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Abstract: This work aims at detection and estimation of a change point in conditional variance function of a Nonparametric
Auto-Regressive Conditional Heteroscedastic model. The conditional mean and conditional variance functions are not specified
a priori but estimated using Nadaraya Watson kernel. This is because inferences based on nonparametric approaches are robust
against misspecification of the conditional mean function and the conditional variance function of returns. The squared residuals
obtained after estimating the regression function of the returns are used in estimating the conditional variance function. Further,
the squared residuals are used in developing a test statistic for unknown abrupt change point in volatility of the exchange rate
returns. The test statistic takes into consideration the conditional heteroskedasticity of the disturbances, dependence of the
returns, heterogeneity and fourth moment of returns. This does not require prior knowledge of the marginal or the conditional
densities of the returns as opposed to maximum likelihood estimation methods. The estimator for change point is considered as
the augmented maximum of the test statistic. The consistency of the estimator is stated as a theorem. The asymptotic distribution
associated with the test for unknown break points is the Bessel process distribution. The Bessel process distributions have no
known simple closed-form expression for the distribution function which makes it difficult to compute exact p-values. Also,
the Bessel process distributions depend on two parameters which makes it hard to tabulate the critical values hence one needs
to simulate them. After simulating the critical values, hypothesis testing is done in the presence and absence of a change point
in volatility of a simulated time series and the test is shown to reject the null hypothesis in the presence of a change point at
alpha level of significance. Further, the test fails to reject the null hypothesis in the absence of a change point at alpha level of
significance. An application to United States Dollar/Kenya Shilling historical exchange rates returns is made from 1st January
2010 to 27th November 2020 where the sample size n = 2839 is done. Through binary segmentation method, three change
points are detected, estimated and accounted for. A significant improvement in describing a time series is expected if a point in
time for volatility change has been detected and estimated.
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1. Introduction
The point at which the probabilistic structure of the data

changes is known as a change point. This means that the
data exhibits different means, different variances or both or
higher order moments. The observations therefore have two or
more distinct segments each with a unique underlying process.
Financial returns typically have constant mean but volatility

is rarely constant but changes over time. This could be due
to financial liberalization of emerging markets and integration
of world equity markets, “shocks ” induced by institutional
changes, such as changes in exchange rate regimes from a
fixed exchange rate regime to a floating exchange rate regime
[1], introduction of a single currency like the Euro in Europe,
disease outbreaks like COVID-19 pandemic in December 2019
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in the world among others.
ln financial instruments, large (small) price movements tend

to be followed by large (small) price movements on successive
hours, days, weeks or other time durations creating extended
regimes of high volatility and others of low volatility. This
leads to volatility clustering [2]. Volatility clustering means
that volatility behaves like a process with abrupt jumps. The
jumps lead to structural breaks in volatility otherwise called
change points hence this research. Presence of a change point
means that application of one Auto-Regressive Conditional
Heteroscedastic model to describe volatility is incorrect and
leads to invalid results. A significant improvement in
describing the structure of financial returns is obtained if
change points in volatility are detected and estimated.

Change in variance of financial returns under the assumption
of independence and identical distribution of returns has been
done by [3]. Financial returns are however neither independent
nor identically distributed. [4], [5], [6], [7] studied change
in conditional variance function of time series under different
assumptions on dependence, heterogeneity among others.

Change point analysis can be classified into off-line (fixed
sample or retrospective) and on-line (sequential) where the
classification depends on the sample acquisition approach [8]
and [9]. In off-line approach, the data is first observed,
then the detection and further estimation of the change-point
is done by looking back in time to recognize where the
change occurred. These include [10] where a change point in
variance in a nonparametric time series regression model with
a strong mixing error process using cumulative sum of squares
approach introduced by [3] is done and [11] in change point
detection in unconditional variance of financial time series. In
sequential approaches, new data is continually arriving and is
analyzed adaptively. These include but not limited to [12] for
change point detection in GARCH(p,q) models and [13] for
change point detection in mean. Online approaches are used
in quality control, financial risk management, allocation of

asset or portfolio selection while off-line approaches are used
in genome analysis, linguistics, audiology among others.

