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Abstract: This work describes the performance-evaluation of various unsupervised 

classical machine learning algorithms in time series outlier detection. The aim is to 

test the robustness of known classical models that act as baselines in anomaly 

detection. IoT offers flexibility for various anomalies detection algorithms to be 

tested since the data collected is voluminous and the types of anomalies found are 

diverse. By deploying fine-tuned, long-established models, researchers can improve 

on the quality of the data they release from or use in various studies. This work also 

provides an insight into how time series data properties such as non-stationarity can 

affect anomaly detection and how operations such as windowing can be used to 

mitigate the effects and achieve desirable results. The experiments done show that, 

with some fine-tuning and data pre-processing, classical outlier detection methods’ 

performance can be enhanced and utilized in IoT data quality control.  
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1.  Introduction 

In IoT, the success of all monitoring or data collecting practices is highly dependent on the 

proper operation of the sensor nodes deployed, specifically, the sensing element. In 

scenarios, such as outdoor deployment, the desired operation is strenuous to guarantee since 

the sensing elements are fragile and prone to damage which can in turn lead to a 

malfunction. Ecosystem monitoring is one of the applications where outdoor deployment of 

sensor nodes to collect data such as river water level is required. The sensing hardware on 

the nodes is constantly exposed to undesired factors such as severe weather conditions, 

invasion by the insect population and vandalism which make damage very likely [1, 2]. 

Combined with the external factors mentioned, other internal factors such as power 

limitations may lead to the presence of anomalous data points in the data collected. In 

science, anomalies are observations that are dissimilar to the presumption produced by a 

scientific experiment such as measuring. The presence of outliers in raw data raises the 

need of ensuring that high quality data is being obtained from sensor nodes. Since the 

operation of sensor devices is automated, time based and the intervals involved are short, 

they generate large amounts of data that cannot be processed manually, this dictates that the 

data control methods employed have to be automated, extensible and quick enough to be 

suitable for real time data [2].  

Anomaly or outlier detection is one of the operations that fall under the data quality 

control category. Outlier detection is a widely studied area in machine learning and data 

acquisition. Nowadays, the vast amount of research and information around anomaly 

detection in machine learning and the availability of vast, fast and fairly cheap data 

processing resources have made development and implementation of custom and complex 

anomaly detection models possible. There are deep learning anomaly detection techniques 

and machine learning packages for IoT time series data [3]. Despite the fact that these 
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complex models have practically adequate results, they take a lot of time to develop and 

extensive processing resources to implement hence, their necessity and advantages over 

traditional anomaly detection machine learning models can be argued. On the other hand, 

traditional anomaly detection models have working principles that are easy to understand 

and some of these principles are utilized in the development of the complex models. Also, 

these long-established models are easy to implement with minimum processing resources 

and the results are satisfactory hence a case about their robustness can be made. In machine 

learning, most of the traditional methods fall under the unsupervised learning category [4].    

In this paper, the focus is on anomaly detection in time series data using traditional 

unsupervised methods in a bid to prove their utility and robustness. A time series data set is 

a sequence of data points indexed in time order. The resolution of time series data is usually 

predetermined and stated in the sensor node firmware. Anomaly detection methods are 

basically targeted at detecting and eliminating the erroneous data points in a given set.  

The models considered in this work were all unsupervised machine learning models. In 

unsupervised learning, the models are classified in specific groups depending on the 

model's working principle e.g., Clustering based-models and proximity-based models. 

Unsupervised machine learning is a machine learning technique in which the dataset has no 

labels [2]. A model is fitted to find the hidden patterns and insights – exploratory data 

analysis – in the given data. Mostly unsupervised models/algorithms are used to group a set 

of data points into different clusters depending on a predetermined threshold. Data points in 

the same cluster have similar properties whereas data points in different clusters have 

different properties [2-4].  By employing these algorithms in anomaly detection, the outliers 

are grouped into one cluster whereas the normal/relevant data samples are grouped in 

another. The data points in these clusters are then assigned cluster labels which identify a 

data point with its cluster. By exploiting the label feature the outliers are eliminated from 

the main dataset. [5].  

The time series data extracts utilized in this study were obtained from a river water level 

monitoring sensor node deployed along River Muringato – Muringato sub-catchment in 

Nyeri county, Kenya. The test data sets were divided into two classes: the uniform and the 

non-uniform regime as shown in Figure 1. 

