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Abstract

We present an approach to speaker identification using noisy
speech observations where the speech enhancement anerspeak
identification tasks are performed jointly. This is moteatoy

the belief that human beings perform these tasks jointlythad
optimality may be sacrificed if sequential processing isduse
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nal processing problems such as source separation [4] and to
language processing problems [5]. This provides motiundibo
the work presented here.

2. Problem Formulation

We consider the problem of identifying a speaker using noisy

We employ a Bayesian approach where the speech features are speech samples. We model speech as a time varying autore-

modeled using a mixture of Gaussians prior. A Gibbs sampler
is used to estimate the speech source and the identity of the
speaker. Preliminary experimental results are preserded ¢
paring our approach to a maximum likelihood approach and
demonstrating the ability of our method to both enhancedpee
and identify speakers.

Index Terms: Speaker identification, Markov chain Monte
Carlo methods, speech enhancement.

1. Introduction

Robust speaker recognition systems would go a long way in in-
creasing the use of human-machine interfaces and speesth bas
biometric systems. In most situations a speech signal is ob-
served in the presence of noise from various sources and the
speech signal is also altered by the impulse response of the
acoustic channel between the speaker and the microphone.

Human beings are able to accurately recognize other speak-
ers in a wide variety of acoustic environments ranging from
nearly ideal (low noise and short reverberation times) teesk
conditions (noisy and long reverberation times). Unfoatiety,
the performance of current automatic speaker recognitisn s
tems severely degrades when used in noisy rooms or rooms with
even moderate reverberation times. As a result the probfem o
robust speaker recognition continues to attract reseaten-i
est (for example see [1]). Approaches include the use ofstobu
features [2, 3] and the use of speech enhancement algorithms
where the speech signal captured at the microphone is first en
hanced to reduce the effects of noise and reverberationebefo
speaker identification is performed.

Even with the use of robust features it is impossible to train
models for all possible acoustic environments. Also, when t
observed signal is first enhanced then processed to idenéfy
speaker it is not clear whether optimality is sacrificed by pe
forming the enhancement and identification tasks sepgratel
Here we explore employing a Bayesian approach to perform
the enhancement and identification tasks jointly. In paldic
we employ Markov chain Monte Carlo (MCMC) sampling tech-
nigues to mitigate the effects of noise in speaker identitioa
systems while simultaneously enhancing the speech. Rgcent
MCMC methods have been successfully applied to several sig-

gressive (AR) process of order P. For a given block of speech

samplesS = [so, ..., sn—1]7 we have
P
Sn = Z ApSn—p +€en = aTSnfl + €n (1)
p=1
_ T _ T
wherea = [ai1,...,ap]", Sn—1 = [Sn—1,...,8n—p] and

en ~ N(en; 0,7, 1) wherer. is the noise precision ( inverse
variance). The AR coefficients are speaker dependent and can
be used as features for speaker identification. However cep-
stral coefficients are frequently used because they arerktow

be a more robust set of features [6]. In this work we use the
AR coefficients themselves in order to demonstrate thatimvith

a Bayesian framework even simple features prove to be useful

The signal observed at the microphone is

@)

wheren, ~ N(n.;0,7, ") is additive white Gaussian noise
with precisionr,. We can write (1) and (2) in state space form
as

xn:5n+77n

Sn = ASn71 + eien  €n ~ N(Ena 07 Teil)a (3)
Zn = h'sp47mn nu~ N 0,7,h), )
with
al az ap
1 0 0
0 1 0
A= (%)
0o ... 1 0
h = [1,0,...,0]T, ande; is the first column of the® x P

identity matrix.

3. Probabilistic Model

From (1) and (2) we have

N(Sna aTSnfla 7-571)7

N(xn;sn,Tgl).

p(snlsnfly a, Te)

p(In|Sn, ha T”?)



The likelihood of the observationX = [xo, ... ,a;N,l]T

corresponding to the source sampfes= [so,...,sy—1]7 is
given by
N—-1
p(X|S, ) = ] pl@alsn, )- (6)
n=0
Also,
N-1
p(Sla, ) = [] plsulsn-i,a, 7). (7
n=0

To complete the probabilistic formulation we require psiover

Ty, a, andr.. The speaker dependence is introduced by the prior
overa. We model the prior oves given speakef as a mixture

of Gaussians

p(all = 1) Z TimN (@} P Bim) (8
wherel € £ = {1,2,...,|L|} with £ being the library of
known speakers. Let; = [mi1,...,mnm]”. We introduce an

indicator variables = [z1, ..., zar]” which is anM x 1 binary

vector with a single non-zero entry such that the distrioutf
a conditioned orY andz is Gaussian. That is

M Zm

palt=i,z) = [T [N(@s s Bi)] "

m=1

9)

and
M

= i) = [ [mam]™.