2. Method

2.1. NonParametric Auto-Regressive Conditional
Heteroscedastic (NP-ARCH) model

Let St denote the price of some financial instrument
observed at equally spaced time interval. The continuously
compounded single period return on the financial instrument
from time index t− 1 to t (tth time interval) for t = 1, 2, ..., n
is given by

Xt = ln
(

St
St−1

)
= lnSt − lnSt−1 (1)

The volatility of the instrument is the standard deviation of
the returns. One assumes the existence of a nonparametric and
nonlinear relationship between Xt and Xt−i, i = 1, 2, ..., d
which is modeled by a nonlinear autoregressive process of the
form

Xt = m(Xt−1, Xt−2, ..., Xt−d)+ut for t = 1, 2, ..., n (2)

where {ut} is a series of innovations (random shock) which
is independent of the past {Xt}, m(.) is the conditional
mean function of the returns in period t given past periods
Xt−1, Xt−2, .... In a nonparametric approach, m(.) is allowed
to be from flexible class of functions and is approximated such
that precision increases with size of sample. The interest is on
the future volatility, so, when innovations are represented as
ut = σ(Xt−1, Xt−2, ..., Xt−d)zt, Equation (2.2) is extended
to a nonlinear Nonparametric Auto Regressive Conditional
Heteroscedastic (NP-ARCH) model of the form

Xt = m(Xt−1, ..., Xt−d) + σ(Xt−1, Xt−2, ..., Xt−d)zt t = 1, 2, ..., n (3)

where the conditional mean function of the returns in period t given the past periods is given by

E(Xt|Xt−1 = x1, ..., Xt−d = xd) = m(Xt−1, ..., Xt−d) (4)

and the conditional variance function of the returns in period t given the past periods is given by

Var(Xt|Xt−1 = x1, ..., Xt−d = xd) = E
(
u2t |Xt−1 = x1, ..., Xt−d = xd

)
= σ2(Xt−1, ..., Xt−d) (5)

Hence, the model allows for conditional heteroscedasticity.
{zt} are independent and identically distributed random
variables (errors) which are time invariant with unspecified
continuous and positive probability density function fz ,
E(zt|Ft−1 = Xt−1, ..., Xt−d) = 0, Var(zt|Ft−1 =
Xt−1, ..., Xt−d) = 1 and independent of Xt−1, ..., Xt−d
while Ezt = 0, Ez2t = 1, E (zt)

4
<∞ .

Model (2.3) is a flexible nonparametric time series model
because it does not impose any (parametric) particular form
on the conditional mean and conditional variance functions

hence avoiding any model misspecification. However, in
higher dimensions, there is poor performance called curse of
dimensionality, which for d > 2 the estimation of the functions
in Equation (2.3) is complicated unless one has a very large
sample. Hence, setting d = 1 Equation (2.3) becomes

Xt = m(Xt−1) + σ(Xt−1)zt. (6)

In the absence of a change point,Xt is assumed to be strictly
stationary and strong mixing an assumption satisfied by most
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financial time series [14]. Hence the theorem below is applied.
Theorem 2.1. Strong mixing condition: Suppose the

existence of a probability space (Ω,F , P ). Let the dependence
measure between any two σ fieldsA and B ⊂ F as introduced
by [15] be defined by

α (A,B) := sup
A∈A,B∈B

|P (A ∩B)− P (A)P (B)| .

Now, suppose {Xt, t ∈ Z} is a two-sided sequence of
variables on a given probability space (Ω,A, P ). For −∞ ≤
j < l ≤ ∞, let F lj = σ(Xt, j ≤ t ≤ l) denote
the σ − field of events which has been generated by the
family {Xt, j ≤ t ≤ l (t ∈ Z)}. For each n ∈ N, define the
“coefficient of dependence (mixing) ” α(n) by,

α(n) = sup
−∞<j<∞

α
(
F j−∞,F∞j+n

)
where F j−∞ is the σ − field of events contained in the past
of the sequence {Xt} up to time j and F∞j+n is the σ − field
of events contained in the future of the sequence {Xt} from
time j + n onwards. The sequence of numbers (α(n), n ∈ N)
is non-increasing (decreasing)in n and are non-negative. The

sequence {Xt, t ∈ Z} is therefore said to be “strong mixing ”
or “α mixing ” if

lim
n−→∞

α(n) = 0

and hence the sequence is asymptotically independent between
the past and the future.

Let {(Xt, Xt−1) ∈ R× R : t = 1, 2, ..., n} be a sample of
size n ∈ N, K(·) : R −→ IR be a kernel function
which is a bounded continuous function on R satisfying the
assumption of normalization

∫
K(u)du = 1, which ensures

that the method of kernel density estimation results in a
probability density function, symmetry about zero K(u) =
K(−u) ∀u implying that all the odd moments are zero,
K(u) ≥ 0 ∀ u implying that K(u) is a probability density
function,

∫
u K(u)du = 0, u2 =

∫
u2 K(u)du < ∞ and bn

a positive real-valued number, called a bandwidth. The kernel
density estimator is defined as

f̂(x) =
1

(n− 1)bn

n∑
t=2

K

(
Xt−1 − x

bn

)
for x ∈ R (7)

Xt−1 is assumed to have a density function f(x) for x ∈
[−1, 1] which is actually the support of the second order
Epanechnikov kernel function

K(u) =

{
3
4 (1− u2) support |u| ≤ 1

0 otherwise
where u =

(
Xt−1 − x

bn

)
. (8)

The Epanechnikov kernel is used in estimating the regression function since it is the most efficient in minimizing the Mean
Integrated Squared Error (MISE) and is therefore optimal putting in mind that the choice of the kernel is not as important as the
choice of the bandwidth.

