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Summary Coffee authenticity is a foundational aspect of quality when considering coffee’s market value. This has

become important given frequent adulteration and mislabelling for economic gains. Therefore, this

research aimed to investigate the ability of a deep autoencoder neural network to detect adulterants in

roasted coffee and to determine a coffee’s geographical origin (roasted) using near infrared (NIR) spec-

troscopy. Arabica coffee was adulterated with robusta coffee or chicory at adulteration levels ranging

from 2.5% to 30% in increments of 2.5% at light, medium and dark roast levels. First, the autoencoder

was trained using pure arabica coffee before being used to detect the presence of adulterants in the sam-

ples. Furthermore, it was used to determine the geographical origin of coffee. All samples adulterated with

chicory were detectable by the autoencoder at all roast levels. In the case of robusta-adulterated samples,

detection was possible at adulteration levels above 7.5% at medium and dark roasts. Additionally, it was

possible to differentiate coffee samples from different geographical origins. PCA analysis of adulterated

samples showed grouping based on the type and concentration of the adulterant. In conclusion, using an

autoencoder neural network in conjunction with NIR spectroscopy could be a reliable technique to ensure

coffee authenticity.

Keywords adulteration, autoencoder, chicory, coffee, geographical origin, NIR spectroscopy.

Introduction

Food authenticity has become a very challenging issue
in the food industry, especially among high-value
products such as coffee. Coffee is among the most con-
sumed beverage globally with a consumption amount-
ing to approximately 166.346 million bags during the
2020/2021 period (ICO, 2021). So far, over 100 species
within the genus Coffea have been identified with Cof-
fea arabica (arabica) and Coffea canephora (robusta)
being the most widely cultivated from an economic
and commercial point of view (Ferreira et al., 2019).
There are quality differences between the two species
resulting from differences in their genetic make-up, as
well as the agronomic conditions for their cultivation.
On the world market, arabica coffee, which accounts
for more than 60% of the world’s production, is gen-
erally regarded to have a superior cup quality and is

exclusively sought after by most consumers (Barbosa
et al., 2019; ICO, 2021). This makes it more expensive
than robusta coffees.
Owing to the high commercial value of arabica cof-

fees, their adulteration for economic gain with cheaper
robusta coffee and other lower value materials, such as
coffee husks, chicory, corn, barley, rice, wheat, spent
coffee grounds, etc., has become a wide-spread prac-
tice. A food fraud report by the European Commis-
sion in 2018 highlighted that a high amount of coffee
sold in the UK as 100% arabica coffee contained
cheaper robusta coffee. Ten percent of the samples
tested contained robusta coffee in proportions ranging
from 1.6% to more than 21% (European Commis-
sion, 2018). In Brazil, the Brazilian Association of
Coffee Industries carried out an inspection on 2400
brands present on the market, of which, 583 brands,
representing 25% of Brazilian national brands, were
found to be adulterated with coffee husks, rye, maize
or brown sugar (Peixoto, 2009). The problem of
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adulteration is particularly concerning in roasted-
ground coffee due to its colour and particle size. These
illegal practices do not only result in regulation non-
compliance regarding safety and quality, but may also
imply a danger to consumers’ health. On the other
hand, unintentional mix-ups of the two coffee species
(arabica and robusta) may happen along the process-
ing line, necessitating quality control measures.

The sensory properties of coffee beverage are highly
influenced by a coffee’s geographical origin. On the
global coffee trade market, it has become important to
indicate the origin of coffee since there is an increasing
consumer interest in high quality coffee from beans of
known origin. Additionally, there are differences in
coffee price depending on the origin (Barjolle
et al., 2017). Another important aspect in coffee trade
is coffee blending done by mixing coffee from different
geographical origins to meet consumer and market
demand. Although this practice increases the commer-
cial value and quality of the final product, it also
enables fraud and adulteration practices involving
both geographical and compositional practices
(Šeremet et al., 2022). In this respect, the possibility to
verify the safety, quality and geographical origin of
coffee would be highly useful.