 

  

(a)- Test Data 1 For the Study (NUR) (b)-Test Data 2 For the Study (UR) 

Figure 1: Test Data Sets 
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Test data 1 shown on Figure 1a was allocated the label -non-uniform regime (NUR) due 

the non-uniform nature of the time series whereas Test data 2 was allocated the label – 

uniform regime (UR) since the water level did not change over time. The operating interval 

of the sensor node was 5 minutes and was in-situ for 18 consecutive months from January 

2021. The node was transmitting data to a network server through a LoRaWAN1 network 

[6]. From the network server the data was being re-routed to a cloud-based time series 

database for permanent storage. Due to the interference by weather conditions and 

vandalism, the dataset contained a significant number of evenly spread-out anomalies. 

Figure 1 shows the data sets considered in this work and Table 1 illustrates the data 

information. Figure 2 depicts the deployed sensor node [7]. 

Table 1: Data Specifics Table 

Test Data 1 (NUR) 

Variable River Muringato water level data 

Time  24th April 2022 to 17th May 2022 

Outlier count 150 data points (RED) 

Normal data point count 6562 data points (BLACK) 

Test Data 2 (UR) 

Variable River Muringato water level data 

Time  06th March 2022 to 26th March 2022 

Outlier count 101 data points (RED) 

Normal data point count 5762 data points (BLACK) 

 

Figure 2: Sensor Node Along River Muringato, Nyeri County, Kenya 

This work describes the comparison of performance among various classical machine 

learning models in detecting anomalies present in time series data. The data specimens used 

were acquired directly from a deployed sensor node hence no modifications were made to 

the data extracts used. Section 2 presents the objectives, section 3 outlines the methodology 

used in the performance-comparison study while section 4, presents the results. Section 5 

describes the business benefits while section 6 concludes the paper.  

2.   Objectives 

2.1 Main Objective  

To compare the outlier detection performance of different unsupervised, basic machine 

learning models in IoT time series data. 

2.2 Specific Objectives 

a) Manual annotation of test data samples. 
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b) Detecting anomalies in the test samples using the considered algorithms (labelling 

using models). 

c) Performance evaluation of the model by leveraging the manual annotation and 

model labels.  

3. Methodology 

The performance comparison of the unsupervised anomaly detection machine learning 

algorithms described in this paper followed the procedure outlined in Figure 3. The 

programming was done using Python. Since the used-model frameworks are provided in the 

python library named; Scikit-learn, the main task was in tuning/adjusting the models’ 

parameters accordingly. These parameters play a major role in dictating the performance of 

the models. Other Python data preparation and manipulation packages were also utilized in 

order to achieve the stated objectives.   

 

Figure 3: Methodology Block Diagram 

3.1 Test Data 

The main reason behind the consideration of the non-uniform regime (NUR) shown on 

Figure 1(a) was the non-uniform profile of the time series. The profile was caused by the 

changes in water level after heavy downpours in and around the Muringato watershed 

during the time stretch indicated on the x-axis. The specimen also contained anomalies at 

interesting points of the profile which called for a sophisticated approach for detecting 

them. Uniform regime (UR) shown on Figure 1(b) was also considered due to the uniform 

profile/regime. The data shows lack of rainfall during the time stretch outlined on Table 1. 

Before the extraction of the two specimens from the 18-month time series, the whole data 

was validated by comparing it to the rainfall data in the Muringato watershed. During the 

sensor node deployed period, manual measurements which helped in the validation process 

were also being taken.  
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3.2 Annotation of the Data Specimens 

Before feeding the selected test data sets to the models, the extracts underwent labelling to 

identify the anomalous data points and the normal/relevant data points. The labelling was 

done manually using a one-day labelling window.  The relevant data points representing the 

main water level trend were identified with the binary label 0 whereas the outliers were 

identified with the binary label 1. The ratios of the outliers to the total count in both cases 

were small which indicated that the sensor node was efficient and performing well. The 

short interval data collection produced a high-variance, low-bias time series as shown on 

Figure 1. 

3.3 Windowing  

During the fitting of test samples to the models, a windowing process was adopted. The 

procedure was adopted after realization that the models were classifying some relevant data 

points at the peaks and troughs as anomalies (clipping) – Figure 4-a. Also, some models 

were not able to detect the outliers in between two peaks due to the models’ architectures. 