The nonparametric estimator of the regression function m(x) = E [Xt|Xt−1 = x] is obtained by

m̂(x) =


∑n
t=2K

(
Xt−1−x

bn

)
Xt∑n

t=2K
(
Xt−1−x

bn

) , if f̂(x) 6= 0

0, otherwise
(9)

where K(·) is a kernel function and bn is the bandwidth. m̂(x) is called a kernel estimator or the Nadaraya Watson kernel
estimator developed independently by [16] and [17].

The estimator of the conditional variance function σ2(x) = Var(Xt|Xt−1 = x) which is obtained by using the residuals
E
(
{Xt −m(Xt−1)}2 |Xt−1 = x

)
= σ2(x) is given by

σ̂2(x) =


∑n
t=2K

(
Xt−1−x

bn

)
{Xt−m̂(Xt−1)}2∑n

t=2K
(
Xt−1−x

bn

) , if f̂(x) 6= 0

0, otherwise
(10)

The second order Gaussian Kernel function

K(u) =
1√
2π

exp(−1

2
u2) for u =

(
Xt−1 − x

bn

)
, −∞ < u <∞ (11)

is employed when estimating the conditional variance function so as to cater for asymmetric behavior of volatility. [18] showed
that m̂(x) is a consistent estimator of m(x).

2.2. Single Change Point Model

Under the null hypothesis H0 of no change in volatility, Equation (6) is written as

Xt = m(Xt−1) + σt(Xt−1)zt t = 1, 2, 3, ..., n (12)
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This in turn implies that under H0,

E {Xt −m(Xt−1)}2 = σ2
t (Xt−1) =⇒ σ2

t (Xt−1) = σ2
(1)(Xt−1) for t = 1, 2, ..., n (13)

The data structure having changed at a certain point in time means that using one regression model to study the data leaves the
data poorly explained by the regression model. Hence, in the presence of a change point in volatility, τ ∈ [2, n − 1], Equation
(6) becomes

Xt = m(Xt−1) + σt(Xt−1)zt =⇒ E {Xt −m(Xt−1)}2 = σ2
t (Xt−1) (14)

where the alternative hypothesis HA becomes

σ2
t (Xt−1) =

{
σ2
(1)(Xt−1) for t = 1, 2, ...τ

σ2
(2)(Xt−1) for t = τ + 1, ..., n

(15)

2.3. Volatility Change Point Test Statistic and Estimator

Define the residuals obtained from non-parametric
estimation of conditional mean function and standardized
using the conditional variances obtained from the conditional

variance function as ε̂t = Xt−m̂(Xt−1)
σ̂(Xt−1)

where m̂(.) is
the Nadaraya Watson estimator of the unknown regression
function m(.).

The sums of squared residuals among the sample segments
(partial sums) are defined as

εn =

n∑
t=1

ε̂2t ετ =

τ∑
t=1

ε̂2t εn−τ =

n∑
t=τ+1

ε̂2t (16)

Define ε̄1,τ as the mean of the first τ squared residuals and ε̄τ+1,n as the mean of the last n− τ squared residuals as

ε̄1,τ =
ετ
τ

=
1

τ

τ∑
t=1

ε̂2t ε̄τ+1,n =
εn−τ
n− τ

=
1

n− τ

n∑
t=τ+1

ε̂2t (17)

The change point test statistic is obtained by considering a weighted l2 norm of the conditional variance functions and
application of the reverse triangle inequality which follows from Minkowski’s inequality leading to

l2

(
σ2
(1)(Xt−1)− σ2

(2)(Xt−1)
)

=

(
n∑
τ=1

wτ |ετ − εn−τ |2
) 1

2

≤

(
n∑
τ=1

w
1
2
τ |ετ − εn−τ |

)
= E

(
w

1
2
τ |ετ − εn−τ |

)
≥ w

1
2
τ |E(ετ )− E(εn−τ )|

(18)

Therefore, it follows that

w
1
2
τ |E(ετ )− E(εn−τ )| = w

1
2
τ

∣∣∣∣∣1τ
τ∑
t=1

ε̂2t −
1

n− τ

n∑
t=τ+1

ε̂2t

∣∣∣∣∣ (19)

leading to

Dn
t =

( τ
n

(
1− τ

n

)) 1
2

∣∣∣∣∣1τ
τ∑
t=1

ε̂2t −
1

n− τ

n∑
t=τ+1

ε̂2t

∣∣∣∣∣ (20)

The nonparametric statistic Equation (20) so obtained does
not utilize any a priori information about the data like marginal
densities of the data.