Different analytical strategies employing biological,
physical and chemical methods have been developed in
the past years for this purpose. They include chro-
matographic methods (Martins et al., 2018; Song
et al., 2019; Núñez et al., 2020, 2021), DNA based
approaches (Ferreira et al., 2016; Uncu & Uncu, 2018;
Couto et al., 2019) and ultraviolet–visible spectropho-
tometry (UV–VIS) (Souto et al., 2015; Rahman
et al., 2018). These techniques require skilled person-
nel, sophisticated and expensive instrumentation, are
labor intensive, time consuming, environmentally
unfriendly (chemicals used) and can detect only a few
adulterants at a time (Burns & Walker, 2020). There-
fore, robust analytical methods are necessary for effec-
tive assessment of coffee quality. Spectroscopic
techniques such as infrared and nuclear magnetic reso-
nance in combination with chemometrics have gained
a substantial interest in this regard, especially for
determining a coffee’s geographical origin and detec-
tion of adulteration because of their high efficiency,
ease of use, low-cost, rapidity and non-destructiveness
(Toci et al., 2016; Medina et al., 2017; Mendes &
Duarte, 2021). With an easing of chemometric compu-
tation, NIR spectroscopy has been used extensively to
detect different adulterants such as rice, barley, coffee
husks, corn, soil and chicory in coffee (Ebrahimi-
Najafabadi et al., 2012; Winkler-Moser et al., 2015;
Correia et al., 2018; Forchetti & Poppi, 2020; Haro-
hally & Thomas, 2021; Couto et al., 2022). It has also
been used for the determination of coffees’ geographi-
cal origin (Medina et al., 2017).

Considering coffee fraud is an important aspect of
food safety, much simpler techniques are necessary for
the detection of adulteration and determination of a
coffee’s geographical origin. An autoencoder is a type
of artificial neural network that has been used in other
fields for anomaly detection and could have a signifi-
cant application in the coffee industry (Hasan
et al., 2016). Anomaly detection refers to a process of
finding data that are significantly different from others
in a data set. It can be classified into three classes
based on the availability of the labels, that is, super-
vised, semi-supervised and unsupervised anomaly
detection. Out of these, unsupervised anomaly detec-
tion is the most meaningful in practical applications
where anomalies are detected in a data set without
using any annotations (Cheng et al., 2021). One pow-
erful tool in modelling high-dimensional data in an
unsupervised setting is a deep autoencoder. It consists
of an encoder, which compresses the input data into a
few latent space variables also known as a bottleneck,
and a decoder that reconstructs the initial data from
the latent space variables (Finke et al., 2021). The two
parts are trained together as one neural network to
reconstruct the input data as well as possible, that is,
with low reconstruction error by choosing a suitable
loss function. From an anomaly detection perspective,
the autoencoder is typically trained on a normal data
set where it learns a representation that uses the struc-
ture of the training data and is thus specific for this
set. Therefore, if it encounters new data that have dif-
ferent features from the training set, it should not be
able to encode and decode these features resulting in a
higher reconstruction error, which is an indicator of
anomaly (Finke et al., 2021).
Application of autoencoders in the food industry is

still not common. However, there are some reports on
its application in anomaly detection (e.g., changes in
the temperature of milk, its fat content, and the addi-
tion of cleaning solution or water) during milk pro-
cessing using NIR spectroscopic data (Vasafi
et al., 2021). In the context of coffee, other artificial
neural network approaches have been used to quantify
adulterants in coffee and determine a coffee’s geo-
graphical origin. Convolutional neural network tech-
niques are reported as a feasible alternative to classical
chemometrics for the quantification of coffee adulter-
ants (Chakravartula et al., 2022). Although many stud-
ies on the detection of adulterants in coffee and the
determination of coffees’ geographical origin using
spectroscopic data exist in literature (Medina
et al., 2017; Flores-Valdez et al., 2020; Wongsaipun
et al., 2021; Couto et al., 2022), no study has focused
on the use of autoencoders. The interpretation of
results from the autoencoder neural network is much
simpler compared to other techniques, thus, making it
an appropriate approach for coffee fraud detection, as
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well as quality assessment. Therefore, the aim of this
research was to evaluate the ability of an autoencoder
to detect adulterants in roasted coffee, and to deter-
mine the geographical origin of roasted coffee. The
hypothesis of this study was that NIR spectroscopy
complemented by an autoencoder provides a feasible
method to detect adulterants in roasted coffee and to
determine a coffee’s geographical origin (roasted).

