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Abstract—Conventional wheelchairs are predominantly 

manual or joystick-operated electric wheelchairs. However, 

operating these wheelchairs can be difficult or impossible for 

individuals with severe physical disabilities. Due to losing 
control of their physical limbs, they depend on an attendant for 

assistance. As a remedy, bio-signals may be used as a control 

mechanism since they are readily available and can be acquired 

from any body part. This research proposes to use EOG signals 

to vail a control mechanism and test it in a virtual and actual 

electric wheelchair. The main contribution of the study is an 

investigation of the use of EOG to control an electric wheelchair 

in a virtual environment to determine safe control parameters 

for wheelchair use in complex environments. A customized data 

acquisition circuit was developed to acquire single-channel EOG 

signals using wet electrodes. The acquired signal was filtered 

and processed using feature extraction and classification 

techniques in MATLAB software. Two customized control 

environments were developed in Unity 3D, one with equally 

partitioned sections and the other with sections decreasing in 

size as the robot wheelchair approaches the target. Twenty-two 

test subjects (mean age 24.5, std 1.5) participated in the study, 

controlling the robot wheelchair in real-time with non or least 

instances of collision and oversteering. The system achieved an 

accuracy of 96.5% with a response time of 0.7s, translating to an 

ITR of 70.6 bits/min. Overall, the participants managed to 

navigate the virtual environment with a completion time of 

101.94s ± 19.71 and 109.07s ± 13.25 for the male and female 

participants, respectively. In the scene with decreasing section 

sizes, 72% and 54% instances of collision and oversteering were 

reported, respectively, highlighting the need to consider the 

complexity of the control environment and the sufficiency of the 

participants' control skills to ensure safety in operations. The 

results confirm the usefulness of EOG as a control interface, 

with little or no need for recalibration. It provides a promising 

avenue for individuals with severe physical disabilities to 

operate wheelchairs independently in complex environments, 

enhancing their quality of life. 

Keywords— Electrooculogram; Wheelchair; Classification; 

Virtual Environment; Safety; Control  

I. INTRODUCTION 

Physical disability may be due to birth disorders, old age, 

spinal cord damage, cerebral palsy, amyotrophic lateral 

sclerosis (ALS), and brain stem stroke, among other diseases 

that cause muscle impairment or affect neural pathways [1]. 

According to a World Health Organization (WHO) report, 

approximately 75 million people require wheelchairs [2]. 

This accounts for about 1% of the entire world population. 

However, a more significant percentage cannot access an 

appropriate and high-quality wheelchair [3]–[5].  

Besides the problem of access to wheelchairs, these 

individuals are also faced with issues related to control 

mechanisms. The conventional wheelchair is designed to be 

operated using joysticks or be externally propelled by an 

attendant [6]–[9]. In the case of terminally disabled 

individuals, who have lost partial or complete control of their 

physical limbs, the use of joystick-operated wheelchairs is 

very challenging. To counter this challenge, researchers are 

adopting alternative control mechanisms to allow for the 

usability and inclusivity of people with disability (PWD). 

Amongst the approaches include voice-operated wheelchair 

control [10]–[12], bio-signals control, and gaze controls, 

amongst others [1], [4], [5].  

As opposed to the other alternatives, the use of bio-signals 

has been on the rise in the control of wheelchairs. The reason 

for this is due to their availability and ease of acquisition. 

Some of the bio-signals that are typically used as an interface 

between machines and humans include the Electrooculogram 

(EOG) [13]–[16] Electroencephalogram (EEG) [5], [17]–

[19] and the electromyogram (EMG) signal [18], [20]–[24]. 

Electrooculography (EOG) is a method of measuring the 

eyes’ resting potential. The positive cornea and negative 

retina form an electric dipole that moves with the movement 

of the eyeball to generate the resting potential, producing 

positive and negative electric potential, respectively. The 

frequency range is 0.05Hz-50Hz, and the corneal retinal 

voltage range of the EOG signal is 50-3500uV. EOG can be 

acquired using single channels (horizontal or vertical eye 

movements) or multichannel (both horizontal and vertical eye 

movements) [1], [25]–[27]. 

EOG signals have been used in a variety of scientific 

fields. In [28], EOG was used to develop an EOG-based 

switch for a wheelchair for on/off control. Intentional blinks 

were discriminated against using a waveform detection 

algorithm and were used to issue on/off commands. The 

commands were issued when a blink corresponded to a 
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button’s flash on the Graphical user interface (GUI). EOG 

can be used in home automation by issuing control 

commands through a microcontroller, thus controlling the 

cursor and other home appliances. This has been achieved by 

[28]–[30], where different devices, such as lights, fans, etc., 

were switched on/off when the eye was moved in the right, 

left, upward, or downward direction. EOG signals have also 

been used for mouse control, thus aiding patients with 

computer use [15], [31], [32]. The participants used eye 

movement in different directions to perform and select an 

operation, while they used intentional blinking to navigate the 

application. The authors of [1] and [20] combined EOG and 

EMG to control a robot arm. The EOG signal was used to 

control the robot arm joint movements. In contrast, the EMG 

signal was used for arm gripper control, thus facilitating the 

robot's grasp and release capability on the targeted object.  