A good choice of the estimator for the change point τ
is where the test statistic has a global maximum since the
maximum usually occur in the area of the “true ” change point.
The estimator τ̂ of change point in volatility τ is thus given by

τ̂ = arg max
τ
|Dn

t | (21)

Theorem 3 below for the convergence in probability of the
change point fraction estimate k̂ = τ̂

n to the “true ” change

point fraction τ
n = k∗ under HA is the main result in proving

the consistency of the estimated change point fraction.
Theorem 2.2. Consistency of the change point estimator:

Consider a sample of squared residuals ε̂21, ε̂
2
2, ..., ε̂

2
n satisfying

the alternative change point hypothesis and the change point
estimator τ̂ given in (21). If the sequences

{
ε̂21,t t ∈ Z

}
and{

ε̂22,t t ∈ Z
}

satisfy

∆ := σ2
(1)(Xt−1)− σ2

(2)(Xt−1) 6= 0

where ∆ <∞ denotes the finite magnitude of the jump in the
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conditional variance function , then for k̂ = τ̂
n

P
{
|k̂ − k∗| > ε

}
6

B

ε2∆2
n−

1
2

where 0 < B <∞ (is a positive constant) and k∗ = τ
n .

2.4. Limit Distribution of the Change Point Test Statistic

Besides the asymptotic distribution of the test, it was shown
to be consistent and more powerful at the tail end of the data
than the ordinary cumulative sum of squares test statistics
which have more power at the middle of the data.

From Equation (20), the difference∣∣∣ 1τ ∑τ
t=1 ε̂

2
t − 1

n−τ
∑n
t=τ+1 ε̂

2
t

∣∣∣ and thus Dn
t is close to 0

underH0 and different from 0 underHA. To obtain the critical
values, the limit distribution of Dn

t needs to be derived.
Given a test statistic Dn

t , and a critical value u(a, b) which
is obtained as the (1− α) quantile of the limit distribution of
the test statistic under H0, the decision rule of the test is to

Reject H0 if max
1<τ<n

|Dn
t | > u(a, b) (22)

hence an asymptotic test of level α. The Functional Central
Limit Theorem for strong mixing sequences followed by the
Continuous Mapping Theorem are applied in obtaining the
limit distribution of Dn

t .
Theorem 2.3. Functional Central Limit Theorem for strong

mixing sequences: Let {ξt} (1 ≤ t ≤ n) be a strong mixing
sequence of variables which are strictly stationary, centered at
expectation, E {ξt} = µ = 0 and satisfying the strong mixing
condition as described in Theorem (2.1). Suppose further that
the process satisfies

E |ξt|2+ψ <∞ and
∞∑
n=1

α(n)
ψ

2+ψ <∞ for some ψ ∈ (0,∞)

Then lim
n−→∞

var
(∑bnkc

t=1 ξt
)

n = lim
n−→∞

E
(∑bnkc

t=1 ξt
)2

n = σ2
l =

E [ξ1]
2

+ 2
∑∞
l=2 E [ξ1, ξl] > 0.

Define the process

Wn(k) =

∑[nk]
t=1 ξt
σl
√
n

for 0 ≤ k ≤ 1

Then as n −→ ∞, Wn(k) =
∑[nk]
t=1 ξt
σl
√
n

D([0,1])
=⇒ W (k) for

0 ≤ k ≤ 1 (in the Skorokhod space D ([0, 1] ;R)).
D([0,1])

=⇒
signifies weak convergence in the space D[0, 1] (since µ = 0)
to the Standard Brownian Motion W (k), [19].

The Skorokhod space D = D
(
[0, 1] ;R1

)
is the space of

real-valued functions (continuous functions) f : [0, 1] −→ R1

and admits limit f (k−) from the left at every point k ∈ (0, 1]
and limit f (k+) from the right at every point k ∈ [0, 1). These
functions are everywhere right continous and have left limits
everywhere and are called Cadlag funtions.

The logic behind the FCLT usually rely on the convergence
of a sequence of standardized partial sums of disturbances to
Standard Brownian Motion.

Lemma 2.1. Let {ξt, t = 1, 2, ..., n} be a strong mixing
sequence and random variables η and υ be measurable with
respect to σ−algebras F j−∞(ξ) and F∞j+n(ξ) respectively. If
the moments E|η|p and E|υ|q exist for p, q > 1 where 1

p + 1
q <

1, then

|Eηυ − EηEυ| ≤ C [E|η|p]
1
p [E|υ|q]

1
q [α(n)]

1− 1
p−

1
q

where p = q = 2+ψ, then 1− 1
p−

1
q = 1− 1

2+ψ−
1

2+ψ = ψ
2+ψ

for ψ > 0, which means that

|Eηυ − EηEυ| ≤ C [E|η|p]
1
p [E|υ|q]

1
q [α(n)]

1− 1
p−

1
q

= C
[
E|η|2+ψ

] 1
2+ψ

[
E|υ|2+ψ

] 1
2+ψ [α(n)]

ψ
2+ψ

see, [20]
Lemma (2.1), a consequence of Theorem (2.3), provides

a bound on the covariance of ξ and η. It entails that the
autocovariance function of an α mixing stationary process
(with enough moments) tends to zero.

