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Abstract 
The development of accurate prediction models continues to be highly bene-
ficial in myriad disciplines. Deep learning models have performed well in 
stock price prediction and give high accuracy. However, these models are 
largely affected by the vanishing gradient problem escalated by some activa-
tion functions. This study proposes the use of the Vanishing Gradient Resi-
lient Optimized Gated Recurrent Unit (OGRU) model with a scaled mean 
Approximation Coefficient (AC) time lag which should counter slow conver-
gence, vanishing gradient and large error metrics. This study employed the 
Rectified Linear Unit (ReLU), Hyperbolic Tangent (Tanh), Sigmoid and Ex-
ponential Linear Unit (ELU) activation functions. Real-life datasets including 
the daily Apple and 5-minute Netflix closing stock prices were used, and they 
were decomposed using the Stationary Wavelet Transform (SWT). The de-
composed series formed a decomposed data model which was compared to 
an undecomposed data model with similar hyperparameters and different 
default lags. The Apple daily dataset performed well with a Default_1 lag, us-
ing an undecomposed data model and the ReLU, attaining 0.01312, 0.00854 
and 3.67 minutes for RMSE, MAE and runtime. The Netflix data performed 
best with the MeanAC_42 lag, using decomposed data model and the ELU 
achieving 0.00620, 0.00487 and 3.01 minutes for the same metrics. 
 

Keywords 
Optimized Gated Recurrent Unit, Approximation Coefficient, Stationary 
Wavelet Transform, Activation Function, Time Lag 

How to cite this paper: Mamba, L.S., 
Ngunyi, A. and Nderu, L. (2023) Predicting 
Wavelet-Transformed Stock Prices Using a 
Vanishing Gradient Resilient Optimized 
Gated Recurrent Unit with a Time Lag. 
Journal of Data Analysis and Information 
Processing, 11, 49-68. 
https://doi.org/10.4236/jdaip.2023.111004  
 
Received: December 8, 2022 
Accepted: February 5, 2023 
Published: February 8, 2023 
 
Copyright © 2023 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jdaip
https://doi.org/10.4236/jdaip.2023.111004
https://www.scirp.org/
https://doi.org/10.4236/jdaip.2023.111004
http://creativecommons.org/licenses/by/4.0/


L. S. Mamba et al. 
 

 

DOI: 10.4236/jdaip.2023.111004 50 Journal of Data Analysis and Information Processing 
 

1. Introduction 

According to [1], the Efficient Market Hypothesis (EMH) asserts that financial 
time series are almost always unpredictable because every piece of relevant in-
formation that can influence the price, including past values and volumes, is al-
ready taken into account. This means that the price reacts quickly to new infor-
mation and is not tied to any trend or pattern. According to the Random Walk 
Theory, any type of prediction or forecasting will have no better performance 
than random guessing, and the stock price will always be the fair one, making it 
unpredictable [2]. Nowadays, financial time series are getting even more non- 
stationary especially because big data are generated at enormous speeds, some-
times as fast as real time. Classical statistical methods of prediction and fore-
casting such as filter and autoregressive models are getting less efficient in pre-
dicting financial sequences because of significant irregularities [3]. However, 
with advances in Artificial Intelligence (AI), it has been shown empirically that 
stock price movement is predictable [4]. 

Over the years, deep learning models have been faced with the vanishing gra-
dient problem, which makes convergence impossible, increases prediction errors 
and model computational time. The vanishing gradient problem is when the 
gradient becomes particularly very small and disappears as the sequence be-
comes longer. The determination of a lagging mechanism for deep learning 
models is highly desirable because it prevents the model considering all past in-
formation, thus it reduces the chances of experiencing the vanishing gradient 
problem [5]. In addition, research has shown that numerous scholars have im-
plemented pure and hybrid deep learning models for predicting stock prices in 
conjunction with the wavelet transform. Thus, this research considered a model 
consisting of a conjunction of the Stationary Wavelet Transform (SWT) and a 
vanishing gradient resilient Optimized Gated Recurrent Unit (OGRU) neural 
network for stock price prediction. The vanishing gradient problem will be ad-
dressed by using the lagging mechanism that will be informed by the approxima-
tion component of the wavelet transform and the use of a suitable activation 
function. 

