approach based on
the Gibbs sampler using a mixture of Gaussians to model the
speech features is robust to initialization and gives good recog-
nition results. A major issue with the Gibbs sampler is com-
putational complexity. The duration of the speech utterances in
the data set ranges from 1-2s and it takes approximately 20 min-
utes to process each utterance using our method. This presents
an avenue for future work: sequential Monte Carlo methods
can be employed in order to reduce the computational complex-
ity. These methods have been applied to speaker tracking (see
[13]). It may also feasible to use approximate Bayesian tech-
niques such as variational Bayes [12] and expectation propaga-
tion [14, 15].
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