Theorem 2.4. Continuous Mapping Theorem: Let {ξn}∞n=0

be a sequence of random variables with

ξn
d−→ ξ

as n −→∞. For every continuous function g : R −→ R then

g(ξn)
d−→ g(ξ)

Also, if
ξn

p−→ ξ, then g(ξn)
p−→ g(ξ)

and if
ξn

as−→ ξ, then g(ξn)
a.s−−→ g(ξ).

A similar result holds for random functions, [21].
The CMT (2.4) ensures invariance of convergence in

distribution under continuous transformations and thus
emphasizes that the weak convergence property under
continuous mappings is stable.

Under H0, E
(
ε̂2t
)

= σ2 = 1. Similarly, let ξt = ε̂2t −
σ2 where E

(
ε̂2t
)

= σ2 = 1 so that Eξt = 0 under H0.
A general case where the residuals could be dependent and
heterogeneously distributed is considered by letting the long-
run fourth moment of the residuals be obtained by

var(εn) = var

[
n∑
t=1

ε̂2t

]
= n

{
E
(
ε̂21 − Eε̂21

)2
+ 2

n∑
l=2

E
((
ε̂21 − Eε̂21

) (
ε̂2l − Eε̂2l

))}

− 2

n∑
l=2

l E
((
ε̂21 − Eε̂21

) (
ε̂2l − Eε̂2l

)) (23)
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which as the sample size increases, becomes

lim
n−→∞

var (εn)

n
−→ var

[
ε̂21
]

+ 2

∞∑
l=2

cov
[
ε̂21, ε̂

2
l

]
= E

(
ε̂21 − Eε̂21

)2
+ 2

∞∑
l=2

E
((
ε̂21 − Eε̂21

) (
ε̂2l − Eε̂2l

))
= σ2

l <∞

(24)

which is the long-run fourth moment of the residuals. σ2
l is used in rescaling the test-statistic for convergence results to be

achieved. Due to the fact that σ2
l is not known, it is estimated using Bartlett kernel. WhenH0 is true, then as n −→∞, Dn

t −→ 0
at a rate 1√

n
and thus the statistic needs to be normalized with

√
n to become

√
nDn

t which is now written as

√
n

σl
|Dn

t | =
1

σl

[
n2

τ (n− τ)

] 1
2

∣∣∣∣∣ 1√
n

τ∑
t=1

ε̂2t −
τ

n

(
1√
n

n∑
t=1

ε̂2t

)∣∣∣∣∣
=

1
σl

∣∣∣ 1√
n

∑τ
t=1 ε̂

2
t − τ

n

(
1√
n

∑n
t=1 ε̂

2
t

)∣∣∣[
τ
n

(
1− τ

n

)] 1
2

(25)

By application of Theorem (2.3) putting in mind that ξt = ε̂2t − σ2 where E
(
ε̂2t
)

= σ2 = 1 one obtains,

√
n

σl
|Dn

t | =
1
σl

∣∣∣ 1√
n

∑τ
t=1 ξt −

τ
n

1√
n

∑n
t=1 ξt

∣∣∣[
τ
n

(
1− τ

n

)] 1
2

(26)

The convergence in distribution of the test statistic follows immediately from the weak convergence of the partial sum process
of the errors ξt to SBM in the unit interval D[0, 1] following Theorem (2.3).

Theorem 2.5. For a weakly consistent estimator of σ2
l , under H0, strict stationary α−mixing process {ξt} setting τ = bnkc,

lim
n−→∞

√
n

σl
|Dn

t | = lim
n−→∞

1
σl

∣∣∣ 1√
n

∑τ
t=1 ξt −

τ
n

1√
n

∑n
t=1 ξt

∣∣∣[
τ
n

(
1− τ

n

)] 1
2

d
−→

|W (k)− kW (1)|
(k(1− k))

1
2

=
|B(k)|

(k(1− k))
1
2

where {|B(k)| 0 ≤ k ≤ 1} is the absolute value of the Standard Brownian Bridge on the unit interval, (k(1− k))
1
2 is the

asymptotic standard deviation of the Standard Brownian Bridge process. |B(k)|
(k(1−k))