The EOG was acquired using multichannel and 

discrimination based on the polarity of the first and second 

peaks of the signals. At the same time, EMG was 

distinguished from EOG in the vertical channel through its 

high amplitude.  

In [33], a prosthetic arm was controlled using a PIC 

microcontroller that received commands from the EOG 

signal. Threshold values for the left-right eye movement and 

blinks were set in the microcontroller and used as the control 

signals for the robot arm activation. 

Saakshi and Manoj [34] developed an EOG-based 

Human-Machine Interface (HMI) to control the 3R robot. 

The processed EOG signal was fed to a microcontroller to 

generate control commands transmitted to the receiver using 

an RF transmitter. The command combinations controlled the 

servo motors, allowing the robot arm to be directed 

accordingly (left, right, up, and down), achieving an accuracy 

of 90% on its movement.  

In rehabilitation, EOG has been studied and applied to 

control the wheelchair [35]–[39]. For instance, Choudhari et 

al. [14] used only voluntary eye blinks (single, double, and 

triple) to generate control commands for wheelchair 

navigation. They used the number of peaks and multi-

threshold approaches to distinguish the different blink types 

by setting the amplitude, duration, and speed threshold. An 

API was developed that transferred the command to the 

motor driver. In [40], an EOG and accelerometer signals were 

combined to control a wheelchair. The accelerometer was 

hand-controlled, and the generated signal was processed 

simultaneously with the generated EOG signals. The 

command signals were fed to the microcontroller attached to 

the motor driver, thus controlling the wheelchair direction. 

Rajesh et al. [41] proposed a novel EOG-based HMI that 

offered 13 control commands. Different flash buttons 

represented the various commands on the GUI. The 

corresponding control commands were sent when the subject 

blinked in time with the button flash to choose the desired 

button. Other than the threshold mechanism that has been 

used in some studies to distinguish different eye movements 

[34]–[38], [40], [41], machine learning and deep learning 

algorithms have also been embraced for the same [42]–[45]. 

Machine learning has different algorithms that are used for 

classification. The main classifier algorithms include support 

vector machine (SVM) [45]–[47], linear discriminant 

analysis (LDA) [47], [48], K-nearest neighbors (KNN) [44], 

[45], [49], [50] random forest [48], [51] and Ensemble 

Classifier (EC) [45], [51], [52]. 

To control wheelchair direction using eye movement, a 

flexible hydrogel biosensor and Wavelet Transform Support 

Vector Machine (WT-SVM) algorithm were used [53]. The 

proposed flexible hydrogel biosensors collected EOG and 

strain-induced signals when placed on the forehead. An 

accuracy of 96% was achieved using the designed sensor 

after classification. In their comparison of artificial neural 

networks (ANN) and support vector machines (SVM) for the 

classification of EOG, Qi et al. achieved the highest accuracy 

by using an SVM classifier compared to ANN using ten 

statistical parameters [54]. Such accuracy levels were 

attributed to SVM's ability to generalize while having a low 

training time. 

Learning to operate a wheelchair can be challenging for 

new wheelchair users since it requires acquiring some skills. 

The challenges include navigating confined spaces, passing 

through doors, dodging stationary and moving objects, and 

navigating uneven or slippery surfaces. When instructing new 

users in a clinical setting, it can be challenging to replicate 

such circumstances, and where possible, their training in an 

actual wheelchair might be unsafe. Additionally, it might be 

difficult to set aside enough time for wheelchair training to 

allow new users to learn all the abilities necessary to operate 

a wheelchair securely [55]–[58]. 

Virtual environment (VE)-based training, on the other 

hand, can enhance navigating skills while guaranteeing user 

safety and significantly lowering the chance of injuries. 

Additionally, through VE, learning can be maximized by 

manipulating environmental features during training. A study 

by Bigras et al. [59] indicates that the skills learned in virtual 

environment control are transferred to actual wheelchair 

driving. 

Djeha et al. [60] combined EEG and EOG signals to 

control a wheelchair in a virtual environment. EEG was used 

to capture the vertical eye movement, while through EOG, 

horizontal eye movement was captured. The control was 

successful, with an accuracy of 93%. 

A user’s safety can also be compromised by 

misclassification by the system. Misclassification occurs 

when a classifier assigns a data point to another 

class/category than the one it should be assigned to [61]. For 

instance, in EOG, a classifier may classify a left-eye 

movement as a right-eye movement. This might jeopardize 

the user’s safety and those around them, especially when the 

wheelchair is near obstacles. Another factor that may threaten 

the safety of a wheelchair user is the issuance of wrong 

commands. In this case, the user might issue a wrong 

command unintentionally in cases like lost focus [49].  

Few researchers have focused on mitigating the effect of 

misclassification on control. From the literature review, 

authors in [62] focused on the issue by integrating a 

reinforcement learning (RL) algorithm in a virtual wheelchair 

control. The shared controller helped check the distance from 
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the wall, and in instances of misclassification, it redirects the 

wheelchair to a safe position.  