This problem is caused by long-term dependencies in neural networks as well 
as the activation functions that are used. The reality is that so many stock pre-
diction sites still have large prediction errors, and the larger these are, the more 
financially costly they are. The study thus proposed to employ the SWT to de-
compose the time series data and reduce its inherent noisy property. The scaled 
mean of the Approximation Coefficient (AC) from the Wavelet Transform was 
used to determine a time lag to reduce long-term dependency. Furthermore, the 
decomposed data were used to train a robust prediction model in the form of 
a vanishing gradient resilient OGRU model. Collectively, the time lag, wavelet- 
decomposed data and the OGRU model will counter the vanishing gradient prob-
lem and allow for faster and more accurate predictions of the daily Apple In-
corporated and 5-minute Netflix closing stock prices. 
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Predicting stock prices is of pivotal importance to investors, commercial 
banks, central banks, governments and stock forecasting sites. This research 
bridges the gap between models used in industry which still suffer large errors 
when used for High Frequency Data (HFD) and desirable fast and accurate 
models. Additionally, this research is significant in developing more accurate 
models for financial series such as exchange rates and interest rates and other 
instrumental variables. The proposed lag has the potential of leading time series 
modelling into a new and improve era of permanently reducing long-term de-
pendence and using typical lags. From the innovation aspect, the research cen-
ters the limited exploration and manipulation of the OGRU model as it was de-
veloped about 3 years ago. Using it in a stacked fashion has never been imple-
mented prior to this research. And most importantly, introducing a lagging me-
chanism that hinges on the trend-revealing Approximation Coefficient has never 
been done before. The scientific contributions of this paper are explained further 
in the methodology.  

The organizational structure of this paper is as follows. Initially, we have a li-
terature review of related work in Section 2. Furthermore, in Section 3, we have 
an explanation of the materials and methods employed to conduct this research. 
This section also contains the governing equations for the OGRU model, SWT 
and evaluation metrics. Moreover, the results of using the procedures mentioned 
in Section 3 are discussed and implemented in Section 4, and the study is con-
cluded in Section 5.  

2. Literature Review 

This section reviews relevant literature on methods for calculating the temporal 
lag. Additionally, a summary of pertinent research on forecasting models is pro-
vided, including everything from neural networks to conventional statistical tech-
niques. 

2.1. Related Work on Time Lags  

Numerous methods have been used to determine the time lag to be used in sta-
tistical forecasting models as well as neural networks. [6] implemented an accu-
rate multi-step-ahead time series forecasting using the Kalman Filtering Model 
(KFM) in conjunction with Echo Neural Networks (ESN), dubbed the E-KFM 
model using arbitrary lags of 1, 6, 12 and 18. The Recurrent Neural Network- 
based Granger Causality estimator (RNN-GC) model proposed by [7] was effi-
cient in modelling directional linked analysis in multivariate series and it al-
lowed varying-length time lags in the brain connectivity detection problem. 

Moreover, [8] suggested using the Gated Recurrent Unit (GRU) and Long 
Short-Term Memory (LSTM) for forecasting hourly bike rentals. Two types of 
lags were used; recent values (1, 2 and 3 lags) and distant values (24, 48 and 168 
lags). Also, [9] proposed a hybrid Vector Autoregressive and Gated Recurrent 
Unit (VAR-GRU) to establish the most important variables using Granger Cau-
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sality and an appropriate lag length for multivariate stock-price prediction. The 
models used with the VAR proved to have the lowest error metrics in all expe-
riments. Lastly, [10] implemented a comparative study of the autocorrelation 
function, an LSTM used with a Genetic Algorithm (GA) to enhance the choice 
of a time-lag value and another LSTM that chose the most accurate prediction 
given the optimal lag ranging between 24 and 168. 

2.2. Related Work on Forecasting Models  

On the other hand, [11] and [12] used Autoregressive Integrated Moving Aver-
age (ARIMA) and the Wavelet Transform in the prediction of stock prices. The 
wavelet transform left the financial data with no outlier, seasonal effects and 
non-constant mean and variance and improved accuracy of the ARIMA [11]. On 
the other hand, the ARIMA was compared to the LSTM in forecasting the stock 
price of four companies after the data was denoised using the wavelet transform 
[13]. The study used the pure ARIMA and LSTM models as well as the WAV- 
ARIMA and WAV-LSTM and these were compared using RMSE. 