Materials and methods

Materials

Raw arabica and robusta coffees were purchased from
Buxtrade GmbH, An den Geestbergen 1, 21 614 Bux-
tehude, Germany, and Hochland Kaffee Hunzelmann
GmbH und Co. KG, Germany, respectively. Raw
chicory root was sourced from Detrade UG, Bruch-
strasse 14 d, Stuhr, Germany. All samples were
roasted at three different roast levels as indicated in
Section 2.2. All samples were then ground and arabica
coffee samples were adulterated with robusta coffee or
chicory at different adulteration levels. The experimen-
tal conditions selected focused on different types and
varying amounts of adulterants and roasting times
with the aim of generating a fair number of distinct
coffee samples that could be present on the market.
The coffees were from the following regions: Kenya,
Guatemala, Colombia and a blend from Central and
South America (all arabica) and India (robusta coffee).

Sample roasting and preparation of adulterated arabica
coffee

The coffee samples were roasted in a Gene Cafe CBR-
101 coffee roaster at 240 °C for 10, 15 and 20 min,
corresponding to light, medium and dark roasts,
respectively. A blend of arabica coffee from Central
and South America was used to prepare adulterated
samples. Chicory root was roasted using the same
roaster at the same temperatures but for 4, 5 and
6 min. Shorter times were necessary to achieve a simi-
lar colour to that of the coffee because of its small size
and low moisture content. All the samples were
ground with an electric grinder (Melitta Calibra EU
1027–01 Mill 160 W, Germany) on a fine grind setting.
Afterwards, adulterated arabica coffee samples at dif-
ferent concentrations were prepared by separately
weighing the ground samples, that is, chicory, arabica
and robusta coffee and mixing mechanically using a
3D mixer (Turbula Willy A. Bachofen, Switzerland)
for 5 min. The mixing of various proportions of adul-
terants yielded six classes of adulterated samples: three
classes containing arabica coffee and chicory (light,
medium and dark roast) and three classes containing
arabica and robusta coffee (light, medium and dark

roast). Each adulterant was added at adulteration
levels ranging from 2.5% to 30% (w/w) in increments
of 2.5% resulting in 72 adulterated samples. All adul-
teration levels were prepared in duplicate.

Acquisition of NIR spectra

The spectra of adulterated arabica coffee samples and
arabica coffee from Kenya, Guatemala, Colombia, and
a blend from Central and South America were
obtained using a Fourier Transform NIR spectrometer
(Bruker, Germany) equipped with OPUS software
(Version 7, Bruker, Germany). The spectra were
acquired in diffuse reflectance mode between the spec-
tral range of 12 500 cm−1 and 3600 cm−1 with 4 cm−1

resolution resulting in 4615 channels. Each spectrum
was recorded as an average of 64 scans. At each roast
level, 212 spectra of the arabica coffee blend from
Central and South America were obtained. For adul-
terated coffee samples and coffee from Kenya, Guate-
mala and Colombia, 50 spectra were recorded for each
roast level (Table 1). NIR data were pre-processed
using the standard normal variate (SNV) method to
remove scattering effects prior to further analysis (Rin-
nan et al., 2009). Preliminary results using different
pre-processing methods showed SNV as the best tech-
nique for data transformation.

Exploratory data analysis

For the unsupervised method, Principal component
analysis (PCA) models were built using Unscrambler
software X version 10.3 (CAMO Software AS., Oslo,
Norway). This enabled visualisation of patterns between
pure arabica coffee and arabica adulterated with
robusta coffee or chicory at different roast levels. To
achieve this, all the wavenumbers of a spectrum were
used and PCA score plots drawn with the first two
principal components. Analysis was done based on the
non-linear iterative partial least squares algorithm
(NIPALS). Prior to PCA analysis, spectra of every sam-
ple were averaged to obtain five replications to reduce
scattering among replications for easy visualisation.

Autoencoder neural network

Autoencoder is an unsupervised neural network that
attempts to copy its input to its output through a back
propagation learning procedure. Its architecture con-
sists of an encoder and a decoder, where the informa-
tion only moves forward, that is, from the input
nodes, through the hidden nodes to the output nodes
(Fig. 1). From the figure, there are fewer variables in
the hidden layer (latent space) than in the input and
output layers. Thus, the autoencoder is forced to
extract in its latent space the variables that signify the

� 2023 The Authors. International Journal of Food Science & Technology published by John Wiley & Sons Ltd

on behalf of Institute of Food, Science and Technology (IFSTTF).