From the challenges mentioned above, the wheelchair 

controller should be tested critically for robustness against 

various scenarios touching on persons with severe 

disabilities/illnesses. A fail-safe mechanism should be 

introduced that negates an unsafe operation. The proposed 

scheme aims to establish the parameters of interest and/or 

patterns that may lead to unsafe wheelchair operations. This 

will further be implemented in an actual machine to maintain 

safe operations. Due to the sensitivity of the matter, a virtual 

environment is chosen for testing various environments. In 

this case, the study utilized an EOG-controlled wheelchair 

robot in a custom-made virtual environment designed in 

UNITY 3D platform. Using the customized data acquisition 

circuit, the system acquired horizontal eye movement at a 

sampling frequency of 192 Hz. Different classification 

algorithms were tested, and SVM was selected. Real-time 

control of the robotic wheelchair using commands from the 

classifier was achieved. This work's main contributions 

include i) using EOG for wheelchair control in a test/virtual 

simulation environment. ii) Determination of safe control 

parameters for wheelchair use. 

The rest of the paper is presented in the following order. 

Section Ⅱ discusses the materials, methods, and test 

simulation environments used in the research. In section Ⅲ, 

the results of the simulations in the test environments a 

represented. Discussion and comparison of the result are 

given in section IV. Finally, conclusions are drawn in section 

V. 

II. MATERIAL AND METHOD 

 Fig. 1 shows the different stages involved in the EOG 

control system. The EOG signal was acquired from 

horizontal eye movements and then passed through an 

analog/digital converter (ADC) which converted the analog 

signal voltages to digital values and passes it to MATLAB for 

processing. The signal was digitally filtered, and important 

and unique features were extracted to classify the eye 

movement as either right, left, or center. 

 

Fig. 1. Single channel Data Acquisition Circuit 

A. EOG signal  Acquisition and Processing 

1) Acquisition 

The EOG Data acquisition system was developed using 

filtering and amplification stages with a sampling frequency 

of 192 Hz and an overall gain of 95.55 dB, as in Fig. 3.  

Three pre-gelled Ag/AgCl electrodes were used for the 

EOG signal acquisition, two on the outer canthus of each eye, 

and a third one that acted as a reference was placed on the 

forehead, as shown in Fig. 2. 

 

Fig. 2. Electrode Placement 

The first stage of the circuit uses an instrumentation 

amplifier (AD620). The amplifier is chosen because of its 

ability to amplify the weak EOG signals from the electrodes 

while removing the common mode signal from the 

electrodes. AD620 was configured to a gain of 53.89dB using 

(1).  

𝐴 =
49.5𝑘

𝑅4
+ 1 (1) 

The signal from the instrumentation amplifier was fed 

into two cascaded non-inverting operational amplifiers 

(LM324) for more amplification of the EOG signals. The 

stages were cascaded to avoid amplifier saturation. The gain 

of each stage was set at 20.83 dB and is given by (2). 

 𝐴 = 1 +
𝑅7

𝑅6
= 1 +

𝑅10

𝑅9
 (2) 

When collecting EOG signals, electromyogram (EMG) 

signals, power line noise, and intrinsic noise are primary 

noise sources. To eliminate the noise, an active band pass 

filter with a lower cut-off frequency of 0.02Hz and an upper 

cut-off frequency of 30Hz was used. The operational 

amplifier used was LM324 with a gain of 1 with a cut-off 

frequency calculated as shown in (3). 

 fc =
1

2πRC
 (3) 

For the lower cut-off stage: 𝑅 =  𝑅11, 𝐶 =  𝐶3, and for the 

upper cut-off stage: 𝑅 =  𝑅12 and 𝐶 =  𝐶4. 

 

2) Digital Filtering 

Signal processing of the collected EOG signal was done in 

MATLAB software. Single channel data acquisition circuit 

show in Fig. 3. Elimination of DC offset was done by 

subtracting the mean of the signal from the original signal. 
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Digital filtering was done using a Moving average filter 

(MAF) with a window length of 15 samples, as in Fig. 4. The 

filter reduces white noise to optimal levels and retains the 

sharp steep response, as shown in Fig. 4. The filter response 

is given by (4). 

 

 

Fig. 3. Single channel Data Acquisition Circuit 

Where, 𝑀, 𝑛, 𝑥, and 𝑦 represent the window size, the current 

sampling point, the raw signal, and the processed signal, 

respectively. 

 

Fig. 4. Raw and filtered EOG signals using MAF. 

 The window length was settled upon after performing a 

Fast Fourier Transform (FFT) on the filtered signal with 

window lengths of 5, 10, and 15. The output of the FFT is 

shown in Fig 5. The window length of 15 filtered out high-

frequency signal components while maintaining the envelope 

containing the gaze, which was essential to the work. 

Minimal change in the amplitude of the filtered signal 

compared to the raw signal is notable. However, this did not 

affect each gaze segment's critical and distinct characteristics. 