Some researchers used the wavelet transform in conjunction with Artificial 
Neural Networks (ANNs) for the prediction of stock prices. [14] and [15] used 
the Discrete Wavelet Transform (DWT) with a simple ANN for price index and 
stock price prediction. These models’ performance in terms of error metrics as 
well as computational time was enhanced. Using the Haar wavelet transform 
with Multiple Time Windows for Apple Inc. stock price prediction also reduces 
the RMSE significantly [16]. Meanwhile, [17] predicted the Saudi stock price 
trends based on previous price history using the DWT and RNN using Back 
Propagation Through Time (BPTT). The method (DWT + RNN) predicted the 
period’s price more accurately than the ARIMA model using MSE, RMSE and 
MAE criteria. 

Some researchers have used deep neural networks to predict the financial va-
riables. [18] proposed a model for forecasting stock and commodity prices by 
integrating a five-level Stationary Wavelet Transform (SWT) and the Bidirec-
tional LSTM (BDLSTM) using a 128-day lookback period for the five-day West 
Texas Intermediate (WTI) crude oil forecast. Also, [19] proposed a prediction 
model that used LSTM and an attention technique, in which the Wavelet Trans-
form was used to denoise the long-term financial data as well as extract and train 
its features. [20] proposed multiresolution analysis and a stacked LSTM to pre-
dict financial time series with a comparison of multiresolution methods with 
SWT and the Empirical Wavelet Transform (EWT). Deep learning, multiresolu-
tion analysis and decomposition of data had impeccable effects on the perfor-
mance of a model. 

The wavelet transform was also used with the Gated Recurrent Unit (GRU) 
neural network. [21] developed the DWT Gated Recurrent Unit Network model 
(DWT-GRU) for stock exchange data. The DWT-GRU consisted of combining 
the DWT’s denoising and decomposition capacity with pre-processed data to be 
trained by an RNN based primarily on the Gated Recurrent Unit Neural Net-
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work (GRUNN). The wavelet preprocessing significantly improved the results of 
both LSTM and GRU networks [22]. Lastly, the Optimized Gated Recurrent 
Unit (OGRU) is the latest modification of the GRU was done by [23] to augment 
the learning and structure of the GRU and preventing present forgetting informa-
tion hindering the update gate. The OGRU significantly performed better than 
the GRU in both univariate and multivariate time series. In this study, the 
same model will be used in conjunction with the wavelet transform and a scaled 
mean AC time lag, while altering the activation functions. 

3. Materials and Methods  

In order to forecast time series data for Apple Inc. and Netflix Inc., this article 
suggests using the OGRU model with a time lag that is impervious to vanishing 
gradients. The direction the study took is outlined in Figure 1. 

This section describes the datasets used in this work, the vanishing gradient 
resilient OGRU model, the performance measures that were taken into consid-
eration, the SWT that was used to decompose the data, and the determination of 
the time lag using the AC from the SWT. 

3.1. The Datasets  

The study employed 5040 observations of the Apple Daily Closing Stock Price 
from April 1, 2002 to April 4, 2022. The study also employed 100,000 observa-
tions of the Netflix 5-Minute Closing Stock Price from May 22, 2017 at 12:15PM 
through July 1, 2022 at 16:55PM. While the Netflix data came from Forex Robot 
Factory, the Apple data came from Yahoo Finance. To more clearly show the 
structure and trend of the data, both time series were resampled using the week-
ly mean. 
 

 
Figure 1. Work flow. 
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Figure 2 shows that the Apple dataset was not too volatile between the years 
2002 and 2012. However, instability has been increasing each year since then. On 
the other hand, Figure 3 shows that the 5-minute Netflix data was more volatile 
compared to the daily Apple data because it has a higher frequency. 

3.2. Stationary Wavelet Transform (SWT)  

The Shift-Invariant (SI) or Translation Invariant (TI) wavelet transform is another 
name for the SWT. The SWT uses the identical formulas as the Discrete Wavelet 
Transform (DWT), with the exception that the signal is never sub-sampled.  
 

 
Figure 2. Daily closing stock price for Apple Inc. 

