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Te Black–Scholes–Merton option pricing model is a classical approach that assumes that the underlying asset prices follow
a normal distribution with constant volatility. However, this assumption is often violated in real-world fnancial markets, resulting
in mispricing and inaccurate hedging strategies for options. Such discrepancies may result into fnancial losses for investors and
other related market inefciencies. To address this issue, this study proposes a jump difusion model with fast mean-reverting
stochastic volatility to capture the impact of market price jumps on vulnerable options. Te performance of the proposed model
was compared under three diferent error distributions: normal, Student-t, and skewed Student-t, and under diferent market
scenarios that consist of bullish, bearish, and neutral markets. In a simulation study, the results show that our model under skewed
Student-t distribution performs better in pricing vulnerable options than the rest under diferent market scenarios. Our proposed
model was ftted to S&P 500 Index by maximum likelihood estimation for the mean and volatility processes and Gillespie
algorithm for the jump process. Te best model was selected based on AIC and BIC. Samples of the simulated values were
compared with the S&P 500 values and MSE computed at various sample sizes. Values of MSE at diferent sample sizes indicate
signifcant decrease to actual MSE values demonstrating that it provides the best ft for modeling vulnerable options.

1. Introduction

Over-the-counter (OTC) markets have grown signifcantly in
recent years, raising concerns about default risk, particularly
following the 2008 global fnancial crisis. Since OTC options
are not subject to regular market reconciliation and margin
replenishment, they expose option holders to increased credit
risks. Tese options, which are vulnerable to counterparty
credit risk, are known as vulnerable options. Furthermore,
OTC markets are dominated by trend traders, whose ten-
dency to follow market trends often leads to market con-
gestion, resulting in the whipsaw efect infuencing the price
discovery of options that are traded in this market. During
such periods, increased price volatility disrupts pricing inputs
like implied volatility, making it challenging to accurately
determine option prices. In response to these challenges and
with potential applications in controlling counterparty credit
risk and facilitating smoother negotiation processes for these

options during market congestion, research for improved
pricing models has emerged as an increasingly vital topic in
fnance. Tese eforts aim to mitigate pricing inefciencies
and enhance risk management for OTC options in today’s
dynamic fnancial landscape.

Black and Scholes [1] pioneered the concept of option
pricing models in their seminal paper by assuming that the
underlying asset price follows a geometric Brownian motion
with a constant mean and volatility and that the asset return
series follows a normal distribution. However, this model
has been exposed to criticism and limitations due to these
assumptions. Te assumption that the underlying asset
follows a geometric Brownian motion with a constant mean
and volatility means that the price of the underlying asset
moves continuously and follows a smooth and predictable
path over time. However, empirical studies have shown that
the underlying asset’s price curve is not smooth but has
jumps. Te other assumption that the underlying asset
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return series follows a normal distribution contradicts the
empirical studies because asset returns’ distribution has
leptokurtic features implying that the distribution of asset
returns has a higher peak and asymmetric heavier tails than
those of the normal distribution. While these assumptions
make the model more tractable, they create limitations when
applied to real-world fnancial markets. Such limitations
include option mispricing during extreme events such as
market crashes, inadequacy in capturing market realities
such as volatility skew, inaccurate prediction of discontin-
uous payofs, and signifcant losses to fnancial institutions
that rely heavily on this model for risk management.

