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ABSTRACT

We present a variational Bayesian algorithm that enhances the log
spectra of noisy speech using speaker dependent priors. This algo-
rithm extends prior work by Frey et al. where the Algonquin algo-
rithm was introduced to enhance speech log spectra in order to im-
prove speech recognition in noisy environments. Our work is built
on the intuition that speaker dependent priors would work better than
priors that attempt to capture global speech properties. Experimental
results using the TIMIT data set and the NIST 2004 speaker recog-
nition evaluation (SRE) data are presented to demonstrate the algo-
rithm’s performance.
Index Terms: Speaker veri cation, variational Bayesian inference.

1. INTRODUCTION

Current speaker recognition systems are adversely affected by envi-
ronmental noise and mismatch between training and operation con-
ditions. As a result a signi cant amount of research continues to
focus on improving the performance of speaker identi cation and
veri cation systems in real world environments where noise is un-
avoidable (for example see [1]).

Approaches to robust speaker recognition include the use of ro-
bust features such as Mel Frequency Cepstral Coef cients (MFCCs)
[2, 3] and noise compensation techniques which work in the acoustic
or feature domains. Noise compensation techniques in the acoustic
domain include Kalman ltering. In the feature domain, cepstral
mean subtraction (CMS) is frequently used to mitigate channel ef-
fects. Recently, methods that rely on prior speech and interference
models have been proposed [4]. Using these priors the clean speech
features are estimated using Bayesian techniques. The Algonquin
speech enhancement algorithm [5] and some extensions [6] apply a
variational inference technique to enhance noisy reverberant speech
using a speaker independent mixture of Gaussians speech prior in the
log spectral domain. In this work we extend the Algonquin speech
enhancement algorithm to use speaker dependent log spectrum pri-
ors and derive a variational Bayesian algorithm for inference.

Variational inference methods have emerged as a powerful class
of approximate inference techniques. In this approach inference is
viewed as an optimization problem where an appropriate cost func-
tion is minimized [7]. Variational Bayesian inference [8], belief
propagation (BP) and expectation propagation (EP)[7] fall in this
category.

Variational Bayesian methods have been successfully applied to
several signal processing problems such as source separation [9] and
parameter estimation [10] and to language processing problems [11].

This provides motivation for the work presented here where varia-
tional Bayesian (VB) techniques are used to improve speaker veri -
cation performance in noisy environments.

The rest of the paper is organized as follows. In section 2 we
present the problem formulation and characterize the joint distribu-
tion of the parameters and observations in our model. In section 3
we give a brief introduction to variational Bayesian inference and
present the variational approximation to the true posterior. Exper-
imental results on the TIMIT and SRE data sets are presented in
section 4. Section 5 presents a discussion and concludes the paper.

2. PROBLEM FORMULATION

We consider the enhancement of log-spectra of observed speech in
order to improve the performance of speaker veri cation systems by
using speaker speci c speech priors in the log spectrum domain. In
[12] an approximate relationship between the log spectra of observed
speech and clean speech is derived. We assume that the clean speech
is corrupted by a channel and additive noise. We have

y[t] = h[t] ∗ s[t] + n[t], (1)

where y[t] is the observed speech, h[t] is the impulse response of
the channel, s[t] is the clean speech n[t] is the additive noise and ∗
denotes convolution.

Taking the DFT and assuming that the frame size is of suf cient
length compared to the length of the channel impulse response we
get

Y [k] = H [k]S[k] + N [k],

where k is the frequency bin index. Taking the logarithm of the
power spectrum y = log |Y [:]|2 it can be shown that [12]

y ≈ s + h + log(1 + exp(n − h − s)) (2)

where s = log |S[:]|2, h = log |H [:]|2 and n = log |N [:]|2. The
approximate observation likelihood is given by

p(y|s,h,n) = N (y|s + h + log(1 + exp(n − h − s)), ψ) (3)

where ψ is the covariance matrix of the modelling errors which are
assumed to be Gaussian with zero mean.