1
2

is a standardized tied down Bessel process

restricted to 0 ≤ k ≤ 1 [22].
Further mathematical derivations, scale transformation and application of Theorem (2.4) yields,

lim
n−→∞

max
1<τ<n

√
n

σl
|Dn

t | = lim
n−→∞

max
1<τ<n

∣∣∣ 1
σl
√
n

∑τ
t=1 ξt −

τ
n

(
1

σl
√
n

∑n
t=1 ξt

)∣∣∣[
τ
n

(
1− τ

n

)] 1
2

= lim
n−→∞

sup
0<k<1

∣∣∣ 1
σl
√
n

∑bn.kc
t=1 ξt − n.k

n

(
1

σl
√
n

∑bn.1c
t=1 ξt

)∣∣∣
(k (1− k))

1
2

(27)

which finally leads to convergence in distribution to Standard Brownian Bridge process as

lim
n−→∞

√
n

σl
sup

ηn≤τ≤(1−η)n
|Dn

t | d
−→

sup
η≤k≤1−η

|W (k)− kW (1)|
(k(1− k))

1
2

= sup
η≤k≤1−η

|B(k)|
(k(1− k))

1
2

(28)

2.5. Tail Probabilities Approximations and Critical Values

Theorem 2.6. If H0 holds and ξt, t = 1, 2, ..., n is a strong mixing sequence, then as n −→∞,∣∣∣∣∣∣∣∣
sup

ηn<τ<(1−η)n

∣∣∣ 1
σl
√
n

∑bn.kc
t=1 ξt − n.k

n
( 1
σl
√
n

∑bn.1c
t=1 ξt)

∣∣∣
(k (1− k))

1
2

− sup
η≤k≤1−η

|B(k)|

(k(1− k))
1
2

∣∣∣∣∣∣∣∣ = oP (exp(−(logn)1−ε))
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∀ 0 < ε < 1 where σ2
l = lim

n−→∞
n−1Var (εn) and |B(k)| is the absolute value of the Standard Brownian Bridge process on the

truncated interval [η, 1− η] ⊂ [0, 1] for some η ∈
(
0, 12
)

[23].
The statements below generalize [23] to the mixing case. To construct rejection region, given a fixed level of statistical

significance 0 < α < 1, one considers the quantiles

qn =qn (1− α)

= sup

{
x ≥ 0 : P

(√
n

σl
sup

η≤k≤1−η
|Dn

t | < x

)
≤ 1− α

}
(29)

and

u(a, b) = u(a, b; 1− α)

= sup

{
x ≥ 0 : P

(
sup

a≤k≤1−b

|B(k)|
(k(1− k))

1
2

< x

)
= 1− α

}
(30)

Rejection of the null hypothesis happens if the 1 − α quantile of the limit distribution of the test statistic under H0 has been
exceeded.

One can show that u(a, b) is an asymptotically correct size α critical value according to Theorem (2.7)
Theorem 2.7. As in [23] corollary 1.3.1, Theorem 1.3.2 and Theorem 1.3.3 with

an ≥
1

n
, bn ≥

1

n
and for n −→∞

and with
lim

n−→∞
sup n (an + bn) exp

(
− (log n)

1−ε∗
)
<∞

for some 0 < ε∗ ≤ 1, then as n −→∞ one has that

lim
n−→∞

P

{√
n

σl
sup

η≤k≤1−η
|Dn

t | > u (an, bn)

}
= α

and
|qn(1− α)− u (an, bn)| = o

(
(log log n)

− 1
2

)
n −→∞

Contrasting with tests for known break points which
normally have asymptotic chi-square distribution, the
asymptotic distribution associated with tests for unknown
break points is the Bessel process distributions. The Bessel
process distributions pose some challenges to researchers
one being that there there is no known simple closed-form
expression for the distribution function which makes it
difficult to compute exact p-values. Also, the Bessel process

distributions depend on two parameters which makes it hard to
tabulate the critical values hence one needs to simulate them.

For practical applications, the distribution function of

sup
a≤k≤1−b

{
|B(k)|

(k(1−k))
1
2

}
, is approximated by its inverse laplace

transform where for each 0 < a < b < 1, under no change
point, it is given by

P

{
sup

a≤k≤1−b

(
B(k)

k(1− k)

) 1
2
≥ x

}
=
x exp(− x22 )

(2π)
1
2

{
log

(1− a) (1− b)
ab

−
1

x2
log

(1− a) (1− b)
ab

+
4

x2
+O

(
1

x4

)}
(31)

as x −→ ∞ [23]. To obtain the asymptotic critical value
of size α, Monte Carlo simulation of the distribution of the
limit variable is performed so as to obtain a roughly good
approximation for the quantile qn = qn(1− α).

2.6. Simulation of Asymptotic Critical Values

Asymptotic critical values corresponding to the 0.99, 0.95

and 0.90 quantiles of the limit distribution of maxτ
√
n
σl
|Dn

t |
which allow tests corresponding to significance levels 0.01,
0.05, 0.10 respectively were simulated. The upper boundary

can be set at 3.541899 in the
√
n
σl
|Dn

t | plot when n = 100
and α = 0.01. If this boundary is exceeded, then there is
a significant change in conditional variance function of the
returns series.