 

 
Figure 3. 5-minute closing stock price for Netflix Inc. 
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Instead, the signal is up-sampled with each level of decomposition by a factor of 
two, which makes the wavelet shift-invariant. The SWT is better for signal de-
noising since it is more redundant than DWT. The AC and DC in this case are 
the same length as the original signal at each level. The Daubenchies2 (db2) mother 
wavelet was employed in this study. The Daubenchies wavelets are highly desir-
able because they are much smoother than the Haar wavelets and a very accurate 
generalization of the same. The Daubenchies are easily invertible, asymmetric, 
orthogonal and biorthogonal. Furthermore, the Daubenchies2 (db2) with two 
vanishing moments avoids the overly smoothing the signal, lengthening the 
wavelet feature and it has been proven efficient for financial series such as stock 
prices from the featured related work [14] and [24]. To determine the level to 
which we decompose the data, we use the rule: 

( )logj n=                            (1) 

where n is the length of the series. The orthogonal wavelet series approximation 
to a signal ( )s t  is formulated by:  

 ( ) ( ) ( ) ( ) ( )1 1J J Js t A t D t D t D t−= + + + +�             (2) 

the mother and father wavelets with multilevel analysis indexed by 0,1,2,k∈ �  
and by 0,1, ,j J∈ � , where J denotes the number of multi-resolution scales. 

( )JA t  is the coarsest approximation of the signal. The multi-resolution de-
composition of ( )s t  is the sequence of ( ) ( ) ( ) ( ){ }1 1, , , ,J J JA t D t D t D t− �  
where,  

 ( ) ( ), ,J j k j k
k

A t a tϕ=∑                      (3) 

( ) ( ), ,J j k j k
k

D t d tψ=∑                      (4) 

The expansion coefficients ,j ka  (known as the approximation coefficients) and 

,j kd  (known as the detail coefficients). ( ),j k tψ  is the mother wavelet and the 
( ),j k tϕ  is the father wavelet. 

3.3. Determining the Time Lag  

The lag for time series to be input into a neural network using the wavelet trans-
form has never before been determined. This study used the AC of the Wavelet 
Transform, which is given by ( )JA t , which is defined in Equation (3), to com-
pute the lag. The lag employed in the neural network was therefore the mean of 
the normalized AC increased by a factor of 100 because this portion of the 
Wavelet Transform indicates the trend element of the series or signal. Three 
procedures will be taken to determine the time lag: normalizing the AC, deter-
mining the average AC, and applying a factor of 100. As such, the proposed 
MeanAC lag is then given by: 

( )
( ) ( )1

min
max min

MeanAC 100
i
n i i

i i

A A
A A
n

=

 −
  − = ∗

∑
             (5) 
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where 100 is the multiplier and iA ’s are the Approximation coeffients. 

3.3.1. Justifying the Time Lag 
● Normalisation: The range in AC is too large and in order to maintain the 

relationship between among the original data values, especially because of the 
large ranges shown in Table 1. 

● Average of AC: To find the average trend to determine the lag of the model. 
● Multiplier: The lag must be in a scale that is relevant to the data. 

This study adopted an approach that is similar to [10] where the autocorrela-
tion coefficient was used to determine a lag for hourly data. 

3.3.2. Default Lags 
The study sought to compare the proposed Mean AC lag to other lags for both 
datasets, while the Default_1, the Default_21 were used for the Apple dataset. 
The Default_1 and the Default_24 were used for the Netflix dataset. The De-
fault_21 time lag (for the Apple dataset) is the equivalent of a one month look-
back period, taking into account that the stock market does not operate on 
weekends. Alternatively, the Default_24 (for the Netflix dataset) is the equivalent 
of a 2-hour lookback period. 

Table 2 shows a brief summary of the motivation behind the default lags whose 
performance was compared to the performance of the proposed Mean AC lag. 

3.4. Vanishing Gradient Resilient Optimized Gated Recurrent Unit  
with time Lag  

The decomposition coefficients that are resultant from the decomposition using  
 
Table 1. Descriptive statistics of the AC. 

Statistic Apple Netflix 

Minimum 0.95 824.37 

Maximum 711.36 3918.08 

Average 115.04 2125.75 

 
Table 2. Justification of default lags. 