7. are gamma distributions:

(10)

The priors ovetr,,

Gam(7y; ay, by),
Gam(7e; ae, be).

p(Tn)
p(7e)

We can write the joint distribution of all the parameters and
observations in the model as

p(X,S,a,l,z, 7y, Te)
= p(X|S, 7)p(Sla, e)p(alt, 2)p(z|€)p(£)p(Ty)p(Te). (11)
For compactness we represent all the parameters and latént v

ables a®d &' {S,a,{,z,1,,7c}. We would like to compute

the posteriop(¢|X) in order to determine the identity of the
speaker responsible for generating the observed speech. We
assume that parametef$t,,,, Xim, w;} for the distribution
p(alf) have been obtained in advance from a corpus of clean
speech for each of the speakers 1, ..., |L|.

4. The Gibbs Sampler

In a Bayesian framework, the parameters of our probalailisti
model are treated as random variables governed by agi@y.
We can write the joint distributiop(X, ©) as a product of the
likelihood and the prior, that is(X, ©) = p(X|©)p(©). The
posteriorp(©|X), which is a central quantity in Bayesian infer-
ence, is given by [7]

p(X|O)p(©)
J p(X|©)p(©)de
Using this posterior, estimates 6fare obtained that mini-

mize approriate cost functions. For example the minimummmea
square errror estimate is obtained as follows [8]

p(OX) =

OnmsE = / Op(6|X)de (12)

Unfortunately in most cases the posterior is intractabl&inga

it infeasible to compute integrals such as (12). One wayratou
this is to use MCMC methods to draw a sequence of samples
0% 6%, 02, ... such that the sequence forms a Markov chain
whose stationary distribution is the posterior distribot{9].

We can then approximate (12) by

1 k
@MMSE—K X Z C) 13)

k=Kp+1

whereKj, is the burn-in interval which is the number of samples
that must be drawn before the distribution converges totte s
tionary distribution. There are a number of techniques &wdr
samples from a Markov chain whose stationary distribut®on i
the target distributiop(©|X). In this work we use the Gibbs
sampler.

If © = {61, ...,0,n} we can draw samples frop(©|X)
by drawing samples from the full conditional distributioof
the individual elements d®. In order to use the Gibbs sampler
to obtain samples for our model, we must obtain expressimmns f
the full conditionals. The full conditionals of the paraemstin

our model are now derived. We have
p(1h|O\ 7, X) o p(X][S,h,7)p()
ant+f -1
o 7‘7, exp{—my[by
1
* 523 n o)

and we conclude that

p(my|©\ 7, X) =

Gam(7y|ay, by)

with
. N
a”] = an + E?
N—
. 1
b”? = 5 Z — Sn
n=0
Similarly

p(7e|® \ 7, X) = Gam(7e|al, b})

with
a: = a —|—E
€ - € 27
1 N—
b = +3 E_ n—a's,_1)°.

For the AR coefficients we have

p(al®\a,X) o p(Sla,7)p(all =i,2)

ity T,

= T /g ewl-Gon 5o’
M 4

< T V@ i i)
m=1
M L N-l

x H [Te exp{g6 Z (sn — aTsn,1)2

n=0

) S ) )]



We conclude that

M

pie\a ) = T [Viavn )]

m=1
with
N-1 .
E:n = |:Te Z Snflsz—l + E;,i] 5
n=0
N-1
M = EZL{TE > sasno1+ Efnimm}-
n=0

For the indicator variable we have

p(z[©\2,X) o p(alt =i,2)p(z|l =)

M Zm
= ]I [WimN(a; i Eim)] .
m=1

Thus

p(z©\ z, X) (14)

M
= [Tlownl™
m=1
TimN (25 iy Zim)
St Timr N (@5 0, Signr)
Turning to the full conditional fof we have

p(E=i0\6,X) o plalt =i z)p(zll = p(t = i)
5 plal¢ = i, 2)p(alt = i)

IT [min N (asp, Bir)| ™

with

Pim =

m=1
=
, Tim* N (5 iy s Bim» )
p(l =4O\ {(,X) = IZ] :
Ej:l ij*N(a; ’J/jm* ) §]j*m.*)
wherem™ is the index of the nonzero element &xf We have

assumed that the speakers are equally likely.
The full conditional for the source samples is given by

p(8|©\8,X) o p(X[S,h,7,)p(S|a,7c)
1

Te T
x exp[— 5 (sn —a sp—1)
n=0
L N-l
n T
2 n:O(a: Sn)