International Journal of Food Science and Technology 2023

Coffee authenticity using an autoencoder L. Munyendo et al. 3

 13652621, 0, D
ow

nloaded from
 https://ifst.onlinelibrary.w

iley.com
/doi/10.1111/ijfs.16283 by D

E
D

A
N

 K
IM

A
T

H
I U

N
IV

E
R

SIT
Y

, W
iley O

nline L
ibrary on [29/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



most prominent features of the input data, that is, it
extracts correlations in the input data that allow for
effective compression of the data (encoding). Finally,
the decoder takes the output of the latent space and
attempts to recreate the input (Finke et al., 2021).

In this study, a three-layer (I*15*O) feedforward
backpropagation neural network was applied. ‘I’, ‘15’
and ‘O’ refer to the input, hidden and output neurons,
respectively. At first, different autoencoder neural

network structures were trained using spectra of pure
arabica coffee (a blend from Central and South Amer-
ica). The best network structure was then selected and
validated using adulterated coffee samples and arabica
coffees from Kenya, Guatemala, Colombia, and a blend
from Central and South America (not included in the
training set). Specifically, 162 spectra of an arabica cof-
fee blend from Central and South America at each
roast level were used to train the autoencoder, that is,
the autoencoder was trained with a spectra of light,
medium and dark roasted coffee samples. Sixteen struc-
tures were tested, each consisting of one or two hidden
layers. The number of neurons within these hidden lay-
ers ranged from three to 20. Before the training process,
the data were randomly split into a training and a test
set. Training was stopped when the mean square error
(MSE) of the test set increased in order to avoid over-
fitting. MSE for each sample was calculated as follows
during the training of the autoencoder.

MSE ¼ 1

n
x
!
in�x

!
out

� �T

x
!
in�x

!
out

� �

where n is equal to the number of wavenumber chan-
nels used, and x

!
in and x

!
out are the spectra (as a vec-

tor) for the input and output of the autoencoder,
respectively, while T refers to the transposed vector.
After autoencoder training, 15 spectra of each adul-

teration level, and those of coffees from Kenya, Guate-
mala, Colombia, and a blend from Central and South
America (not included in the training set) were used to
choose the best performing neural network structure in
terms of prediction. The best neural network structure
was then used for prediction with the remaining data

Table 1 Number of spectra/samples used for calibration set, selection of best neural network structure and prediction set

Total number of

recorded spectra

Number of spectra

for calibration set

Spectra for selection of the

best neural network

structure

Number of spectra

for prediction set

Adulterated arabica coffee samples and coffee from different regions

Central and South_America blend 212 162 15 35

Kenya 50 0 15 35

Guatemala 50 0 15 35

Colombia 50 0 15 35

2.5% 50 0 15 35

5% 50 0 15 35

7.5% 50 0 15 35

10% 50 0 15 35

12.5% 50 0 15 35

15% 50 0 15 35

17.5% 50 0 15 35

20% 50 0 15 35

22.5% 50 0 15 35

25% 50 0 15 35

27.5% 50 0 15 35

30% 50 0 15 35

Figure 1 The autoencoder structure. M and N are the number of

neurons in the hidden layer and in the input and output layer,

respectively. Here N = 4,615 while M was tested with three to

twenty neurons.
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(Table 1). The highest MSE that occurred during
autoencoder training was set as a limit to determine if
a spectrum was different from the training set spectra.
In the prediction set, MSE higher than the set limit
gave important information on the ability of the neu-
ral network to detect adulteration and coffee from dif-
ferent regions, that is, samples with MSE higher than
the highest recorded during training were considered
detectable. The autoencoder neural network was devel-
oped using MATLAB software’s proprietary script
language (version 2019b) with Deep Learning Toolbox
(version 13.0).