Ki et al. [2] proposed a closed pricing formula for Eu-
ropean options the case where the return of the underlying
asset follows extended normal distribution for diferent
degrees of skewness and kurtosis relative to the normal
distribution. Numerical experiments and a comparison of
the empirical performance of the proposed model with the
Black–Scholes model were done through the estimation of
implied parameters such as standard deviation, skewness,
and kurtosis of the return on the underlying asset from the
market prices of the KOSPI 200 Index options. Te results
demonstrated that the actual density of the underlying asset
depicts skewness to the left with high peaks. Similarly,
Burger and Kliaras [3] empirically investigated the Black-
–Scholes model and the Merton model both constructed
regarding normal distribution and the double exponential
jump difusion model which does not assume a normal
distribution of the stock returns but a distribution that has
got a higher peak and two heavier tails and also considers the
empirical abnormity called volatility smile. Te empirical
results showed that the double exponential jump difusion
model ftted the stock data better as compared to the other
two models. Gatheral et al. [4] noted that the Black–Scholes
approach underestimates the probability of extreme events
in asset returns’ distribution due to its constant volatility
assumption. Moreover, Liu et al. [5] utilized a model of
stochastic volatility featuring jumps within the price of the
underlying asset and the counterparty asset value to derive
solutions for the option price. Teir fndings indicated that
the stochastic volatility model with jumps can provide more
accurate pricing compared to the Black–Scholes model.
Similarly, Zhou et al. [6] considered an improved model for
pricing vulnerable options by incorporating the dynamics of
the underlying asset and counterparty asset as a class of jump
difusion processes. Tese fndings challenge the model’s
validity in real-world scenarios and emphasize the need for
more sophisticated approaches to option pricing and risk
management. Besides the jump difusion model employed in
this study, other difusion processes have been explored in
existing literature, such as self-difusion and cross-difusion,
as evident in recent studies (see Chen et al. [7], Chen andWu
[8], Chen and Srivastava [9], and Zhu et al. [10]).

Tis paper proposes to study a jump difusion model
under the Student-t and skewed Student-t distributions

instead of the Gaussian distribution. Te dynamics of the
underlying asset price, option writer’s asset value, and
stochastic volatility are derived, and the pricing formula of
the vulnerable options is obtained. Te application of the
proposed model is demonstrated by considering three dif-
ferent error distributions (normal, Student-t, and skewed
Student-t) and three market trends (bullish, bearish, and
neutral) and performing simulations of the model under the
diferent market trends and error distributions. Empirical
results are obtained by ftting the proposed model using the
S&P 500 Index prices under the three diferent error
distributions. Performance of the proposed model was
tested by computing the AIC and BIC and the mean
square error under diferent sample sizes. By addressing
these aspects, this study aims to present a more accurate and
robust approach to pricing vulnerable options, ofering
valuable insights into risk management and option
pricing strategies for fnancial practitioners.

Te rest of this paper is organized as follows. In Section
2, we describe the methodology of pricing vulnerable op-
tions using the jump difusion model with fast mean-
reverting stochastic volatility. Section 3 discusses the sim-
ulation results obtained from the application of this
methodology. Section 4 presents the empirical results. Fi-
nally, in Section 5, we provide the conclusions and sug-
gestions for further research.

2. Methodology

In fnancial markets, the jumps in fnancial asset prices are
normally triggered by policy changes, catastrophic events,
and big news events. In this section, the jump difusion
model with mean-reverting stochastic volatility is derived.

Assume that T � [0, T] is the time level and
(Ω, F, Ft t∈T,P) is the complete probability space where P is
the physical probability measure. Te dynamics of the un-
derlying asset price St and the option writer’s asset value Vt

are assumed to be described by the following stochastic
diferential equations (SDEs), respectively:

dSt

St

� μ1 + σ1dB
1
t ,

dVt

Vt

� μ2 + σ2dB
2
t ,

(1)

where μ1 and μ2 are drift components of underlying asset
price and option writer’s value, respectively, σ1 is the vol-
atility of the underlying asset price, σ2 is the volatility of the
option writer’s value, and B1

t and B2
t are the standard

Brownian motions of the underlying asset price and option
writer’s value, respectively.

