
Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

RESEARCH ARTICLE

Multivariate and Univariate Prediction of Stock Prices using an
Optimized Gated Recurrent Unit with a Time Lag Proportional to
the Wavelet Approximation Coefficient

Luyandza Sindi Mamba*1 | Antony Ngunyi2 | Lawrence Nderu3

1Department of Mathematics, Institute for
Basic Sciences, Technology and
Innovation, Nairobi, Kenya, Email:
sindi.luyandza@students.jkuat.ac.ke

2Department of Statistics and Actuarial
Science, Dedan Kimathi University of
Technology, Nyeri, Kenya, Email:
antonyngunyi@gmail.com

3School of Computing and Information
Technology, Department of Computing,
Jomo Kenyatta University of Agriculture
and Technology, Nairobi, Kenya, Email:
lnderu@jkuat.ac.ke

Correspondence
*Luyandza Sindi Mamba. Email:
sindi.luyandza@students.jkuat.ac.ke

Abstract

The advancement of precise prediction models is still very helpful across a wide
range of fields. Deep learning models have demonstrated strong performance and
great accuracy in stock price prediction. However, the vanishing gradient problem,
which some activation functions have exacerbated, has a significant impact on these
models. In order to combat poor convergence, disappearing gradients, and significant
error metrics, this study suggests using the Optimized Gated Recurrent Unit (OGRU)
model with a scaled mean Approximation Coefficient (AC) time lag. This study
employed the Rectified Linear Unit (ReLU), Hyperbolic Tangent (Tanh), Sigmoid
and Exponential Linear Unit (ELU) activation functions. Real-life datasets were used
including the daily Apple and 5-minute Netflix closing stock prices, decomposed
using the Stationary Wavelet Transform (SWT). The decomposed series formed a
multivariate model which was compared to a univariate model with similar hyper-
parameters and different default lags. The Apple daily dataset performed well with
a Default_1 lag, using a univariate model and the ReLU, attaining 0.01312, 0.00854
and 3.67 minutes for RMSE, MAE and runtime. The Netflix data performed best with
the MeanAC_42 lag, using a multivariate model and the ELU achieving 0.00620,
0.00487 and 3.01 minutes for the same metrics. The study concluded that the OGRU
is made resilient to the vanishing gradient problem by avoiding the Sigmoid activa-
tion function and applying the proposed lag on high frequency data with the ELU
activation function using decomposed data.
KEYWORDS:
Optimized Gated Recurrent Unit; Approximation Coefficient; Stationary Wavelet Transform; Activation
Function; Time Lag

1 INTRODUCTION

According to the Efficient Market Hypothesis (EMH), financial time series are virtually always unpredictable since every signif-
icant piece of information, including past values and volumes, that can affect the price, is already taken into consideration. This
indicates that the price is independent of any trend or pattern and responds fast to new information. The stock price will always

0Abbreviations: AC, Approximation Coefficient; DC, Detail Coefficient; GRU, Gated Recurrent Unit; LSTM,Long Short-Term Memory; OGRU, Optimized Gated
Recurrent Unit; ReLU, Rectified Linear Unit; RMSE, Root Mean Squared Error; SWT, Stationary Wavelet Transform