Dataset Lag Related Work Citation Application to study 

Apple 

Default_1 
1, 6, 12 and 18  
previous steps 

[6] 
1 day to predict  

daily data 

Default_21 
1, 2, 3, 24, 48 and 

168 hours to  
predict daily data 

[8] 
Extended 168 hours to 
21 days (a month) to 

predict daily data 

Netflix 

Default_1 
1 previous step to 
predict the next 

[6] and [8] 
1 previous period used 

to predict the next 

Default_24 
24 hours to predict 

hourly data 
[10] 

24 × 5 = 120 minutes  
= 2 hours to predict 

5-minute data 
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the SWT were subjected to the Granger Causality test to determine if they each 
Granger-caused the closing stock price before being fed into the neural network. 
The proposed model differs slightly from the OGRU proposed by [23] in that it 
employs different activation functions for the OGRU layers. The paper used the 
Tanh, but this proposed methodology will use a ReLU, Sigmoid and the ELU. 
The ReLU is newer than all other activation functions, including the Sigmoid 
and Tanh. It is also very easy to use and effective at circumventing the limita-
tions of other previously popular activation functions and it is not largely af-
fected by the vanishing gradient problem. Likewise, the ELU activation function 
smooths slower than the ReLU and it produces negative inputs, thus making it a 
great substitute for the ReLU. This model was first fit on the training data and 
then tuning of parameters made use of the validation set. Lastly, the test set was 
used as the actual price, so that residuals are calculated using the predicted price. 

3.4.1. Model Assumptions 
Before undertaking this study, the following assumptions were considered in 
determining the methodology:  

1) Different activation functions perform differently for different models and 
datasets.  

2) The OGRU model can be applied to both univariate and multivariate data-
sets.  

3) The OGRU model works on time series data of different frequencies and 
sample sizes.  

3.4.2. Model Configuration 
The model was configured using the following preprocessing, split, layers, loss 
functions, chosen optimizer and stopping criterion. 

Normalising Data 
Before training the model, the data (decomposition coefficients used as re-

gressors and the regressand) was first normalised using the MinMaxScaler. 
Splitting Data 
Thereafter, the training and test sets were determined. In this study, a ratio of 

70:30 was used to determine the training: test split, and the test set was further 
split into the validation set. Of note here is that the splitting criteria was set “no 
shuffling” because this is time series data. 

Dropout and Dense Layer 
In order to avoid overfitting the model applied drop-outs of 0.1 or 0.2 (10 or 

20 percent) and to make the model more robust, the model added a dense layer. 
This study also used 16, 32, 48 and 64 neurones depending on the most optimal. 
On the other hand, the study used 40 epochs for the hyperparameter tuning 
stage and 100 epochs to fit the optimal model.  

Loss Function and Optimizer 
The loss function that was used for the gradient descent stage of training the 

model was the Mean Square Error (MSE) and this study opted to use the “ADAM” 
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optimizer. This optimizer was chosen because it is the best compared to other 
optimizers in terms of computational time and limiting the parameters to be 
tuned.  

Early Stopping 
In order to avoid overfitting and having unnecessarily long training periods, 

the study employed the Early Stopping callback. This callback functionality is 
employed at the training stage of the model, and it monitors the RMSE in this 
study which terminated the training process as soon as the RMSE stopped im-
proving significantly. The callback also makes projections for the RMSE in fu-
ture iteration and terminates the training process if the RMSE will not improve. 
This study did not apply an improvement threshold because the training process 
could be easily tampered with, especially because the threshold could be any 
number. 

3.4.3. Model Architecture 
Taking the input time series to be ( 1 2, , , tx x x� ), the model architecture will take 
the form shown in Figure 4. 

It is important to note that wherever there is 1th − , 1t −  signifies the time 
steps the model will look back at and this will be determined by the lag as shown 
in the previous subsection. 

The reset gate will be given by:  

 [ ]( )1,t r t tr W h xσ −=                        (6) 

where σ  is the sigmoid activation function, rW  is the weight between the 
input and 1th −  represents the standard GRU unit output at time ( )1t −  and 

tx  represents the input at time t. 
The update gate will be given by:  

 

 
Figure 4. The neural structure of the model.    

https://doi.org/10.4236/jdaip.2023.111004


L. S. Mamba et al. 
 

 

DOI: 10.4236/jdaip.2023.111004 59 Journal of Data Analysis and Information Processing 
 

[ ]( )1,t z t t tz W h x rσ −= ∗                      (7) 

where zW  represents the weight between the input and 1th −  in the update gate 
and tr  is the reset gate at time t. 