In this work we assume that we can mitigate channel effects us-
ing methods such as mean subtraction and concentrate on mitigating
the effects of additive distortion. In this case the observation likeli-
hood becomes

p(y|s,n) = N (y|s + log(1 + exp(n − s)),ψ).
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To complete the probabilistic formulation we introduce priors over s
and n. For a given speaker � the prior over s is given by

p(s|�) =

Ms∑
m=1

π
s
�mN (s; μs

�m,Σ
s
�m) (4)

where � ∈ L = {1, 2, . . . , |L|} with L being the library of known
speakers.

We nd it analytically convenient to introduce an indicator vari-
able zs that is a Ms|L| × 1 random binary vector that captures both
the identity of the speaker and the mixture coef cient ‘active’ over a
given frame. We have

p(s|zs) =

Ms|L|∏
i=1

[
N (s;μs

i ,Σ
s
i )

]zs,i

, (5)

and

p(zs) =

Ms|L|∏
i=1

(πs
i )

zs,i . (6)

We assume that the noise is well modelled by a single Gaussian.
That is

p(n) = N (n; μn,Σn). (7)

We can now write the joint distribution of this model as

p(y, s, zs, n) = p(y|s,n)p(s|zs)p(zs)p(n). (8)

Inference in this model is complicated due to the nonlinear likeli-
hood term. To allow us to derive a tractable variational inference
algorithm we linearize the likelihood as in [5].

Let g([s,n]) = log(1 + exp(n− s)). We linearize g(.) using a
rst order Taylor series expansion about the point [s0,n0]. We have

g([s,n]) ≈ g([s0,n0]) + ∇g([s0,n0])([s, n] − [s0,n0]) (9)

And the linearized likelihood is

p̂(y|s, n) = N (y|s+ g([s0,n0]) +G([s, n]− [s0,n0]), ψ) (10)

Where G = [Gs,Gn]
def
= ∇g([s0,n0]) with

Gs = diag
[ − exp(n1

0 − s1
0)

1 + exp(n1
0 − s1

0)
, . . . ,

− exp(nN
0 − sN

0 )

1 + exp(nN
0 − sN

0 )

]

Gn = diag
[ exp(n1

0 − s1
0)

1 + exp(n1
0 − s1

0)
, . . . ,

exp(nN
0 − sN

0 )

1 + exp(nN
0 − sN

0 )

]

where N is the dimension of the Log-spectrum feature vector.
We can now derive a variational Bayesian inference algorithm

to enhance the observed log spectrum.

3. VARIATIONAL BAYESIAN INFERENCE

In variational Bayesian inference, we seek an approximation q(Θ) to
the intractable posterior p(Θ|y) over the model parameters Θ which
minimizes the Kullback-Leibler (KL) divergence between q(Θ) and
p(Θ|y) with q(Θ) constrained to lie within a tractable approximat-
ing family (in our case Θ = {s, zs,n}). The KL divergence D(q||p)
is a measure of the distance between two distributions and is de ned
by [13]

D(q||p) =

∫
q(Θ) log

q(Θ)

p(Θ|y)
dΘ.

To ensure tractability, the approximating family is selected such
that the approximate posterior can be written as a product of factors
depending on disjoint subsets of Θ = {θ1, . . . , θM} [8, 7]. Assum-
ing that each factor depends on a single element of Θ then

q(Θ) =

M∏
i=1

qi(θi). (11)

It can be shown that the optimal form of qj(θj) denoted by
q∗j (θj) that minimizes D(q||p) is given by [7]

log q
∗
j (θj) = E{log p(y, Θ)}q(Θ\j) + const. (12)

We use the notation q(Θ\j) to denote the approximate posterior of
all the elements of Θ except θj . We obtain a set of coupled equa-
tions relating the optimal form of a given factor to the other factors.
To solve these equations, we initialize all the factors and iteratively
re ne them one at a time using (12).

3.1. Approximate Posterior

Returning to the context of our model, we assume an approximate
posterior q(Θ) that factorizes as follows

q(Θ) = q(s)q(zs)q(n).