To account for jumps in the underlying asset price and
option writer’s asset value, a jump process is introduced to
the right hand side of equation (1). Terefore, the dynamics
of St and Vt follow a jump difusion process given by
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dSt � μSt−
dt + YtSt−

dB
S
t + St−

d 

N1t

i�1
e
ξi − 1 ⎛⎝ ⎞⎠ − λ1β1St−

dt,

dVt � μVt−
dt + YtVt−

dB
V
t + Vt−

d 

N2t

j�1
e
υj − 1( ⎛⎝ ⎞⎠ − λ2β2Vt−

dt,

(2)

where St−
and Vt−

represent the value of St and Vt just before
a possible jump of sizes eξ and ev at time t, respectively. N1t

and N2t denote the counts of the observed number of jump
times prior to time t with intensities λ1 and λ2, respectively.
β � β1 � β2 represent the expected jump size conditional on
information available at time t. Within this model repre-
sented by equation (2), μ, Yt, and (

N1t

i�1 (eξi − 1)) − λ1β1
represent the conditional mean, the stochastic volatility
process, and the jump process of the underlying asset, re-
spectively. For model estimation, the conditional mean is
ftted by estimating the parameters by the MLE method and
then residuals are obtained from the ftted model, and
volatility process is also ftted by estimating parameters from
the residuals by the MLE method. Simultaneously, we use
the Gillespie Algorithm to estimate the jump process..

Te percentage increase in the price of the underlying
asset and option writer’s asset value given the price changes
from St− to eξSt and Vt− to evVt, respectively, is given by

e
ξ
St − St−

St−

�
ΔSt

St−

� e
ξ

− 1,

e
v
Vt − Vt−

Vt−

�
ΔVt

Vt−

� e
v

− 1,

(3)

where ∆St � ∆Vt⟶ dt as ∆t⟶ 0 is the infnitesimal
limit dt. Terefore, the total number of jumps is given by

Ji � 

N1t

i�1
e
ξi − 1 ,

Jj � 

N2t

i�1
e

vi − 1( .

(4)

To ensure that St and Vt are martingales, the jump
components in equation (2) are compensated by λ1β1dt and
λ2β2dt, respectively.

Let Yt denote the stochastic volatility process assumed to
follow the Ornstein–Uhlenbeck process given by

dYt �
1
ε

m − Yt( dt +
u

�
2

√

�
ε

√ dB
Y
t , (5)

where ε denotes the inverse of the mean reversion rate and
Yt ∼ N(m, u2).

To obtain an arbitrage-free price of the vulnerable op-
tion, a risk-neutral measure P∗ from Johannes and Polson
[11] is introduced in equations (2) and (5) to get

dSt � rSt−
dt + YtdB

S∗

t St−
+ St−

d 

N1t

i�1
e
ξi − 1 ⎛⎝ ⎞⎠ − λ1β1St−

dt,

dVt � rVt−
dt + YtdB

V∗

t Vt−
+ Vt−

d 

N2t
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e

vj − 1( ⎛⎝ ⎞⎠ − λ2β2Vt−
dt,

dYt �
1
ε

m − Yt( 
u

�
2

√

�
ε

√ Λ Yt(  dt +
u

�
2

√

�
ε

√ dB
Y∗

t ,

(6)

where BS∗

t , BV∗

t , BY∗

t , λ1, β1, and Λ(Yt) are defned under P∗.
According to Klein [12], the payof of a vulnerable

European call option at time T is given by

C ST, VT(  � ST − K( 
+ 1

VT≥D
+

VT(1 − α)

D
1

VT<D
 , (7)

where D is the default boundary, D is the total claim value,
and α is the dead-weight cost of fnancial distress expressed
as a percentage of option writer’s asset value.

Terefore, the price of a vulnerable call option at time
t≤T is given by

P(t, s, v, y) � E
P∗

e
− r(T− t)

C ST, −ST(  St

 � s, −St � v, Yt � y , (8)
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where EP∗[·] is the conditional expectation under the risk-
neutral measure P∗.

As a consequence, the solution of P(t, s, v, y) is given by
a PDE in Oksendal [13] with the terminal condition

P(T, s, v, y) � (s − K)
+ 1 −ST ≥ D( 



+
−ST(1 − α)

D


−ST < D( .