Results and discussion

Spectra overview of adulterated samples

Average raw spectra of pure and adulterated (30%
robusta or 30% chicory) arabica coffee samples at
light, medium and dark roast levels are presented in
Fig. 2. The spectral profile as well as curve trend was
similar for all the samples at different roast levels.
Comparing pure arabica coffee and that adulterated
with 30% robusta coffee at light (Fig. 2a), medium
(Fig. 2b), and dark (Fig. 2c) levels, one can observe
slight differences in intensities for light roasted samples
along the spectrum. At light roast, chemical com-
pounds in roasted coffee are less degraded and thus a
sample adulterated with robusta may contain these
compounds in different amounts compared to an
unadulterated sample, which could explain the
observed results. The spectra for medium and dark
roasted samples overlapped, which may be associated
with degradation of compounds that were important
in differentiating the samples (Tfouni et al., 2012). Dif-
ferences in intensities between pure arabica coffee and
that adulterated with 30% chicory were observed for
light (Fig. 2d), medium (Fig. 2e) and dark (Fig. 2f)
roast levels. However, for the dark roast level, one can
observe distinct differences among the samples particu-
larly in the region between 4000 and 6000 cm−1 mainly
related to the C–H, N–H, C–C, O–H and C=O plus
O–H vibrations, which may be correlated with organic
acids, carbohydrates, proteins and chlorogenic acids
(Santos et al., 2016). It is important to note that chic-
ory and coffee have different chemical compounds,
and thus, adding it to coffee could change the compo-
sition of adulterated sample, which may explain these
observations. A study by Gandra et al. (2017) demon-
strates that adding adulterants to coffee reduces its
phenolic compounds and caffeine content.

In general, characteristic peaks were attributed to
the presence of water, carbohydrates, proteins, chloro-
genic acids, caffeine and trigonelline and were
observed in the following spectra regions; 3800–
4400 cm−1 characterised mainly by C–H bond

vibrations; 4500–4900 cm−1 by O–H and the 2nd over-
tone of C=O bond vibrations; 5000–5500 cm−1 by the
1st overtone and combination band of C=O and O–H
bonds; 5600–6100 cm−1 by the 1st overtone of C–H
bonds and 6500–7100 cm−1 by the 1st overtone of O-
H stretching and deformation (Munyendo
et al., 2021).

PCA analysis

Principal component analysis analysis was done to
visualise patterns between pure arabica coffee and that
adulterated with robusta coffee or chicory at adulter-
ation levels ranging from 2.5% to 30% in increments
of 2.5%. (Fig. 3). Two-dimensional score plots for
pure arabica and arabica coffee adulterated with
robusta coffee or chicory at light, medium and dark
roast levels are presented in Fig. 3a–c, respectively. In
all the roasts, PC1 and PC2 accounted for more than
95% of the total explained variance. There is a clear
separation of pure arabica coffee from the ones adul-
terated at all levels indicating possible differences in
chemical composition among the samples (Gandra
et al., 2017). Additionally, PCA efficiently distin-
guished the samples based on the type of adulterant
added, as well as the concentration. Samples with
lower adulterant concentration (i.e., 2.5%) were
located close to pure arabica coffee while those with
high concentration far away. Similar findings have
been reported using different adulterants (Chakravar-
tula et al., 2022). Considering arabica coffee adulter-
ated with chicory at dark roast level (Fig. 3c), there
was a clear discrimination among all adulterant con-
centrations. The positioning of the samples was in the
direction of the positive quadrant of PC1 as the adul-
teration level increases. In general, NIR was able to
effectively identify differences among samples based on
their chemical composition regardless of their roast
level.

Detection of adulteration using autoencoder

The ability of autoencoder to detect adulteration of
arabica coffee with chicory or robusta coffee at light,
medium and dark roast levels was investigated.
Figure 4 presents autoencoder errors of training and

prediction sets of light roasted samples. The limit
(1.46 E-03 units2) was set based on the highest autoen-
coders’ MSE in the training set (Fig. 4a). In general,
samples with MSE higher than the limit were consid-
ered abnormal, meaning they can be detected by
autoencoder as samples different from pure arabica
coffee. All samples adulterated with robusta coffee
(Fig. 4b) and chicory (Fig. 4c) at different concentra-
tions were above the limit. It can therefore be con-
cluded that an autoencoder neural network was able

� 2023 The Authors. International Journal of Food Science & Technology published by John Wiley & Sons Ltd
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Figure 2 Average SNV transformed spectra of pure arabica coffee and that adulterated with either 30% robusta or 30% chicory. Spectra 2a–c
are for arabica coffee adulterated with robusta coffee at light, medium and dark roasts, respectively, while spectra 2d–f are for arabica coffee

adulterated with chicory at light, medium and dark roasts, respectively.
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Figure 3 PCA score plots of pure and adulterated arabica coffee at levels ranging from 2.5% to 30%. Plots. 3a–c are for light, medium and dark

roasts, respectively. Blue colour represents pure arabica; red and green are for arabica coffee adulterated with robusta and chicory, respectively.
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to detect arabica coffee samples at light roasting adul-
terated with robusta coffee or chicory even at very low
concentrations.