The factorization used in this work differs from that in Frey et al.
[5] by enforcing independence between the mixture coef cient indi-
cator variable and the clean log spectra. Thus instead of a mixture
of Gaussians posterior over the clean log spectra we have a single
Gaussian. This reduces the computational complexity. Using (12)
we obtain expressions for the optimal form of the factors. We obtain

1.
q
∗(s) = N (s; μ∗

s
,Σ

∗
s
) (13)

with

Σ
∗
s

=
[
ψ

−1 + G
T
s ψ

−1
Gs + ψ

−1
Gs

+ Gsψ
−1 +

Ms|L|∑
i=1

γiΣ
s−1
i

]−1

μ
∗
s

= Σ
∗
s

[
(I + G

T
s )ψ−1(y − g([s0,n0])

− Gnμ
∗
n

+ Gss0 + Gnn0)

+

Ms|L|∑
i=1

γiΣ
s−1
i μ

s
i

]

2.
q
∗(n) = N (n; μ∗

n
,Σ

∗
n
) (14)

with

Σ
∗
n

=
[
G

T
n ψ

−1
Gn + Σ

−1
n

]−1

μ
∗
n

= Σ
∗
n

[
G

T
n ψ

−1(y − μ
∗
s
− g([s0, n0]) −Gsμ

∗
s

+ Gss0 + Gnn0) + Σ
−1
n μn

]

3.

q
∗(zs) =

Ms|L|∏
i=1

(γi)
zs,i (15)
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where
γi =

ρi∑Ms|L|
i=1 ρi

and

log ρi = −
1

2
(μ∗

s
− μ

s
i )

T
Σ

s−1
i (μ∗

s
− μ

s
i )

−
1

2
log |Σs

i | −
1

2
Tr(Σs−1

i Σ
∗
s
) + log π

s
i .

3.2. The VB Algorithm

To run the algorithm, the observed utterance is divided into K frames
and each frame is enhanced. The linearization point is critical to the
performance of the algorithm. We linearize the likelihood at the cur-
rent estimate of the posterior mean [μ∗

s
, μ∗

n
]. The overall algorithm

is summarized in algorithm 1.

for k = 1, . . . , K do
Initialize the posterior distribution parameters
{μ∗

s
,Σ∗

s
, μ∗

n
, Σ∗

n
, γi};

for n = 1 to Number of Iterations do
Set [s0,n0] = [μ∗

s
, μ∗

n
];

Compute G = [Gs, Gn] and g([s0,n0]);
Update {μ∗

s
,Σ∗

s
, μ∗

n
,Σ∗

n
} using (13)-(14);

Update γi using (15);
end

end

Algorithm 1: VB algorithm

4. EXPERIMENTAL RESULTS

In this section we present experimental results that verify the per-
formance of the algorithm. For the simulations we use both the
TIMIT database and the NIST 2004 speaker recognition evaluation
(SRE) data. The TIMIT database contains recordings of 630 speak-
ers drawn from 8 dialect regions across the USA with each speaker
recording 10 sentences. The SRE data consists of conversational
telephone speech.

To learn the SRE MFCC and log spectral speaker models, gen-
der dependent UBMs with 512 mixture coef cients were trained us-
ing approximately 20 hours of speech. Speaker models were then
obtained using MAP adaptation with only the means of the UBM
being adapted. We use 19 dimensional MFCCs extracted using a
20ms window with 50% overlap. RASTA processing and CMS is
performed. Also, an energy detector is used to discard low energy
features. For TIMIT data, 8 sentences were used to learn the speaker
models and 2 sentences for testing.

To run the VB algorithm, we form a library consisting of the tar-
get speaker and the UBM and run algorithm 1 to enhance the noisy
log spectra. We initialize the posterior mean of the speech log spec-
trum to the log spectrum of the noisy speech frame. The posterior
covariance of the speech log spectrum was initialized as the identity
matrix. We initialize the posterior mean of the noise log spectrum to
the all zero vector. The posterior covariance of the noise log spec-
trum was initialized as the identity matrix. Finally we initialize the
parameters of q(zs) as γi = 1

Ms|L|
.

For our experiments, the algorithm was run for 5 iterations and
the posterior mean of the speech log spectrum at the nal iteration

was used as the enhanced log spectrum of that frame. Using the en-
hanced log spectra for a given utterance, scores for each veri cation
trial are computed using (16).