 
(a) 

 

(b) 

Fig. 5. Comparison of FFT output for different MAF window lengths: (a) 
FFT of the raw signal, (b) FFT of signal filtered with MAF of window 

lengths 5,10 and 15 

B. Machine learning and processing 

1) Feature Extraction 

MATLAB software was used to extract different features 

from the processed signal for each segment of eye activity, 

i.e., left, right, and center. The extracted features were mean, 

variance, standard deviation, RMS, mean absolute deviation, 

mean frequency, and interquartile range. The entire signal 

𝑦(𝑛) =   1/𝑀 ∑_(𝑖 = 0)^(𝑀 − 1)▒〖𝑥[𝑛 + 𝑖]〗 (4) 
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was segmented into 0.78 s long sections—each section 

representing left, right, or center. The length of the segment 

was determined by the timing of the control sequence when 

one looked either to the right or left and back to the center. 

Seven features were extracted for each section. This process 

assists in deriving patterns unique to the dataset without the 

risk of losing any essential information. 

2) Classification 

Classification is a process done on the extracted feature 

vectors to categorize patterns. Three classes were used for 

categorization; 0 for the center, 1 for the right, and −1 for the 

left. For training, the features extracted with their class labels 

from five subjects were combined and used for classification. 

The data were randomly divided into two portions, where 

80% of the data was used for training while the other 20% 

was used for classifier prediction testing. Using the Classifier 

Learner Application (APP) toolbox in MATLAB, the five-

fold cross-validation, the default setting for the APP, was 

used to initialize the hyper-parameter for the classifiers. 

Three classifiers that are the SVM, KNN, and Ensemble 

Bagged Tree, had the best performance in terms of accuracy 

and prediction time, as shown in Fig. 6. The confusion matrix 

in Fig. 7 shows the accuracy of the prediction of the 

classifiers for the individual classes and the misclassification 

rate of the same. The Support Vector Machine (SVM) 

classifier was identified as having the best performance with 

the highest accuracy and prediction time. 

 

(a) 

 
(b) 

Fig. 6. Comparison of the performance of SVM, KNN, and Ensemble 

Bagged Tree classifiers: (a) accuracy and (b) prediction time 

 
(a) SVM 

 
(b) KNN 

 
(c) Ensemble Bagged Tree 

Fig. 7. Confusion matrix of SVM, KNN, and Ensemble bagged classifiers 

3) Description of Control Signal 

 The control signal was generated by displaying a moving 

dot on a laptop screen approximately 1 meter away from the 

subject, as demonstrated in Fig. 8. The dot was centered on 

the screen at the onset of the recording but moved to either 

left or right randomly and back to the center after that. The 

direction of eye movement by the participants was as per the 

direction in which the dot appeared; otherwise, they 

maintained their eye position at the center until the dot 

moved. This was used as the control system for the 
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acquisition process that coincided with the EOG signal. A 

plot of a section of the recorded data and the control signal 

obtained is shown in Fig. 9. 

 
Fig. 8. Control layout 

 

Fig. 9. EOG Signal and control signal 

C. Control in Unity 3D 

 This paper used the Unity 3D game engine to develop the 

control scene. The built-in physics system of Unity 3D 

enabled us to confirm the collision/interaction of the robotic 

wheelchair with either the walls or the target object. In this 

case, the differential robot was controlled in the forward, left, 

or right directions using the commands generated in real-time 

by the SVM classifier in MATLAB. Unity 3D and MATLAB 

were connected through TCP/IP using a local host. 

1) Differential Robot 

 The wheelchair model used in Unity 3D is a differential 

robot, as in the model in Fig. 10. The front wheel, a caster, is 

used for robot balancing, while the two rear wheels are used 

for driving the robot. The robot's direction can be changed by 

varying each rear wheel's relative rotation rate. The model 

works with the assumption that no wheels are slipping. When 

the wheels have the same speed, the robot moves straight 

while it moves either to the left or right, depending on the 

speed of both rear wheels [63]. The rear wheels' speeds vary 

by adjusting the voltage to each wheel through the different 

commands given. 

 The motion of the electric wheelchair, in a straight and 

rotating direction, is obtained as in (5) and (6); 

 𝑣 =
𝑟(𝜔𝑅 +𝜔𝐿) 

2
 (5) 

 𝜓 =
𝑟(𝜔𝑅 − 𝜔𝐿) 

𝑊
 (6) 

 The geometric and dynamic parameters are Velocity of 

the straight (yaw) motion (𝑣, 𝜓 ), Radius of the rear wheels 

(𝑟), Length of the wheelchair (𝐿), Width of the wheelchair 

(𝑊), Angular velocity of the left (right) wheel (𝜔𝐿, 𝜔𝑅), the 

centre of rotation (COR) and position in world coordinate 

system (𝑥, 𝑦) [62].  

 

Fig. 10. Differential robot model of electric wheelchair [63] 

2) Control Algorithm 

 Fig. 11 shows the flowchart for the control algorithm that 

describes how the command passed to Unity influences the 

direction of motion of the robot wheelchair. After processing 

the acquired EOG signal in MATLAB, the command is 

passed to Unity 3D software. If it is a 0 command, the left and 

right motors' speed remains unchanged, and the robot 

wheelchair keeps moving forward. However, when the 

command received is a 1, the speed (rpm) of the right motor 

is reduced for a specified time, making the robot turn in the 

right direction. When the command received is a −1, the 

speed (rpm) of the left motor is reduced for a specified time, 

making the robot turn in the left direction.  

3) Control environments of interest 

 The driving experiments examined in this study are two: 

first, the forward movement of the robot and the minimum 

distance from the wall, and second turning around a corner as 

in Fig. 12. 