By windowing, the NUR was broken down to sections therefore reducing the effect of the 

non-uniformity and improving the model performance. During the fitting of the UR, the 

windowing process was not utilized for some of the models since the data was uniform 

enough for it to be fitted as a whole. To score the model after fitting and label generation, 

the original test set was being reconstructed (stitching-back) from the window-length data 

points. In order to determine the optimal window size for a particular model, different 

window sizes were considered and model performances at each of these window sizes were 

analyzed. 

3.4 Unsupervised Machine Learning – Model Fitting – Anomaly Detection 

Highlighted in Table 2 below are the unsupervised models that were considered in this 

work. Unlike supervised machine learning models, unsupervised frameworks are not 

provided with target labels for the model fitting and prediction process. Instead, the models 

learn using the fundamental concepts that define them.  As shown on Figure 4, the test sets 

(NUR and UR) were fitted and the results (labels) were generated via prediction and stored. 

The label feature aided in identifying the points labelled as anomalies by the various models 

and also helped in scoring the models. 

Table 2: Models Considered in The Study 

S/N Model Fundamental operating concept 

1 Local Outlier Factor (LOF) Proximity/density-based clustering model [2] 

2 Interquartile range (IQR) Statistical clustering model [2] 

3 KMeans Proximity based clustering model [2] 

4 Isolation forest Isolation based clustering model [2] 

5 Kernel Density Estimation Density based (probabilistic) clustering model [2] 

7 DBSCAN Density based clustering model [2] 

8 OneClassSVM Proximity/density-based clustering model [2] 

9 Gaussian mixture model (GMM) Density based (probabilistic) clustering model [2] 

10 Elliptic Envelope Density based clustering model [2] 

3.5 Model Performance Evaluation  

Model evaluation or model scoring is realized using performance metrics. Since the 

anomaly detection problem in this work was a classification task, the metrics considered 

were; the F1-score. As a scoring metric, the F1-score is the harmonic average of the 
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precision and recall score. Confusion matrices were also used in result visualization. The 

common Python library utilized in the calculation of the metric listed was the 

Sklearn.metrics().  

3.6 Optimal Window-Size Evaluation  

To evaluate the optimal window-size, the performance metric (F1-Scores) results for 

various window sizes were first visualized. By visualizing the performance curves across 

the window sizes, it was easy to identify the window size with the highest performance 

metric figures and isolate it. The performance metrics that matched the optimal data point 

window were also identified and recorded for use in model comparison analysis. 

4. Results 

To outline the results of the windowing process and the determination of the optimal 

window size, the Kernel Density Estimation (KDE) algorithm was considered. KDE utilizes 

the probability distribution of the data in clustering and anomaly detection. Table 3 

highlights the performance of KDE on the NUR using an optimal window size figure and 

without using a window.     

Table 3: KDE Performance on Test Data 1 

Performance Metric Without windowing Optimal window (160 data points) 

Accuracy score 0.9328 0.9943 

Precision score 0.2008 0.9117 

Recall score 0.6733 0.8268 

F1-score 0.3093 0.8671 

Figure 4a shows the performance of the KDE on the NUR without the utilization of a 

data point window while Figure 5 shows the results with an optimal data point window in 

place. In Figure 4 the clipping phenomena described in the methodology is evident and as 

stated some of the outliers between the peaks were not detected. Figure 4b shows an 

improvement in performance after windowing hence some of the setbacks of having non-

uniformity were mitigated. 
 

  
(a) Without a window (b)  With an optimal window (160 data points) 

Figure 4: KDE Performance (NUR) 
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4.1 Optimal Window Size Determination 

The plot on Figure 5 shows the change in performance against a varying data point window 

size for the KDE algorithm. The optimal window was discovered to be 160 data points 

since only at the 160 mark the recall score goes above the 0.8 mark. The spike in recall 

corresponded to a spike in the other metrics as shown in Figure 5 and Table 3. The accuracy 

curve was not affected by the windowing. This was as a result of the small outlier: total data 

point tally ratio. This also meant that the accuracy was not a desirable metric in comparing 

the performance of the models. The F1-score combines the Recall and the Precision; hence 

it was considered to be the deciding metric. 