Adulteration of all light roasted samples were
detectable. On the contrary, not all samples adulter-
ated with robusta coffee at medium roast were
detected (Fig. 5b). MSE of some replications at 2.5%,
5% and 7.5% adulterations levels were below 1.69 E-
03 units2, which was set as the limit from the training
set. In samples adulterated with 2.5% robusta coffee,
94% of the replications were lower than the limit
(Table 2). Thus, autoencoder could not detect arabica
coffee adulterated with 2.5% robusta coffee. Similar
results were observed with samples adulterated with
5% and 7.5% robusta coffee, with 43% and 80% of
their replications being lower than the limit,

respectively. On the other hand, adulteration of ara-
bica coffee with chicory was detectable in all the sam-
ples (Fig. 5c and Table 3).
Dark roasted samples, showed similar findings as

those of medium roasted samples (Fig. 6). The limit of
detection was equal to 1.77 E-03 units2. For arabica
coffee adulterated with robusta coffee, some replica-
tions at 2.5%, 5% and 7.5% adulteration levels are
below the limit (Fig. 6b). In the case of 2.5% and 5%
levels, the percentage values lower than the limit are
80% and 89%, respectively, demonstrating the inabil-
ity of autoencoder to detect them (Table 2). On the
other hand, only 37% of replications at 7.5% were
below the limit. The average of autoencoder errors at
this level was 1.89 E-03 units2 (Table 2), which was
higher than the limit (1.77 E-03 units2) since most of

Figure 4 Autoencoders’ MSE of light roasted samples. (a) Training set (n = 162) i.e. pure arabica coffee, (b) and (c) prediction sets (n = 455)

i.e. arabica coffee adulterated with robusta coffee and chicory, respectively. Limit (red line) is equal to the highest MSE of the training set.

� 2023 The Authors. International Journal of Food Science & Technology published by John Wiley & Sons Ltd

on behalf of Institute of Food, Science and Technology (IFSTTF).
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the replications (63%) were above the limit (Fig. 6b).
Just as for the medium roasted samples, adulteration
of arabica coffee with chicory at all levels was detected
(Fig. 6c).

It is important to note that at all roast levels, 0%
adulterated arabica coffee was detected as not differ-
ent from the one used in the training set. At all
roast levels, arabica coffee adulterated with chicory
was detectable. This could be explained by the
change in the chemical composition of adulterated
samples, particularly caffeine that is present in coffee
and not in chicory (Nwafor et al., 2017). As for the
case of robusta coffee adulterated samples at medium
and dark roasts, it was interesting to observe that
low levels of adulteration, that is, 2.5%, 5% and
7.5% were not detectable. During coffee roasting,

components in green beans are degraded through dif-
ferent chemical reactions to form other compounds.
Vignoli et al. (2014) reported a decrease in the con-
tent of chlorogenic acids, trigonelline, furfural and
hydroxymethylfurfural, and an increase in caffeine
and melanoidins as roasting degree increased. There-
fore, the inability of the autoencoder to detect low
levels of adulteration may be attributed to the
decrease of important compounds in robusta coffee
due to the roasting effect. Couto et al. (2022) were
able to detect arabica coffee adulterated with robusta
from as low as 1% using NIR with PCA, though
the information on the coffee roasting conditions are
not provided so it is difficult to compare the sensitiv-
ity of the proposed method with the one in this
study.

Figure 5 Autoencoders’ MSE of medium roasted samples. (a) Training set (n = 162) i.e. pure arabica coffee, (b) and (c) prediction sets

(n = 455) i.e. arabica coffee adulterated with robusta coffee and chicory, respectively. Limit (red line) is equal to the highest MSE of the train-

ing set.