 While controlling an electric wheelchair, patients with a 

severe disability like tetraplegia are faced with two 

significant issues, collision with walls or obstacles and 

oversteering, as illustrated in Fig. 13. For successful control, 

these issues have to be minimized as much as possible. The 

environment and the problems faced by the patients are used 

to verify the work done in this study. 
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Fig. 11. Flowchart of the control algorithm. 

  
(a) (b) 

Fig. 12. Environments of control: (a) Forward motion and minimum 

distance from the wall and (b) Navigating a corner 

  
(a) (b) 

Fig. 13. Issues faced by disabled patients: (a) Collision and (b) Oversteering 

4) Experiment 1: standard control test 

The setup of the game mechanism is shown in Fig. 11(a). 

The experiment is set up with the maze divided into equal 

portions. The subject should control the differential robot 

from a predefined start point until a predefined endpoint. The 

subject can only move the robot in the forward, left, and right 

directions. Initially, the robot is in the bottom left corner of 

the maze and is set to move forward at a constant speed. 

Command 0 would keep the robot moving forward, and 1 and 

−1 would turn it to the right and left, respectively. Whenever 

the subject collides with a wall, the experiment is 

automatically started again until the robot is controlled to the 

target, which shows the game's success. The time taken for 

completion of the game and the trajectory length was 

recorded and used for analysis. In this experiment, the ability 

of different subjects to control the robotic wheelchair from 

the start to the target is tested. 

5) Experiment 2: limit control test 

The second experiment involved a modified scene, as in 

Fig. 11(b). The subjects are required to control the robotic 

wheelchair as they navigate the different sections until they 

get to the target. The experiment is designed so that sections 

(Sections 1-Section4) reduce in size as one navigates from the 

start to the target. Likewise, the gates (gate1-gate3) leading 

to the different sections also reduce in size. This experiment 

investigates the ability of the subjects to control the robot 

wheelchair in both large and small areas. Also, the navigation 

ability and the distances from the walls are considered. The 

robot's distance from nearby walls, sides, and front was 

recorded during control and used for analysis. Unity 3D 

layout shown in Fig. 14. 

 
(a) 

 
        (b) 

Fig. 14. Unity 3D layout: (a) Experiment one; (b) Experiment two (section 

as sec, gate as G) 

D. Participants  

A total of 22 healthy participants between the ages of 23-

28 years took part in this experiment and were randomly 

selected (12 females, ten males). Six subjects were randomly 

selected among them to participate in data collection, while 

the rest participated in the control part of the study. Five 

subjects participated in experiment one, while eleven 



Journal of Robotics and Control (JRC) ISSN: 2715-5072 172 

 

Jane Phoebe Achieng Ogenga, Development of a Virtual Environment-Based Electrooculogram Control System for Safe 

Electric Wheelchair Mobility for Individuals with Severe Physical Disabilities 

participated in experiment two. None of the subjects who 

participated in the control had pre-exposure to the game 

scene. All participants provided their written consent 

following the approval procedures issued by the ethics 

committee of the Dedan Kimathi University of Technology 

University. 

III. RESULT 

 Using the DAQ in Fig. 2, the horizontal EOG signal was 

acquired. A plot of horizontal eye signals is presented in Fig. 

15. The EOG signal acquired had a frequency of 0.5 - 10Hz 

 

Fig. 15. Horizontal EOG Signal  

When a subject moved his eyes from the center to the right 

and back to the center, the EOG signal had an initial negative 

peak accompanied by a positive, as indicated in Fig. 15. The 

amplitude of the negative peak is lower than that of the 

positive peak. This was caused by the cornea approaching the 

electrodes relative to the left eye's inner or outer canthus. 

When the subject looked to the left and back to the center, the 

behavior of the signal was inverted compared to the behavior 

of the right signal. 

Only involuntary blinks are realized when the subject 

performs no activity (center); thus, the signal is not entirely 

flat or smooth during that time. These involuntary blinks, 

however, have insignificant amplitudes compared to the 

amplitude of right or left eye movement; hence, they cannot 

affect the control of the wheelchair. Furthermore, during 

classification, they were classified as a center. 

A. Experiment 1 

 Real-time prediction of the eye signals was done for each 

of the five individuals selected for the system validation using 

the SVM classifier. The exact moving dot mechanism for data 

collection was used to direct individuals' eye movement. The 

performance indicators adopted for the evaluation of the 

system were from other studies [11], [40] and include: 

1. Accuracy (𝐴): Accuracy is the ratio of correct commands 

predicted (𝑁𝑟) to the total commands issued (𝑁𝑡) expressed 

as a percentage 

 A(%) =
Nr

Nt
× 100 (7) 

2. Response time (RT): the total time taken in MATLAB to 

process a signal and generate a command 

3. Information Transfer Rate (ITR): This measures the 

amount of information transferred in bits per minute. It is 

calculated as follows; 

ITR (bits/min) =
60

Tr
[A log2(A) + (1 − A) log2 (

1 − A

Nt − 1
) + log2Nt] 

  (8) 

where 𝐴 is the average accuracy, 𝑇𝑟 is the average response 

time, and 𝑁𝑡 is the total number of commands. 