The new candidate value vector created with the ReLU activation will be given 
by:  

[ ]( )1relu ,t t t tn W r h x−= ∗ ∗                    (8) 

where W represents the update gate’s output tz  and the weight between the 
inputs. The ReLU above is a placeholder that represents the other activation 
functions to be used. While the hidden layers will be given by:  

 ( ) ( )11t t t t th z h z n−= − ∗ + ∗                  (9) 

Finally, the output will be given by:  

 ( )t o ty W hσ= ∗                     (10) 

where oW  represents the weight of th .  
The fine-tuned vanishing gradient resilient OGRU model which has been 

trained and validated will be used to make predictions and these will be com-
pared to the actual test data. This will determine whether or not the model will 
be fit enough to be used by traders, portfolio managers and investors to hedge 
against risk and decision-making. 

3.4.4. Justification of Activation Functions 
The selection of activation functions in this work starts from the OGRU which 
used the Hyperbolic Tangent (Tanh) activation function for the new candidate 
value vector [23]. Now, to reduce the possibility of the vanishing gradient prob-
lem affecting the models, this study varied the activation function by comparing 
the Tanh to the Rectified Linear Unit (ReLU), Sigmoid and an Exponential Li-
near Unit (ELU). The Sigmoid has the advantage of making prediction clear as 
the values are between 0 and 1, preventing the disappearance of the activation 
value. The ReLU is very easy to use and effective at circumventing the limita-
tions of other previously popular activation functions. Likewise, the ELU activa-
tion function smooths slower than the ReLU and it produces negative inputs, 
thus making it a great substitute for the ReLU. In essence, all the activation func-
tions where chosen on the basis that they had the potential to prevent the va-
nishing gradient problem. 

3.5. Validating the Model Using Grid Search  

Tuning for hyperparameters is very pivotal in deep learning because it massively 
improves the performance of models. Distinct combinations of the hyperpara-
meters from Table 3 were assessed for the lowest error. Grid search performed 
loops of the different combinations and fit the model on the training data. The 
evaluation metrics for determining the best combination of hyperparameters 
was the RMSE. 
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Table 3. Dictionary of hyperparameters. 

Hyperparameter Vector 

Neurones [16, 32, 48, 64] 

Batch Size [8, 16, 32, 64] 

Drop-out [0.1, 0.2] 

 
The hyperparameter table was formulated as an extension of work done by 

[25] [26] and [27]. Advantages of grid search is that the search space is prede-
termined in the form of tuples, which makes it easy to control how long the 
process takes. When compared to manual search, it is computationally less in-
tensive. Finally, grid search is advantageous because it allows the specification of 
the metric to be minimized or maximised, in this study, over and above the va-
lidation loss, RMSE was a chosen stopping metric. Even though it suffers from 
high dimensional spaces, it can easily to parallelized since the hyperparameter 
spaces are usually independent of each other. 

3.6. Evaluation Metrics  

To determine the accuracy of the vanishing gradient resilient OGRU model and 
to be able to compare it to the OGRU model with Tanh activation function, the 
study will use the RMSE and MAE as stated above. These are the most commonly 
used measures of prediction accuracy according to literature. This is because 
both measures are easy to calculate and interprete, and they are scale-dependent. 
Using both measurements will be advantageous because models that minimise 
the MAE forecast the median, and those that minimise the RMSE forecast the 
mean. Specifically, these evaluation metrics will be calculated as follows: 

( )2

1

1 ˆRMSE
n

i i
i

y y
n =

= −∑                       (11) 

1

1 ˆMAE
n

i i
i

y y
n =

= −∑                         (12) 

where n is the number of observations, iy  is the actual stock price and ˆiy  is 
the estimated stock price. The study will also use computational time or runtime 
as another evaluation metric. 

0runtime nt t= −                          (13) 

where nt  is the time when the model converges and 0t  is the time when the 
model begin running. 

3.7. Scientific Contributions  

In conclusion, this study has the following scientific contributions: 
1) The OGRU model has never been stacked with drop-out layers in between 

and one dense layer.  
2) The time lag for the OGRU neural network is determined using the scaled 
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Mean AC. This method used has never been used to determine a lag before.  
3) The OGRU model has not yet been used with the SWT.  
4) The OGRU model has not been used with stock price datasets before.  
5) The OGRU model has not been implemented with varying activation func-

tions before. 

4. Results and Discussion  

All data-cleaning and preprocessing as well as experiments were performed in 
Python3 using a Tensorflow backend. The computer operating system used was 
the Windows 10, the basic configuration is: CPU is Intel Core i5 with 16 GB 
RAM and 2.40 GHz processing speed. 