2 MAMBA ET AL

be the fair one, making it unpredictable, and any kind of forecasting or prediction will perform no better than random guess-
ing, according to the Random Walk Theory (Ding et al., 2014)1. Financial time series are becoming even more non-stationary
nowadays, in part due to the great pace at which big data is being produced, often even faster than real time. Because of large
anomalies, traditional statistical methods of forecasting and prediction, such as filter and autoregressive models, are becoming
less effective at predicting financial sequences (Benrhmach et al., 2020)2.But with the development of artificial intelligence
(AI), actual evidence has demonstrated that stock price movement is predictable (Jegadeesh and Titman, 1993)3. The vanishing
gradient problem, which makes convergence difficult, raises prediction errors, and lengthens model computation time, has been
a challenge for deep learning models over time. As a sequence gets longer, the gradient tends to get smaller and disappear, which
is known as the "vanishing gradient problem." Finding a lagging mechanism for deep learning models is extremely desirable
because it inhibits the model from taking into account all previous data, which lowers the likelihood that it would encounter the
vanishing gradient problem (Nguyen et al., 2021)4. Additionally, studies have revealed that several academics have combined
the wavelet transform with pure and hybrid deep learning models to predict stock prices. In order to predict stock price, this
research took into account a model that combines the Wavelet Transform with an Optimized Gated Recurrent Unit (OGRU) neu-
ral network that is immune to vanishing gradients. Myriad stock prediction websites still have significant prediction errors, and
the bigger they are, the more expensive they are for investors. In order to decompose the time series data and lessen its inherent
noise, the study suggested using the Wavelet Transform. To establish a temporal lag and lessen long-term reliance, the wavelet
transform’s scaled mean of the approximation coefficient (AC) was applied. A vanishing gradient resilient OGRU model was
trained using the deconstructed data in addition to a robust prediction model. Together, the time lag, wavelet-decomposed data,
and OGRU model will solve the vanishing gradient problem and enable quicker and more precise predictions of the daily closing
prices of Apple Inc. and Netflix.

2 LITERATURE REVIEW

This section reviews relevant literature on methods for calculating the temporal lag. Additionally, a summary of pertinent
research on forecasting models is provided, including everything from neural networks to conventional statistical techniques.

2.1 Related Work on Time Lags
Numerous methods have been used to determine the time lag to be used in statistical forecasting models as well as neural
networks. Xiao et al. (2017)5 implemented an accurate multi-step-ahead time series forecasting using the Kalman Filtering
Model (KFM) in conjunction with Echo Neural Networks (ESN), dubbed the E-KFM model using arbitrary lags of 1, 6, 12
and 18. The Recurrent Neural Network-based Granger Causality estimator (RNN-GC) model proposed by Wang et al. (2018)6
was efficient in modelling directional linked analysis in multivariate series and it allowed varying-length time lags in the brain
connectivity detection problem. Moreover, Petneházi (2019)7 suggested using the Gated Recurrent Unit (GRU) and Long Short-
Term Memory (LSTM) for forecasting hourly bike rentals. Two types of lags were used; recent values (1, 2 and 3 lags) and
distant values (24, 48 and 168 lags). Also, Munkhdalai et al. (2020)8 proposed a hybrid Vector Autoregressive and Gated
Recurrent Unit (VAR-GRU) to establish the most important variables using Granger Causality and an appropriate lag length for
multivariate stock-price prediction. The models used with the VAR proved to have the lowest error metrics in all experiments.
Lastly, Surakhi et al. (2021)9 implemented a comparative study of the autocorrelation function, an LSTM used with a Genetic
Algorithm (GA) to enhance the choice of a time-lag value and another LSTM that chose the most accurate prediction given the
optimal lag ranging between 24 and 168.

2.2 Related Work on Forecasting Models
Al Wadi et al. (2010)10 and Mousazadeh et al. (2015)11 used Autoregressive Integrated Moving Average (ARIMA) and the
Wavelet Transform in the prediction of stock prices. The wavelet transform left the financial data with no outlier, seasonal effects
and non-constant mean and variance and improved accuracy of the ARIMA (Al Wadi et al., 2010)10. On the other hand, the
ARIMA was compared to the LSTM in forecasting the stock price of four companies after the data was denoised using the
wavelet transform (Skehin et al., 2018)12. The study used the pure ARIMA and LSTM models as well as the WAV-ARIMA and
WAV-LSTM and these were compared using RMSE.