 The subjects participating in this experiment had no pre-

exposure to the experiment. They experienced limited to no 

difficulty during the real-time control. All subjects showed 

high accuracy during the validation and good control of the 

robotic wheelchair, as presented in Table I. The system has 

an average accuracy of 96.54%, an RT of 0.7s, and an ITR of 

579.60 bits/min. The high accuracy, ITR, and low response 

time are suitable for the system as it indicates how efficiently 

the system can be used in real-time as intended with fewer 

delays for command execution. 

TABLE I.  SYSTEM PERFORMANCE INDICES 

Subject A (%) RT (s) ITR (bits/min) 

S1 100 0.7 / 

S2 92.9 0.7 / 

S3 97 0.7 / 

S4 94.5 0.7 / 

S5 99 0.7 / 

Average 96.54 0.7 70.60 

 

 The performance of an individual in Unity 3D requires the 

subject to concentrate on the scene to make a turn and avoid 

a collision with the walls. The performance of the fastest and 

slowest subjects is displayed in Fig. 14. Both S1 and S2 

managed to reach the target without any collision with the 

wall. However, Subject 2 experienced two instances of 

oversteering, which led The trajectory of the fastest subject 

(S1) and the slowest subject (S2) command inputs with the 

corresponding completion time shown in Fig. 16. 

 

Fig. 16. The trajectory of the fastest subject (S1) and the slowest subject (S2) 

command inputs with the corresponding completion time 

 It is noted from Table II that subjects who took a shorter 

time to reach the target covered a shorter distance. The 

trajectory length was calculated as the sum of the x-y axis 

distances covered from the start point to the target. Longer 
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task time is associated with oversteering or wrong issuance 

of the input command. In this study, the fastest subject took 

80.16s while the slowest subject took 131.80s. All five 

subjects in experiment 1 managed to control the robotic 

wheelchair to the target since the sections and gate regions 

were large. However, the time difference is noted due to the 

difference in the number of input commands issued. 

TABLE II.  SUBJECT PERFORMANCE 

Subject Task Time (s) Trajectory Length(m) 

S1 80.16 268.15 

S2 131.80 378.87 

S3 88.72 294.30 

S4 86.98 290.36 

S5 82.60 277.06 

B. Experiment two 

The system's performance was verified by eleven more 

subjects who participated in experiment 2. Using the shortest 

possible time, subjects were expected to control the robotic 

wheelchair through different sections to the target. The 

median is indicated by the red mark, while the top edge of the 

boxplot indicates the 75th percentile, and the bottom edge 

indicates the 25th percentile of a dataset. Red and blue ‘+’ or 

‘o’ signs indicates outliers in both cases. One of the 

parameters of concern while considering the safety of a 

wheelchair user is the distance from the wall as they control 

the robot on either a freeway or navigating a corner. 

Since the sections and gates reduced in size as one 

approached the target, the minimum distances from the wall 

decreased, as in Fig. 17(a). The male subjects controlled the 

robot wheelchair much closer to the wall than their female 

counterparts, as shown in Fig. 17(b). Larger minimum 

distances from the wall guarantee the safety of the wheelchair 

user. The minimum distance from the wall at the gates also 

decreased as one approached the target, as indicated in Fig. 

18(a) above. The male subjects achieved a larger minimum 

distance than the female subjects, as shown in Fig. 18(b).  

In the sections, the female subjects performed better by 

achieving larger minimum distances from the wall than their 

male partners. On the contrary, the male subjects achieved 

larger minimum distances from the wall at the gates than the 

female. However, in both cases, the minimum distance 

interquartile range (IQR) for female subjects indicates more 

dispersion than the IQR for male subjects, as indicated in 

Table III. 

 This may suggest that the male subjects were more 

consistent in maintaining the distance from the wall than their 

female counterparts. 

TABLE III.  MINIMUM DISTANCE FROM THE WALL 

Operation 

region 

IQR 
Mean ± SD 

Male Female 

S1 4.063 7.983 9.85m ± 4.3 

S2 0.342 8.5887 2.11m ± 3.51 

S3 0.069 1.306 0.51m ± 1.51 

S4 0.149 0.105 0.13m ± 0.08 

G1 5.323 10.96 15.82m ± 7.93 

G2 3.42 4.91 15.11m ± 3.48 

G3 2.732 4.179 6.14m ± 2.69 

NB: G is Gate, S is section 

 A comparison of the proposed system’s performance to 

the state of art is made in Table IV. The evaluation is based 

on the accuracy, Response Time, Information Transfer Rate 

and the channels used in acquiring the signal. These 

parameters are important in evaluating a system as they 

depict the system's efficiency. A system should have a high 

prediction accuracy and low response time with a high ITR. 

Further, the systems considered used single-channel EOG 

signals, most of which were used for wheelchair control. The 

comparison indicates that the proposed system have 

comparatively better performance. A comparison of gender 

performance is shown in Fig. 19. The male subjects 

performed relatively better than the female subjects. 