(9)

Given the terminal condition in equation (9), obtaining
an analytical solution for this partial diferential equation
(PDE) is not feasible due to its complexity. As a result,
numerical simulations of the proposed model were per-
formed. Te Gillespie algorithm was used to simulate the
price jumps. We defned three distinct states representing
the bullish (BU), bearish (BE), and neutral (NE) market
trends, each associated with specifc rates governing the
occurrence of market price jumps. Tese rates were cali-
brated to refect the intensity of jumps in each market state.
We denote the state vector x � (x1, x2, x3) where x1, x2, x3
represents the counts of BE,BU,NE, respectively. Table 1
lists the interactions between diferent states, propensity
functions of reactions, and the net vectors. From Table 1, if
the market experiences an event that leads to (1) a downward
jump in stock prices, the economymoves from BU to BE and
is modeled in reaction R1, (2) an upward jump in stock
prices, the economymoves from BE to BU and is modeled in
reaction R2, (3) and no jump in stock prices, the economy in
either BU or BE moves to NE and is modeled in reactions
R3, R4, R5, and R6.

To implement the Gillespie algorithm, we adapted the
steps outlined in Altıntan et al. [14].

3. Simulation Results

In this section, we illustrate the application of the jump
difusion model with the Gillespie algorithm, as presented in
equation (2). Te Gillespie algorithm was selected for its
unique features, including its ability to simulate individual
reactions rather than the system as a whole, which results in
a more precise and accurate simulation of the underlying
stochastic processes. Moreover, its fexibility in handling
complex models with multiple stochastic variables and
events, combined with its computational efciency and
suitability for large datasets, makes it ideal for real-time
simulations. Tese features make the Gillespie algorithm
a powerful tool for simulating complex systems, such as the
jump process in the proposed model.

Figure 1 illustrates the comparison of the adapted model
and the ftted model under three diferent error
distributions.

Table 2 presents a set of parameters adapted from
Turchyn [15] and Altıntan et al. [14] based on real market
data. Te adapted set of parameter estimates in Table 2 was
used to ft the proposed jump difusion model with fast
mean-reverting stochastic volatility.

Te parameters of the proposed model were estimated
using the maximum likelihood estimation method. Table 3

presents the parameter estimates of the ftted model using
three distinct residual distributions, namely, normal,
Student-t, and skewed Student-t, under three market trends
(bearish, bullish, and neutral). Te parameter estimates were
found to be independent of the market trends (bearish,
bullish, and neutral).Tis implies that the proposed model is
appropriate to price vulnerable options as it will provide the
jump process of the underlying asset regardless of whether
the market is bullish, bearish, or neutral.

4. Empirical Results

Tis section presents the empirical results and discussions of
the results obtained from ftting the proposed model to the
dataset consisting of 4410 daily average closing prices of the
S&P 500 Index, covering the period from 1st January 2005 to
31st July 2022. Te data exclude weekends and holidays
downloaded from https://www.investing.com. In Figure 2,
the time series plot of the daily prices depicts the trend of the
prices over time, while the log returns plot highlights the
stochastic volatility dynamics in the daily prices. Signifcant
price jumps are observed during the 2007-2008 global

Table 1: Reaction list and reaction propensities of the jump
process.

Reaction list Reaction propensity
R1: BE⟶c 1 BU α1 � c1x1
R2: BU⟶c 2 BE α2 � c2x2
R3: BU⟶c 3 NE α3 � c3x2
R4: NE⟶c 4 BU α4 � c4x3
R5: BE⟶c 5 NE α5 � c5x1
R6: NE⟶c 6 BE α6 � c6x3

ci describes the stochastic reaction rate of moving from one state to the
other constant of the reaction Ri for i � 1, 2, . . . , 6.
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Figure 1: Comparison of the adapted model to the ftted model
under skewed Student-t, Student-t, and normal distributions.
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fnancial crisis period and COVID-19 pandemic period. Te
market crashes caused the returns to exhibit extreme high
asymmetric volatility and scattered jumps. Te log returns
also appear to fuctuate around the mean level, exhibiting
volatility clustering, where large changes are followed by
large changes, and small changes are followed by small
changes.Tis implies that the log return exhibits conditional
heteroskedasticity that can be modeled using conditional
heteroskedastic models.