The simulated asymptotic critical values from Equation (31)
are as in Table 1.
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Table 1. Simulated critical values.

Sample size 1 − α u(a, b)

100 0.99 3.541899

0.95 2.969163

0.90 2.658421

200 0.99 3.613201

0.95 3.063084

0.90 2.774228

500 0.99 3.686959

0.95 3.156928

0.90 2.885142

1000 0.99 3.732673

0.95 3.213796

0.90 2.950778

2000 0.99 3.772292

0.95 3.262439

0.90 3.006221

4000 0.99 3.807243

0.95 3.304918

0.90 3.054156

2.7. Discussion on the Simulated Critical Values

From results in Table 1, holding α constant, the critical
values increases as the sample size increases. For example,
when α = 0.01 as n −→ ∞, the critical values increase
tending to converge at 3.8. When α = 0.05 as n −→ ∞,
the critical values seem to converge at 3.3 and when α = 0.1
as n −→ ∞, the critical values seem to converge at 3.0. As α
increases for a given sample size, the rejection region for the
test increases meaning the critical value reduces.

2.8. Simulation Study in the Presence of a Single Change
Point

The ability of the test to detect a change point was
investigated by simulating an ARMA(1, 1)−ARCH(1) model.

σ2
t (Xt−1) =

{
0.5 + 0.1ε2t−1 for t = 1, 2, ..., τ

0.1 + 0.1ε2t−1 for t = τ + 1, ..., n
(32)

Xt = 0.35Xt−1 + εt + 0.4εt−1, εt = σt(Xt−1)zt zt ∼ i.i.d Normal (0, 1)

For the first case, the change point was fixed at 1
2n = 500.

(a) Simulated series (b) Squared residuals

Figure 1. Simulated series and squared residual series.

Figure 2. The sequence
√
n
σl
|Dnt | for change point located at 1

2n = 500 and at α = 0.05.

The change point testing graph with max
√
n
σl
|Dn

t | = 3.828467 was as shown in Figure 2 where the dashed line indicates the
point of asymptotic critical value of 3.213796. Hence H0 was rejected at 0.05 significant level. H0 was also rejected at 0.1 and
0.01 significant levels.
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2.9. Simulation Study in the Absence of a Change Point

Further simulations were done to test for a change when it was actually not present. An ARMA(1, 1)−ARCH(1) model with
no change point in conditional variance function

σ2
t (Xt−1) = 0.5 + 0.1ε2t−1 for t = 1, 2, ..., n (33)

where
Xt = 0.35Xt−1 + εt + 0.4εt−1, εt = σt(Xt−1)zt zt ∼ Normal(0, 1).

was considered. A series of length n = 1000 was simulated and the ability of the test not to detect a change point when it was
actually not there investigated.

(a) Simulated series (b) Squared residuals

Figure 3. Simulated series and squared residual series in the absence of a change point.

The simulated series for the model under no change point were as shown in Figures 3a and 3b respectively.

(a) The sequence
√
n
σl
|Dnt |, α = 0.1, n = 1000 (b) The sequence

√
n
σl
|Dnt |, α = 0.05, n = 1000

Figure 4. Change point testing graphs in the absence of a change point.

The change point testing graphs when there was no change
point were as shown in Figures 4a and 4b for α = 0.1 and
α = 0.05. The dashed line indicates the asymptotic critical
value point of 2.950778 at 0.1 significant level and 3.213796
at 0.05 significant level.

Figure 5. The sequence
√
n
σl
|Dnt |, α = 0.01, n = 1000.

The change point testing graphs in the absence of a change
point at 0.01 significant level was as shown in Figure 5 where
the dashed line indicates the point of asymptotic critical value
of 3.732673. The test failed to reject H0 (failed to detect a
change point) at 0.1, 0.05 and 0.01 significant levels. Hence,
in the absence of a change point in the conditional variance
function, the plot of

√
n
σl
|Dn

t | against τ remains near 0. Hence
the test correctly failed to reject the null hypothesis when it
was not supposed to be rejected.

3. Application to Foreign Exchange
Rate Data

The existence of a change point in the conditional variance
of USD/KSH daily returns from 1st January 2010 to 27th
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November 2020 is investigated where n = 2839 historical
exchange rates. This means obtaining 2838 continuously
compounded returns. Lagging the returns by one implies

having 2837 continuously compounded returns at lag one.

(a) Daily exchange rate (b) Plot of the squared residuals

Figure 6. Exchange rate data and squared residual series.

The exchange rates are plotted as in Figure 6a above. Since
the conditional variances are obtained via the conditional
expectation of the squared residuals, the squared residuals plot
is as shown in Figure 6b above.