   

  
Fig. 17. Minimum distance from the wall: (a) (left) gender performance per section, (b) (right) all sections 
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TABLE IV.  PERFORMANCE COMPARISON OF THE PROPOSED SYSTEM WITH STATE OF ART SYSTEMS

Note: DNR denotes “did not report” 

 
                                          

The male subjects took an average task time of 101.94s 

±19.71 and a trajectory length of 287.31m ± 52.08, while the 

female took an average task time of 109.07s ± 13.25 and a 

trajectory length of 319.98m ± 32.68. This performance of 

the male subjects could be associated with their 

aggressiveness, while for females could be related to anxiety 

during control 

 Fig. 20 shows the trajectory of Subject 2, who took the 

shortest time to navigate to gate 3 and the goal, while subject 

10 took the longest time and had instances of oversteering and 

a collision at gate 3. In the case of subject 10, the first instance 

of oversteering was on a reasonably larger area than the 

second. In the second instance, the subject almost hit the wall 

as the robot was closer to the wall. The work reported by 

authors in [60] indicates a successful control of a wheelchair 

in a virtual environment. In addition to analyzing the 

 

 

Fig. 18. Minimum distance from the wall: (a) gender performance per section, (b) all gates 

Author Purpose Signal # channels Accuracy (%) RT(S) ITR (bits/min) 

He and Li [64] Speller EOG 1 94.13 4.14 68.69 

Djeha et al. [60] Wheelchair EOG+ EEG 1 93 DNR DNR 

Kumar and Sharma [65] Game control EOG 2 78 DNR DNR 
Choudhari et al. [14] Wheelchair EOG 1 93.89 DNR 62.64 

Li et al [26] Wheelchair EOG 1 99.5 1.3 DNR 

Proposed approach Wheelchair EOG 1 96.5 0.7 70.60 

  
Fig. 19. Task Time and trajectory length to each gate for the male and female subjects 
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successful control of the robot wheelchair, this study 

investigates the collision, oversteering, and safe control 

parameters of the electric wheelchair. 

 Depending on the trajectory taken by each subject, the 

time taken to gate 3 varies, as indicated in Table V.  Subjects 

1, 2, and 3 managed to control the robotic wheelchair to the 

target. Subjects 4, 5, 6, and 8 managed to control the 

wheelchair past gate 3 but hit the walls in section 4, while 

subjects 7, 9, 10, and 11 got to gate 3 and hit the walls at gate 

3. Most subjects could not reach the target due to the 

challenges experienced during controlling the robotic 

wheelchair, like misclassification or unintentional issuance of 

wrong commands. These led to the subjects either colliding 

with the walls or having oversteering problems. 

 

Fig. 20. The trajectory of the fastest subject (S2) and the slowest subject 
(S10) command inputs with the corresponding completion time and 

issues encountered         

 A few subjects managed to control the robot to the target, 

while six and eight subjects experienced oversteering and 

collision issues, respectively. Collisions were experienced in 

smaller sections while oversteering was experienced mainly 

in larger sections. In some instances, oversteering led to 

collisions with the wall, while in other cases, a subject 

managed to get back on track and control the robot to the 

destination. 

TABLE V.  PERFORMANCE OF SUBJECTS INDICATED BY TASK TIME AND 

CHALLENGES ENCOUNTERED 

 

II. DISCUSSION 

In this study, a robotic wheelchair is controlled in Unity 

3D using horizontal saccadic eye movement. These eye 

movements control the wheelchair in the forward, right, and 

left directions. Two experiments were formulated to test the 

ability of different subjects to control the robot wheelchair.  

From experiment 1, the system has an average accuracy of 

96.54%, an RT of 0.7s, and an ITR of 70.60 bits/min. The 

high accuracy, ITR, and low response time are suitable for 

the system as it indicates how efficiently the system can be 

used in real-time as intended with fewer delays for command 

execution. From Table IV, the accuracy of this work of 

96.54% is comparable to the accuracy of the study by Djeha 

et al. and Nam et al., which reported a value of 93% and 

92.6% while using only single channel eye movement, 

respectively [60], [66]. The study by Kumar and Sharma in 

virtual reality game control using blinks and gaze reported a 

horizontal gaze accuracy of 80%.  

The response time, which is the time the system takes to 

generate a command, should be as minimum as possible to 

ensure the shortest time delay between issuing and execution 

of the command. Compared to the 3.53s reported in [14] and 

1.3s reported in [26], the response time of 0.7s obtained in 

this paper is better. The response time also significantly 

affects the ITR. ITR identifies the quantity of information a 

system's output can transmit. A high ITR achieved in this 

study of 70.6 bits/min guarantees faster communication 

between MATLAB and Unity without losing information as 

desired. Further, the performance of the proposed system is 

attributed to the classifier used and the signal processing 

method. The ability of the system to generalize makes it 

better than the others since no recalibration is needed when 

new individuals are using it.  

All five subjects in experiment 1 managed to control the 

robotic wheelchair to the target since the sections and gate 

regions were large. The trained model generalized 

satisfactorily across all participants without requiring 

recalibration or retraining, which enhanced the usability and 

simplicity of the setup. However, the time difference is noted 

due to the difference in the number of input commands 

issued.  