Table 4 presents descriptive summary statistics and
statistical tests of the index prices, log returns, and squared
log returns of the S&P 500 Index prices. Te minimum and
maximum values provide a range of the observed values in
the data. Te standard deviations are all positive giving an
indication of the volatility of the underlying asset prices. Te
negative skewness of the log returns indicates that the
distribution is negatively skewed, with the tail on the left side
longer than the right side. Furthermore, the kurtosis of the
log returns is greater than 3, indicating that the distribution
is heavy tailed, and extreme values occur more frequently
than in a normal distribution. Tese characteristics are
consistent with the presence of volatility clustering and fat
tails in the distribution of log returns. Te Jarque–Bera (JB)
test for normality confrms that the log returns are not
normally distributed.Te ARCH-LM test for the residuals of
the log returns confrms the presence of heteroskedasticity.
Terefore, the jump difusion model with fast mean-
reverting stochastic volatility could be useful in describing
the dynamics of vulnerable options using the S&P 500 Index
as the underlying asset.

Figure 3 illustrates the comparison between the ftted
model under various error distributions and the S&P 500
Index. Te ftted model’s plot under the skewed Student-t
distribution closely resembles the plot of the S&P 500 Index
prices. Tese fndings show that the proposed model under
the skewed Student-t distribution could be a useful model
for pricing vulnerable options.

Te proposed jump difusionmodel was ftted to the S&P
500 Index prices under the three error distributions. Table 5
presents the parameter estimates of the ftted model under
diferent error distributions. Te parameter estimates for
both the conditional mean and volatility equations are
confrmed to be statistically signifcant. In addition, the
shape parameter and skewness parameter for both the
Student-t and skewed Student-t distributions are statistically
signifcant. Tus, the use of heavy-tailed innovation distri-
bution seems justifed to account for skewness and excess
kurtosis in the asset returns.

To evaluate the relative goodness of ft of the proposed
model under the diferent distributions to S&P 500 Index,
the AIC and BIC of the proposed model were computed
under various sample sizes. Table 6 presents the AIC and
BIC values under diferent sample size values. Te results
demonstrate that as the sample size increases, skewed
Student-t has the smallest AIC and BIC. Tis demonstrates
that the proposed model with skewed Student-t distribution
fts the return series more appropriately compared to the
other two error distributions.

In order to test the performance of the proposed model
under the three error distributions (normal, Student-t, and

Table 2: Parameter estimates adapted from Turchyn [15] and Altıntan et al. [14] based on real market data.

Parameter μ ϕ1 ω α1 β1 c1 c2 c3 c4 c5 c6

Value 0.033015 −0.09861 0.01142 0.065437 0.894563 0.2 0.5 0.6 0.2 0.5 0.6

Table 3: Parameter estimates of the ftted model using three diferent error distributions (normal, Student-t, and skewed Student-t) under
three diferent market trends (bearish, bullish, and neutral).

Residual
distribution μ ϕ1 ω α1 β1 Shape Skew c1 c2 c3 c4 c5 c6

Normal 0.033561 −0.111893 0.012502 0.087566 0.905233 0.2 0.5 0.6 0.2 0.5 0.6
Student-t 0.05335 −0.086657 0.00833 0.091376 0.907624 6.3745 0.2 0.5 0.6 0.2 0.5 0.6
Skewed Student-t 0.03343 −0.09033 0.00782 0.091132 0.907867 0.887993 6.75413 0.2 0.5 0.6 0.2 0.5 0.6
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Figure 2: Times series, log return, and squared log return series of the S&P 500 Index for the period starting from 1st January 2005 to 31st
July 2022.
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skewed Student-t), the mean square error (MSE) was
computed for both the ftted model and the S&P 500
Index prices. Table 7 presents the MSE values under
diferent sample size values. Te results demonstrate that
as the sample size increases, the MSE of the proposed model
decreases for all three distributions. Tis means that as the
sample size increases, the suggested model’s forecast of S&P
500 Index prices becomes increasingly accurate, and thus the
model’s prediction accuracy grows. Tese fndings imply