Score = log p(X|TargetModel) − log p(X|UBM). (16)

where X are the features.
We also derive MFCCs from the enhanced log spectra and use

these to compute scores for each veri cation trial. Thus for the VB
system we have two results: one using the enhanced log spectra and
the other using the MFCCs derived from these log spectra.

The veri cation experiments using the TIMIT data were per-
formed with the test utterances corrupted by additive white Gaussian
noise at various input SNRs. For each of the 630 speakers we have
two test utterances yielding 1260 true trials. To generate impostor
trials, a random set of ten speakers was selected from the remaining
speakers and the corresponding test utterances used to generate 20
impostor trials per speaker. Thus there are a total of 12600 impostor
trials.

Table 1 shows the equal error rates (EER) obtained in our veri-
cation experiments at various input SNRs. Figure 1 shows the cor-

responding DET curves at 30dB. We see that the MFCCs obtained
from the enhanced log spectra achieve the best performance.

Table 1. Speaker veri cation EER (%) for the entire TIMIT data set

SNR (dB)
System 10 20 30
MFCCs 46.35 24.44 8.97

Log Spectra 51.11 42.06 25.97
VB (Log Spectra) 42.94 28.73 18.02

VB (MFCC) 31.11 13.97 4.44
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Fig. 1. Speaker veri cation performance for the entire TIMIT data
set at 30dB.

For the SRE data, we report results on the core test of the 2004
evaluation where one conversation side is used for both training and
testing (1side-1side). The VB algorithm is run in the same man-
ner as for the TIMIT data. However since all SRE data is corrupted
by additive noise and the telephone channel, the speaker models we
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obtain are not as good as those obtained with TIMIT data. Also,
we estimate the noise distribution by computing the mean and vari-
ance of the frames discarded by the energy detector. To determine
the improvement in performance in trials with telephone type mis-
match between training data and testing data, the trials were divided
into two sets: those in which training and testing data were obtained
from the same telephone type (matched) and those where they differ
(mismatched). Figure 2 shows the DET curves corresponding to the
1side-1side trials. Overall we see that a slight improvement is ob-
tained in EER with our baseline system yielding an EER of 13.89%
and the VB system yielding an EER of 13.43%.This performance is
comparable to that obtained by other authors on SRE 2004 data [14].
Furthermore a greater relative improvement of 5% is obtained when
mismatched trials are considered separately with the EER reducing
from 16.53% to 15.70% as compared to matched trials where the
relative improvement is 3% with the EER reducing from 11.58% to
11.23%.
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Fig. 2. Speaker veri cation performance on SRE 2004 data for the
1side-1side condition.

5. DISCUSSION AND CONCLUSIONS

The experimental results reported in the previous section verify that
the proposed log spectrum enhancement algorithm does indeed im-
prove speaker veri cation in noisy environments. Signi cant im-
provements on the TIMIT dataset of up to about 14% are obtained
using MFCCs derived from enhanced log spectra when compared to
MFCCs obtained directly from noisy speech. At 30dB the EER is
reduced by about half from 8.97% to 4.44%. Also, the MFCCs ob-
tained from the enhanced log spectra give the best performance at all
SNRs reported.

The improvement in performance on SRE data is less than that
obtained on TIMIT data. This could be due to the lack of clean train-
ing data in this data set. Thus the extension of the model to handle
channel and handset mismatch and a means to train clean speaker
models could yield improvement in SRE performance similar to that
currently obtained on TIMIT. The fact that greater relative improve-
ment in performance is obtained when mismatched trials are con-
sidered shows that this algorithm does indeed compensate mismatch
between training and testing conditions in speaker veri cation sys-

tems even on the SRE dataset where no clean speech is available to
train models.

In summary this paper has demonstrated the performance of a
log spectra enhancement algorithm to improve speaker veri cation
performance in noisy acoustic environments. The encouraging ex-
perimental results indicate the potential of using speaker dependent
priors in the log spectrum domain to improve the performance of
speaker veri cation systems in noisy environments.
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