We can obtain samples of the sources by using the mean state
sequence from a Kalman filter and Rauch-Tung-Striebel (RTS)

smoother [10] with the current values of noise variancesfRd

Initialize ©° = {S°,a°%,¢°,2°% 70, 7};

for k=1: K+ K, do

Sample fronp(S|y~!, a* !, 7571 X)) using an
RTS smoother;

a Np(a|Sk Zk 1 k l
(/8" b, X);
T Np( |Sk a® X);
2" ~ p(z Ia fk b,

28 ~ p(e)aF, z%);

1, X);

end

Algorithm 1: Gibbs Sampling

speech separation challenge [11]. This data set contams se
tences from 34 speakers. For our initial experiments we used
30 sentences from two male speakers (designated 1 and 2) in
the data base. 20 sentences from each speaker were used for
training the speaker model and the remaining sentences used
for testing. We assume that the AR order is two and the number
of mixture coefficients is four. To obtain training data weide

the speech into 20ms frames over which the AR parameters are
assumed fixed. The speaker model parameters are determined
using the expectation-maximization (EM) algorithm [12ur®

ing testing the speech is also processed framewise.

Before running the Gibbs sampler we initialize the param-
eters as followsz = [1,0,0,0]",a = [0,0]”, 7, = 7. = 0.1.

Also, we intentionally initialize/ to the wrong speaker.

For this problem we are mainly interested in the samples of
¢ so that we can determine the speaker responsible for a given
utterance. However samples from other quantities are Lisefu
determining convergence of the Gibbs sampler.

Figure 1 shows a typical plot of samples=obbtained from
test data from speaker 1 with the noise variance set so that th
input SNR is 33dB. For illustrative purposes we run the Gibbs
sampler for only 100 iterations. From visual inspectiontedf t
samples ofa we setK;, = 20 and use the last 80 samples to
estimate the parameters. In order to determine whetheulusef
parameter estimates have been obtained we compare the AR
coefficient estimates obtained using the Gibbs sampleroseth
obtained using Matlab’s Ipc analysis routine. From the Gibb
sampler we obtaih = [1.4703, —0.4772]7 while Matlab’s
routine yieldsa = [1.8682, —0.8734]”. These are promising
results and we see that good results are obtained with random
initialization. The output SNR is 37dB verifying that enlcan
ment has been achieved.

The posterior probability of the speakers is determinechfro

the samples of as follows: letly,k = 1,2,..., K + K, be
the samples of then
1 K+K,
Pt =iX) ~ > =i} (15)
k=Kp+1

coefficients. Here we take advantage of the state space formu fori € £, where1{.} is the indicator function. We can then es-

lation in (3) and (4). The overall algorithm is summarized in
algorithm 1.

5. Experimental Results
5.1. Preliminary Experiments

In this section we present preliminary experimental resthiat
verify the performance of the proposed algorithm. In the-sim
ulations we use the data set provided for the interspeecé 200

timate the speaker responsible for the utterance using #xé m
muma posteriori(MAP) criterion. Figure 2 shows the posterior
speaker probability for values of SNR ranging from 3-30dB us
ing test data from speaker 1. We see that the MAP estimate is
correct in all cases.

5.2. Speaker Identification Experiments

We now present speaker identification results for the tetst da
We compare the results of our MCMC based algorithm to a



maximum likelihood (ML) approach. LeA = {a;,as,...} 6. Discussion and Conclusion
be a sequence of AR coefficient vectors corresponding ta a tes
utterance determined using the Levinson-Durbin algoritihm

the ML approach the estimated speakés given by

The experimental results presented in section 5 verify #re p
formance of our joint speech enhancement and speakerfidenti
cation algorithm. We see that our Bayesian approach based on
) the Gibbs sampler using a mixture of Gaussians to model the
¢ = arg max p(Ali) speech features is robust to initialization and gives gecdg-
€L .. . . . . .
nition results. A major issue with the Gibbs sampler is com-

. - . utational complexity. The duration of the speech uttezarin
Wherep(_A|i_) |s_the I|keI|h_ood of the observed vectors assuming ?he data set ranpges f)rlom 1-2s and it takes appproximately 20 mi
eachay is distributed as in (8)'_ ) utes to process each utterance using our method. This psesen

Table 1 shows the recognition rates (%) for the ten test ut- g ayenue for future work: sequential Monte Carlo methods
terances from speaker 1 for different values of SNR. can be employed in order to reduce the computational complex
ity. These methods have been applied to speaker trackieg (se
[13]). It may also feasible to use approximate Bayesian-tech

Table 1: Recognition results. nigues such as variational Bayes [12] and expectation gaspa
6dB [ 8dB | 10dB | 12dB | 20dB tion [14, 15].
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