� 2023 The Authors. International Journal of Food Science & Technology published by John Wiley & Sons Ltd

on behalf of Institute of Food, Science and Technology (IFSTTF).
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Geographical origin

With the aim to investigate the ability of autoencoder
to detect differences in geographical origin of roasted
coffee, a coffee blend from Central and South America
was used to train the autoencoder (training set). The
prediction set consisted of coffee from Kenya, Guate-
mala and Colombia. The highest autoencoders’ MSE
of the samples in the training set was established as
the limit and thus, samples in the prediction set having
errors higher than the limit were from a different geo-
graphic origin (Table 4). For light and dark roasts, the
limit was 1.46 E-03 units2 and 1.77 E-03 units2,
respectively. Coffee samples from Kenya, Guatemala
and Colombia were above the limit (Fig. 7d, f) for
both light and dark roasting. The average MSE of
these samples were all higher than the limit (Table 4).
Therefore, the autoencoder was able to differentiate

the samples based on their country of origin given the
samples used in the training set were a coffee blend
from Central and South America.
Different results were observed for medium roasted

samples. The limit from the training set was 1.69 E-
03 units2. Only samples from Guatemala and Colom-
bia were clearly detectable by the autoencoder since all
the replications were above the limit (Table 4). For
samples from Kenya, 14% of the replications were
below the limit (Table 4). Nevertheless, the average of
the errors was 1.87 E-03 units2, higher than the limit,
with 86% of the replications being so. Since during
coffee roasting some compounds are degraded and
others formed (Vignoli et al., 2014), it is possible that
at a medium roast, chemical components that were
important in differentiating samples from Kenya and a
blend of Central and South America were similar.
Thus, the autoencoder detected the samples as not

Figure 6 Autoencoders’ MSE of dark roasted samples. (a) Training set (n = 162) i.e. pure arabica coffee, (b) and (c) prediction sets (n = 455)

i.e. arabica coffee adulterated with robusta coffee and chicory, respectively. Limit (red line) is equal to the highest MSE of the training set.

� 2023 The Authors. International Journal of Food Science & Technology published by John Wiley & Sons Ltd
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different from each other even though they were from
different geographical origin.
The geographical discrimination of coffee was

mainly possible because of the differences in the chemi-
cal composition among the samples. Important factors
that affect chemical composition of coffee includes soil,
quantity of rainfall, species, temperature, agricultural
practices, and altitude, which may differ from one
country to another (Bilge, 2020; Zhu et al., 2021).
At all roast levels, a coffee blend from Central and

South America (not included in the training set) was
part of the prediction set to check the efficiency of the
autoencoder. All replications of this coffee blend were
below the limit at all roast levels (Fig. 7d–f). This
demonstrates that the autoencoder was able to detect
that the coffee was not different from the one used for
training. Other chemometric techniques in conjunction
with NIR spectroscopy have shown their ability to
differentiate coffee from different geographical origin
(Minh et al., 2022). Authentication of a coffee’s geo-
graphical origin is becoming gradually of interest con-
sidering its influence on the sensory properties of the
beverage and ultimately its price. Usually, skilled
tasters whose responses are subjective evaluate the ori-
gin of coffee. Additionally, it is a challenge for one
taster to reliably identify a large number of coffee ori-
gins (Baqueta et al., 2019). Therefore, the autoencoder
presents a fast, non-subjective and simple technique
for authenticating the origin of roasted coffee.

Conclusion

The authenticity of coffee regarding its safety and geo-
graphical origin is important for consumers, processors
and traders. As a new method of machine learning
with potential applications in the food industry, deep
autoencoder represents a powerful tool to detect adul-
terants in coffee, as well as differentiate coffees from
different geographical origins. Arabica coffee adulter-
ated with as low as 2.5% chicory at all roasts were
detectable. For robusta adulterated samples, detection
was possible at adulteration levels above 7.5% at med-
ium and dark roasts. Additionally, it was possible to
differentiate coffee samples from different geographical
origins. PCA proved to be a suitable chemometric
model for the visualisation of data, where samples
were grouped based on the type and concentration of
the adulterant. In general, autoencoder proved to be
feasible in detecting adulterants in coffee as well as for
the geographical origin of roasted arabica coffee.
Therefore, this method could be adopted in the coffee
industry as a quality control tool to verify the authen-
ticity of their products. In this research, only two adul-
terants were investigated and thus it would be of
interest to examine the capability of autoencoder toT