 

Figure 5: Performance Metrics Against Data Point Window Size  

(Optimal Window Size 160 Data Points – F1-Score = 0.8671) - NUR 

4.2 KDE Results for Test Data 2 

Figure 6 shows the KDE performance on the UR. The data had a uniform regime; lack of 

change in water level. As stated, the data did not require a windowing process. 

 

Figure 6: KDE Performance - UR (F1-Score = 0.9453) 
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Table 4 shows the performance (F1-scores) of the other algorithms that were considered 

in the study. The parameters column indicates the tuning model parameters which were 

used to achieve that indicated results/score. The algorithms with the high F1-score (close to 

1) in both test datasets were able to detect and eliminate a large percentage of the anomalies 

from the test data in both regimes. 

Table 4: Models' Performance 

 Test Data 1 (non-uniform regime)-NUR Test Data 2 (uniform regime) -UR 

Model F1-Score Parameters Window size F1-Score Parameters Window size 

Local Outlier 

Factor (LOF) 

0.7567 n_neighbors 

= 246 

metric= 

Euclidean 

280 0.7826 n_neighbors 

= 14, 

metric= 

Euclidean 

288 

Interquartile range 

(IQR) 

0.5571 

 

- 124 0.9452 

 

- None 

KMeans 0.1285 K = 2 268 0.8187 K = 2 576 

Isolation forest 0.1802 n_estimators 

= 95 

None 0.2220 n_estimators 

= 60 

None 

Kernel Density 

Estimation 

0.8667 Kernel = 

Gaussian 

BW = 

0.00635 

160 0.9453 Kernel = 

Gaussian 

BW = 

0.00635 

None 

DBSCAN 0.8636 eps = 0.07, 

min_sample

s= 15 

25 0.9588 eps = 0.015, 

min_sample

s= 60 

None 

OneClassSVM 0.4104 kernel= 

'linear' 

gamma='sca

le' 

nu=0.948 

610 0.9400 kernel= 

'linear' 

gamma='sca

le' 

nu=0.948 

None 

Gaussian mixture 

model (GMM) 

0.7986 - 18 0.9641 - None 

Elliptic Envelope 0.5628 Contaminati

on = 0.04 

249 0.9641 Contaminati

on = 0.016 

None 

  
(a) (b) 

Figure 7: (a) Models' Performance on Test Data 1(NUR) (b) Models' Performance on Test Data 2(UR) 
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5. Business Benefits 

Most time series datasets obtained from instruments which interface the real world often 

contain anomalies. Recently, the demand for environmental datasets such as river water 

level, temperature and rainfall has increased due to factors such as climate change studies. 

Therefore, producers of such datasets have to invest in data cleaning pipelines. By setting 

up automatic and efficient data cleaning pipelines which highly consist of anomaly 

detection, reliable time series datasets can be produced. This practice improves and 

maintains the third-party data user confidence in the data available which in turn translates 

to more revenue if the datasets are commercialized. Also, user confidence can be improved 

by granting access to these data pre-processing pipelines in terms of model selection and 

output visualization.  

Due to the diversity of the time series data being collected nowadays, various 

organizations are hiring developers with an aim of building data quality control pipelines 

that can process real-time data from deployed nodes. Also, various developers are working 

on prototype anomaly detection models that can be commercialized.     

6. Conclusions 

The work presented in this paper involves evaluating the performance of various classical 

machine learning algorithms for detecting anomalies in different sets of time series data. By 

testing the performance of various models, researchers are able to evaluate which model is 

fit for their use case and what model parameters need optimization. As indicated in the 

results, the model performances for the two test cases were diverse. The superior 

performance of the KDE, DBSCAN, GMM and LOF in both cases was credited to the 

factors such as, algorithm properties that govern the clustering, the fine tuning of the 

parameters and the windowing process that proved to be vital. The windowing operation 

greatly improved the performance of some of the models, proving that basic data pre-

processing techniques can enhance the performance of some traditional outlier detection 

models. Based on the performance of the models highlighted in this work it can be 

concluded that fine-tuned classical baseline anomaly detection algorithms can still be 

utilized in modern fields such as IoT and by adjusting the models’ parameters the models 

can be manipulated to fit any use case due to their robustness. Therefore, in future experts 

in data analysis and curation should consider the implementation of traditional outlier 

detection methods before the development of complex algorithms that can only be fitted to 

specific use cases.    
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