4.1. Stationary Wavelet Transform (SWT) Decomposition  

The study used the SWT to decompose the data into Approximation Coefficients 
(AC) and Detail Coefficients (DC). The coefficients are specified in Table 4 and 
they were used as inputs for the decomposed data vanishing gradient-resilient 
OGRU model.  

4.2. Model Configuration  

The Mean AC lags were established to be 16 and 42 for the Apple and Netflix 
datasets, respectively. The decomposition coefficients were used as inputs for the 
model. These inputs were normalised to improve training accuracy and reduce 
computational time. The data was split into training, validation and test sets and 
it was not shuffled because it is sequential data. The model was built using two 
OGRU layers with two drop-out layers after each OGRU and finally a dense 
layer at the end. The best model for the two datasets was searched out by using 
grid search subject to the hyperparameters specified in Table 3. 

4.3. Experiments and Best Model Configuration  

The study performed some graphical summaries for the errors according to the 
models, activation functions and lags for the different datasets in boxplots and 
scatter diagrams, before exploring the performance of the best models. A total of 
48 models were tuned for hyperparameters for both datasets. The lag proposed 
in this study is depicted as MeanAC_16 (for Apple) and MeanAC_42 (for Net-
flix), the Default_1 is used for both datasets and the Default_21 (for Apple) and 
the Default_24 (for Netflix). Figure 5 shows the summary of RMSE and Runtimes 
as depicted by the lag use and the activation function. On the left, it is noted that 
the Default_1 lag has very low runtimes and errors are evenly distributed. 
 
Table 4. Results of SWT decomposition. 

Dataset Level AC DCs 

Apple ( )log 5040 3.7 4= ≈
 AC Level 4 DC Level 1, Level 2, Level 3, Level 4 

Netflix ( )log 100000 5=
 AC Level 5 DC Level 1, Level 2, Level 3, Level 4, Level 5 
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Figure 5. Graphical summary of RMSE for Apple.    

 
The Default_21 lag has the lowest errors, but high runtimes while the Mea-

nAC_16 lag has overall low errors and moderate runtimes. The proposed lag 
provides the perfect trade-off between errors and runtime. On the other hand, 
the ELU activation function is the best in terms of keeping RMSE below 0.2 and 
runtimes under 17 minutes. The Tanh activation function also performed well 
and the Sigmoid proved to be inefficient in terms of keeping errors low. 

Moreover, Figure 6 shows that the model performance for Netflix is relatively 
better in terms of RMSE, but not runtime (which is expected since this dataset 
had 100,000 observations). The MeanAC_42 lag contributed to high runtimes, 
especially because there was an outlier model with a runtime of 120 minutes. 

However, the proposed lag still managed to keep errors low and most run-
times were under 30 minutes. The Default_1 lag performed very well for this da-
taset. On the activation function part on the right, the ELU still performed best 
and kept errors under 0.1 and runtimes below 40 minutes. The ReLU also per-
formed well, but the Sigmoid was the least accurate in terms of both errors and 
runtimes (just like in the Apple dataset). 

Figure 7 shows summaries for both RMSE and MAE according to dataset and 
activation function. The Tanh contributed to very low error metrics, followed by 
the ELU. The highest contributor to large errors was the Sigmoid activation 
function and the ReLU was intermediate. 

The Netflix dataset has lower errors compared to the Apple dataset. The va-
nishing gradient resilient OGRU performs better for big data, which has a high 
frequency. 

4.4. Best Model Performance  

The best four models were chosen from each activation function for each of the 
datasets. 

4.4.1. Apple Daily Closing Stock Price Model Performance 
The Apple daily dataset performed best with the Default_1 and Default_21 
lags as shown in Table 5. The indication here was that it was best to use the  
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Figure 6. Graphical summary of RMSE for Netflix.    
 

 
Figure 7. Overall error metrics by activation function and dataset.  
 
Table 5. The best 4 models for the apple daily dataset. 

S/N Lag Data Activation Neurons Batch Drop-out RMSE MAE Runtime (m) 

1. Default_1 Decomposed Tanh 64 64 0.2 0.01551 0.01040 3.00 

2. Default_1 Undecomposed ReLU 64 64 0.2 0.01312 0.00854 3.67 

3. Default_21 Undecomposed Sigmoid 48 16 0.2 0.05236 0.03567 11.67 

4. Default_21 Undecomposed ELU 64 64 0.2 0.02136 0.01421 12.67 
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undecomposed data model to predict the daily stock price. However, the second 
best model suggests otherwise because it showed that decomposition using the 
SWT keeps both errors and runtimes even lower than the best model. 