that when pricing vulnerable options using the proposed
method, the distribution for the error component is an
important factor in attaining accurate results. Overall,
skewed Student-t distribution showed the lowest MSE
value among the three distributions for all sample sizes. Tis
demonstrates that the proposedmodel with skewed Student-
t distribution fts the return series more appropriately
compared to the other two error distributions. Tese
fndings support prior fndings that, under the assumption

Table 4: Summary statistics of prices, log returns, and squared log returns of S&P 500 Index.

Statistic Min Max Std. dev Skewness Kurtosis JB test ARCH-LM test
Prices 676.50 4796.6 960.4607 1.080189 3.363511 882.47 (p-value� 0) 43,716 (p-value� 0)
Log returns −12.76521 10.95720 1.239736 −0.560901 13.308883 7839.7 (p-value� 0) 1057.7 (p-value� 0)
Squared log return 0 162.95069 6.005256 13.1644 243.3772 10742319 (p-value� 0) 1106.4 (p-value� 0)
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Figure 3: Comparison of the ftted model under skewed Student-t, Student-t, and normal distributions to the S&P 500 Index prices from
April 2011 to October 2011.

Table 5: Parameter estimates of the proposed model ftted to the S&P 500 Index under the three error distributions.

Residual distribution μ ϕ1 ω α1 β1 Shape Skew

Normal 0.068529 −0.073545 0.026622 0.142245 0.837764
Student-t 0.084252 −0.0069566 0.016373 0.140577 0.857729 5.115944
Skewed Student-t 0.060347 −0.0082497 0.0015629 0.133876 0.860204 0.874354 5.703997

Table 6: AIC and BIC of the proposed model under normal, Student-t, and skewed Student-t distributions for various sample sizes.

Sample size Normal Student-t Skewed Student-t
AIC BIC AIC BIC AIC BIC

1000 2.9466 2.9653 2.9017 2.9296 2.8968 2.9230
2000 2.9051 2.9191 2.8624 2.8792 2.8554 2.8750
3000 2.7080 2.7180 2.6615 2.6735 2.6531 2.6671
4000 2.6422 2.6501 2.5769 2.5863 2.5672 2.5782
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of a skewed Student-t distribution, the suggestedmodel gives
a better ft for pricing vulnerable options.

 . Conclusions and Recommendation

Tis paper presents a jump difusion model with fast mean-
reverting stochastic volatility for pricing vulnerable options.
Te proposed model’s application is illustrated by ftting the
model using three distinct residual distributions, namely,
normal, Student-t, and skewed Student-t, under three
market trends (bearish, bullish, and neutral). From empirical
results, the distribution of the log return series of S&P 500
Index was found to be negatively skewed and heavy tailed
and this confrms the existing research that log returns of
underlying asset of vulnerable options are not normally
distributed. In addition, the proposed model with skewed
Student-t distribution fts the return series of the S&P 500
Index more appropriately compared to normal distribution.
To validate these results, future research can expand the
analysis to diferent historical options datasets, explore other
types of options, and compare this with other option pricing
models.
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Table 7: Mean square error of the proposed model under normal,
Student-t, and skewed Student-t distributions for various
sample sizes.

Sample size Normal Student-t Skewed Student-t
MSE MSE MSE

1000 2.316982 2.213004 2.207537
2000 1.963498 1.941933 1.937141
3000 1.56498 1.548567 1.513999
4000 1.545911 1.517461 1.443388
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