The first change point was detected and estimated as
τ̂1 = 668 corresponding to 26th July 2012. Through binary
segmentation, the data is then split into two segments; from
[1 : 668] and from [669 : 2837] and change point detection and

estimation done on both segments. From the first segment
t ∈ [1 : 668], the second change point in volatility is detected
and estimated as τ̂2 = 375 corresponding to 13th June 2011.
From the second segment t ∈ [669 : 2837], the third change
point in volatility of returns is detected and estimated at data
point 850 meaning τ̂3 = 1519 corresponding to 30th October
2015. Further segmentation of the series did not show any
other significant change point.

(a) Three estimated change points, τ̂1 = 668 and τ̂2 = 375 and τ̂3 = 1519 (b) Conditional volatility function, τ̂1 = 668, τ̂ = 375 and τ̂3 = 1519

Figure 7. Returns series at lag 1 and the conditional volatility function with three estimated change points.

The returns series and the conditional volatility function with three estimated change points are shown in Figures 7a and 7b
respectively.

(a) The sequence
√
n
σl
|Dnt | for t ∈ [1 : 2837] implying n = 2837, τ̂1 = 668 (b) The sequence

√
n
σl
|Dnt | for t ∈ [1 : 668] implying n = 668, τ̂2 = 375

Figure 8. Hypothesis Testing Graphs for n = 2837 and n = 668 corresponding to (a) and (b) respectively.
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Figure 9. The sequence
√
n
σl
|Dnt | for t ∈ [669 : 2837] implying n = 2169, τ̂3 = 850 which further represents data point 1519 if one considers the original returns series from

t ∈ [1 : 2837].

The corresponding plot of the hypothesis testing graph with
change points estimates τ̂1 = 668 and where the red dashed
line indicates the boundary corresponding to a critical value
of 3.284537 at α = 0.05, τ̂2 = 375 and where the dashed
line indicates the boundary corresponding to a critical value of
3.181871 at α = 0.05 and τ̂3 = 850 (where in the original
series corresponds to τ index 1519) where the red dashed line
indicates the boundary corresponding to a critical value of
3.267697 at α = 0.05 are as shown in Figures 8a, 8b and 9
respectively.

4. Results Based on the Real Dataset
Application

From the exchange rate plot there is an increasing trend
between January 2010 up to October 2011 where the exchange
rate prices were at the peak. The USD/KSH exchange rate
depreciated from 83.89 to 101.39 between April 2011 to
October 2011. After October 2011, there is a decreasing trend
after which the exchange rates started to rise again around
the year 2014 up to the year 2016. From the year 2016, the
USD/KSH seems not to be varying very much. From the
year 2020, the USD/KSH exchange rate seems to be taking
an upward trend probably due to economic crisis brought
about by COVID-19 pandemic like loss of jobs and ban on
international travels by governments in most countries of the
world.

Accounting for the change point in June 2011, Kenya
was importing too much and exporting too little (imbalanced
economy) which made it vulnerable to shocks. In 2011,
imports soared because of higher costs of fuel and food while
exports were stagnant which led to increase in demand for
foreign exchange to finance imports. The foreign exchange
market witnessed significant volatility between May 2011 and
October 2011 as seen in exchange rate plot Figure 6a and
the return series 7a reflecting the general volatility in the
global financial markets. This resulted in the weakening of
the Kenyan Shilling just like other currencies in the region and
other global markets whereby the exchange rate for the Kenya
shilling against the US dollar depreciated from an average
of 84.2 in March 2011 to 101.39 in October 2011 (20.42%
depreciation).

Accounting for the change point in volatility of the returns
on 26th July 2012, the Kenyan economy experienced slow
growth at the beginning of 2012 following high inflation
and high interest rates from commercial banks. For the
change point on 30th October 2015, the Kenya shilling
depreciated against the United States Dollar in the financial
year ended June 2015 due to tightening of global financial
market conditions and further continued to depreciate in the
financial year starting July 2015. The depreciation was further
aggregated by increase in food prices due to delayed rains in
the same period up to December 2015.

5. Conclusion and Recommendations

In this study, a non-parametric procedure for detecting and
estimating a change point in volatility of financial returns is
considered. The procedure allows for change point detection
and estimation in sequences with conditional heteroscedastic
variances and fourth moment. The limit distribution of the test
statistic is obtained and critical values simulated. The power
of the test and consistency of the test are shown in subsequent
papers.

The change point detection and estimation approach can
be applied to multidimensional non-parametric models of the
form Xt = m(Xt−1, ..., Xt−d) + σ(Xt−1, ..., Xt−d) where
the volatility function is changing. In such cases, the functions
m(.) and σ(.) should be estimated using multivariate kernel
methods. One can also consider a case where both the
conditional mean and the conditional variance functions are
changing. This should be done carefully due to the curse of
dimensionality problem.
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