The best model had the highest hyperparameters with 64 neurons, batch size 
of 64 and the drop-out rate of 0.2. Since the decomposed data model had the low-
est runtime, it might be pivotal to decompose the series if time is of the essence. 

The Default_1 lag is pivotal in accurately predicting the Apple daily stock 
price as shown in Figure 8. However, the performance of this model can still be 
improved especially considering the latter parts of the series where the data is 
highly volatile. 

4.4.2. Netflix 5-Minute Closing Stock Price Model Performance 
For the Netflix dataset however, the best performer was the proposed Mea-
nAC_42 and the Default_1 as shown on Table 6. The best model had very low 
errors of 0.00620 and 0.00487, with the ELU activation function. This big dataset 
shows that the decomposition is necessary as 75 percent of the best models are 
decomposed data models. The best performing model had 32 neurons, a batch 
size of 64 and a 0.2 drop-out. The second best model was given by the ReLU ac-
tivation function. This means the ELU, Tanh and the ReLU are recommended 
activation functions, but the Sigmoid is very costly in terms of errors.  

Figure 9 is the out-of-sample performance of the best Netflix model and it re-
flects the accuracy of the error metrics presented in Table 6. The Mean AC lag 
shows that it performed very well in making out-of-sample prediction for this 
dataset as there are very small deviations throughout the whole series. 

 

 
Figure 8. Best out-of-sample predictions for Apple. 
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Table 6. The best 4 models for the Netflix 5-minute dataset. 

S/N Lag Data Activation Neurons Batch Drop-out RMSE MAE Runtime (m) 

1. MeanAC_42 Undecomposed Tanh 64 64 0.2 0.00716 0.00533 25.67 

2. Default_1 Decomposed ReLU 64 32 0.2 0.00960 0.00717 1.91 

3. Default_1 Decomposed Sigmoid 64 32 0.2 0.01192 0.00927 4.00 

4. MeanAC_42 Decomposed ELU 32 64 0.2 0.00620 0.00487 3.01 

 

 
Figure 9. Best out-of-sample predictions for Netflix. 

5. Conclusions  
5.1. Activation Function  

After carefully studying the error patterns produced by the various activation 
functions, the model was observed to work best with the Exponential Linear Unit 
(ELU), Hyperbolic Tangent (Tanh) or the Rectified Linear Unit (ReLU) for the 
higher frequency data; the 5-minute Netflix data. The Sigmoid activation func-
tion must be avoided for the 5-minute data because it leads to explosive run-
times. On the other hand, the ReLU must be avoided for the daily dataset for the 
same reason. This study concludes that in order for the OGRU to be resilient to 
the vanishing gradient problem, it must be used with the Tanh or the ELU for 
the lower frequency data and strictly avoid the Sigmoid activation function for 
the higher frequency data. 

5.2. Decomposition  

The best overall model performance came from the Netflix dataset as error me-
trics were kept very low, while they were on average larger for all other models. 
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The Apple daily dataset models performed better when using the undecomposed 
data version instead of the decomposed data model with the Tanh activation 
function. For the Apple case, the only decomposed data model that featured 
among the best performers kept errors extremely low and had the fastest run-
time. Conversely, the 5-minute Netflix closing stock price performed best when 
the decomposed data model was used. This was true for the case of the ELU and 
ReLU. This study thus concludes that the decomposed data models are better 
applied for higher frequency data. Decomposed data models also work well with 
the lower frequency data if there is a balance to be struck between runtime and 
errors. 

5.3. Lags  

The proposed lagging mechanism has proven quite competitive for the higher 
frequency data as it performed better than all the other lags. However, it was not 
as efficient for the Apple daily dataset as the best models comprised of either the 
Default_1 or the Default_21. The best models for the Netflix dataset comprised 
of the Mean AC_42 and Default_1 lags. In terms of runtimes for the Apple data-
set, the Default_21 were the worst while the Default_1 were the best. The Mean 
AC_16 lag had intermediate runtimes. In the Netflix case, the proposed lag per-
formed very well by keeping runtimes low. However, when it was used with the 
Sigmoid activation, it produced extremely high runtimes. This study thus con-
cludes that the proposed lagging mechanism is recommended for higher fre-
quency data as it works well with the Tanh and ELU activations, as well as the 
decomposed data and undecomposed data models. 
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