a
b
le

4
P
e
rc
e
n
ta
g
e
o
f
sp

e
ct
ra

w
h
o
se

a
u
to
e
n
co

d
e
rs
’
M
S
E
w
e
re

b
e
lo
w

a
n
d
a
b
o
v
e
th
e
li
m
it
p
lu
s
M
S
E
m
e
a
n
a
n
d
st
a
n
d
a
rd

d
e
v
ia
ti
o
n
fo
r
sa

m
p
le
s
in

th
e
p
re
d
ic
ti
o
n

se
t
(c
o
ff
e
e
fr
o
m

d
if
fe
re
n
t
g
e
o
g
ra
p
h
ic
a
l
o
ri
g
in
)

L
ig
h
t
ro
a
s
t

M
e
d
iu
m

ro
a
s
t

D
a
rk

ro
a
s
t

V
a
lu
e
s

b
e
lo
w

th
e

li
m
it

(%
)

V
a
lu
e
s

a
b
o
v
e
th
e

li
m
it

(%
)

M
e
a
n
o
f

M
S
E

(u
n
it
s
2
)

S
ta
n
d
a
rd

d
e
v
ia
ti
o
n
o
f

M
S
E
(u
n
it
s
2
)

V
a
lu
e
s

b
e
lo
w

th
e

li
m
it

(%
)

V
a
lu
e
s

a
b
o
v
e
th
e

li
m
it

(%
)

M
e
a
n
o
f

M
S
E

(u
n
it
s
2
)

S
ta
n
d
a
rd

d
e
v
ia
ti
o
n
o
f

M
S
E
(u
n
it
s
2
)

V
a
lu
e
s

b
e
lo
w

th
e

li
m
it

(%
)

V
a
lu
e
s

a
b
o
v
e
th
e

li
m
it

(%
)

M
e
a
n
o
f

M
S
E

(u
n
it
s
2
)

S
ta
n
d
a
rd

d
e
v
ia
ti
o
n
o
f

M
S
E
(u
n
it
s
2
)

G
e
o
g
ra
p
h
ic

o
ri
g
in

C
e
n
tr
a
l
a
n
d

S
o
u
th
_A

m
e
ri
ca

b
le
n
d

1
0
0

0
6
.2
9
E
-0
4

1
.1
7
E
-0
4

1
0
0

0
8
.9
7
E
-0
4

2
.5
1
E
-0
4

1
0
0

0
8
.6
1
E
-0
4

2
.1
2
E
-0
4

K
e
n
y
a

0
1
0
0

3
.0
9
E
-0
3

1
.8
8
E
-0
4

1
4

8
6

1
.8
7
E
-0
3

2
.0
5
E
-0
4

0
1
0
0

3
.9
4
E
-0
3

4
.3
6
E
-0
4

G
u
a
te
m
a
la

0
1
0
0

2
.7
7
E
-0
2

1
.1
5
E
-0
3

0
1
0
0

1
.1
0
E
-0
2

4
.8
1
E
-0
4

0
1
0
0

1
.0
8
E
-0
2

4
.8
7
E
-0
4

C
o
lo
m
b
ia

0
1
0
0

5
.9
7
E
-0
3

4
.8
8
E
-0
4

0
1
0
0

5
.0
7
E
-0
3

3
.2
2
E
-0
4

0
1
0
0

4
.6
6
E
-0
3

6
.2
3
E
-0
4

� 2023 The Authors. International Journal of Food Science & Technology published by John Wiley & Sons Ltd

on behalf of Institute of Food, Science and Technology (IFSTTF).

International Journal of Food Science and Technology 2023

Coffee authenticity using an autoencoder L. Munyendo et al.12

 13652621, 0, D
ow

nloaded from
 https://ifst.onlinelibrary.w

iley.com
/doi/10.1111/ijfs.16283 by D

E
D

A
N

 K
IM

A
T

H
I U

N
IV

E
R

SIT
Y

, W
iley O

nline L
ibrary on [29/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



detect other possible adulterants and mixtures of dif-
ferent adulterants in coffee samples.
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