In experiment 2, a test was done to determine the safe 

control parameter by recording the limit or minimum distance 

from the wall for both the sections and the gate regions of the 

experiment environment. Subjects, if possible, are to 

maintain the position of the robotic wheelchair at the center 

of the sections and the gate area. In section 1, the average 

minimum distance achieved was 9.85m ± 4.3, while in 

sections 2, 3, and 4, the average minimum distance was 

2.11m ± 3.51, 0.51m ± 1.51, and 0.13m ± 0.08, respectively. 

At the gates, the average minimum distance achieved was 

15.82m ± 7.93, 15.11m ± 3.48, and 6.14m ± 2.69 for gates 1, 

2, and 3, respectively, as presented in Table III. From this it 

can be inferred that the safety of the wheelchair is mostly 

affected in sections with smaller operating regions as the 

distances between the wheelchair and the wall in this section 

is very small. 

Subject Time(s) to Gate3 Goal Oversteering        Collision  

1 86.48 ✓ ✓  

2 73.12 ✓   

3 119.24 ✓   

4 98.36   ✓ 

5 110.96   ✓ 

6 102.26  ✓ ✓ 

7 123.88   ✓ 

8 104.44  ✓ ✓ 

9 92.92  ✓ ✓ 

10 124.36  ✓ ✓ 

11 121  ✓ ✓ 
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 By monitoring the distances, the user's safety can be 

ensured during control, especially when misclassification 

occurs or when a wrong command is issued. When these 

occur, the user's safety is jeopardized, especially when the 

wheelchair is near an obstacle. This is because a false 

command would steer the wheelchair in an undesired 

direction which may be risky for the user and those around 

them. 

Both genders experienced collisions and oversteering 

during control in the second scene, where 72% and 54% 

instances of collision and oversteering were reported, 

respectively. Notably, the collisions occurred in small-sized 

sections. From this, it is critical to consider the complexity of 

the control environment and the sufficiency of the control 

skills of the participants to ensure safety in operations.  

 By exposing wheelchair users to different environments 

with different complexities in the virtual environment setup, 

the user’s gain more skill of navigation and control. These 

skills can be transferred for use in real-world environment as 

reported in [59]. Further, with the developed environments, 

the wheelchair users can training more and repeatedly until 

they are confident then they can use actual wheelchair. 

Authors in [62] noted that the steering ability of individuals 

could be improved when subjects are allowed multiple trial 

runs to familiarize themselves with the control environment.   

This helps in improving the safety of the user and those 

around them. 

 From the research finding, one of the safety parameters 

that should be considered is the distances from the walls 

and/or obstacles. User safety can be jeopardized in instance 

of a misclassification and/or unintentional command issued. 

These challenges are out of control of the user and are the 

major causes of collision and oversteering. In a practical case, 

incorporating the safe distance auto-piloting mechanism used 

for auto control can be essential to monitor the minimum 

distance from the wall, thus protecting the patients from a 

collision. 

 The strength of this study is the ability of individuals to 

control the robot wheelchair in different environments 

successfully without the need for recalibration or retraining 

since the trained model generalized satisfactorily across all 

participants which enhanced the usability and simplicity of 

the setup. 

 One of the drawbacks of this study is that persons with 

disabilities (PWD), sick individuals, or any ALS individuals 

who are the intended users of the device were not included as 

subjects. Thus we were not able to analyze the control issues 

with this group. The performance achieved with healthy 

subjects is essential in fine-tuning control algorithms. This 

work has not yet been implemented in an actual environment 

that involves the intended group of individuals. 

III. CONCLUSION 

 This study has presented a novel horizontal EOG signal 

control of a robotic wheelchair designed in a Unity 3D virtual 

environment. Using three commands, the wheelchair was 

controlled in real-time, i.e., in the forward, left, and right 

directions. The system obtained an average classifier 

accuracy of 96.54%, with an RT of 0.7s and an ITR of 70.60 

bits/min. As the operating sections reduce in size, the subjects 

are expected to have a higher concentration to maintain a safe 

distance from the wall. Different subjects take a different 

amount of time to control the robot to the desired location. 

This is due to the difference in the number of input commands 

issued. Cases of misclassification and issuing of 

unintentional commands may lead to collision and 

oversteering hence jeopardizing the wheelchair user’s safety. 

It was determined that one of the safety parameters to be 

considered for wheelchair users is the distance from the walls, 

in freeways, and while navigating a corner. With the reported 

performance, the setup can be implemented in a physical 

setup with little fine-tuning in the algorithm to accommodate 

the target user. Since this study focuses on persons with 

severe disabilities, their safety is paramount; hence to 

facilitate better control in a physical environment, the speed 

of the wheelchair should be keenly considered. 

 In the future, the work can be implemented in a real-world 

environment, where the minimum distance from the wall 

would be recorded. Subsequent work may address this by 

expanding the work to a more representative sample and 

physical implementations. Also, the system can be hybridized 

by combining EOG with other bio-signals for control. To use 

this system in a real-world environment, it is recommended 

that potential users perform the tests presented in a virtual 

environment to familiarize themselves with the environment. 

Satisfactory results should be obtained before subjects are 

exposed to the real-world environment. Also, more research 

should be done to increase the number of control commands 

while avoiding overcomplicating the system.  
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