MAMBA ET AL 3

Some researchers used the wavelet transform in conjunction with Artificial Neural Networks (ANNs) for the prediction of
stock prices. Lamhiri et al. (2014)13 and Chandar et al. (2016)14 used the Discrete Wavelet Transform (DWT) with a simple
ANN for price index and stock price prediction. These models’ performance in terms of error metrics as well as computational
time was enhanced. Using the Haar wavelet transform with Multiple Time Windows for Apple Inc. stock price prediction also
reduces the RMSE significantly (Kulaglic and Üstündağ, 2018)15. Meanwhile, Jarrah and Salim (2019)16 predicted the Saudi
stock price trends based on previous price history using the DWT and RNN using Back Propagation Through Time (BPTT).
The method (DWT+RNN) predicted the period’s price more accurately than the ARIMA model using MSE, RMSE and MAE
criteria.

Some researchers have used deep neural networks to predict the financial variables. Štifanić et al. (2020)17 proposed a model
for forecasting stock and commodity prices by integrating a five-level Stationary Wavelet Transform (SWT) and the Bidirectional
LSTM (BDLSTM) using a 128-day lookback period for the five-day West Texas Intermediate (WTI) crude oil forecast. Also,
Qiu et al. (2018)18 proposed a prediction model that used LSTM and an attention technique, in which the Wavelet Transform
was used to denoise the long-term financial data as well as extract and train its features. Althelaya et al. (2021)19 proposed
multiresolution analysis and a stacked LSTM to predict financial time series with a comparison of multiresolution methods with
SWT and the Empirical Wavelet Transform (EWT). Deep learning, multiresolution analysis and decomposition of data had
impeccable effects on the performance of a model.

The wavelet transform was also used with the Gated Recurrent Unit (GRU) neural network. Biazon and Bianchi (2020)20
developed the DWT Gated Recurrent Unit Network model (DWT-GRU) for stock exchange data. The DWT-GRU consisted of
combining the DWT’s denoising and decomposition capacity with pre-processed data to be trained by an RNN based primarily
on the Gated Recurrent Unit Neural Network (GRUNN). The wavelet preprocessing significantly improved the results of both
LSTM and GRU networks (Arévalo et al., 2018)21. Lastly, the Optimized Gated Recurrent Unit (OGRU) is the latest modification
of the GRU was done by Wang et al. (2018)22 to augment the learning and structure of the GRU and preventing present forgetting
information hindering the update gate. The GRU significantly performed better that the GRU in both univariate and multivariate
time series. In this study, the same model will be used in conjunction with the wavelet transform and a scaled mean AC time
lag, while altering the activation functions.

3 MATERIALS AND METHODS

In order to forecast time series data for Apple Inc. and Netflix Inc., this article suggests using the OGRU model with a time lag
that is impervious to vanishing gradients. The direction the study took is outlined in the following figure:

FIGURE 1 Work Flow

This section describes the vanishing gradient resilient OGRU model, the performance measures that were taken into con-
sideration, the SWT that was used to decompose the data, and the determination of the time lag using the AC from the
SWT.

4 MAMBA ET AL

3.1 Stationary Wavelet Transform (SWT)
The Shifted Invariant (SI) wavelet transform or Translation Invariant (TI) wavelet transform is another name for the SWT.
The SWT uses the identical formulas as the Discrete Wavelet Transform (DWT), with the exception that the signal is never
sub-sampled. Instead, the signal is up-sampled with each level of decomposition by a factor of two, which makes the wavelet
shift-invariant. The SWT is better for signal denoising since it is more redundant than DWT. The AC and DC in this case are
the same length as the original signal at each level. The Daubenchies2 (db2) mother wavelet was employed in this study.

To determine the level to which we decompose the data, we use the rule:

𝑗 = 𝑙𝑜𝑔(𝑛) (1)
where 𝑛 is the length of the series.

Thus, the stock price time series can be reconstructed by a series of projections on the mother and father wavelets with
multilevel analysis indexed by 𝑘 ∈ 0, 1, 2,… and by 𝑗 ∈ 0, 1,… , 𝐽 , where 𝐽 denotes the number of multi-resolution scales.
The orthogonal wavelet series approximation to a signal 𝑠(𝑡) is formulated by:

𝑠(𝑡) = 𝐴𝐽 (𝑡) +𝐷𝐽 (𝑡) +𝐷𝐽−1(𝑡) +… +𝐷1(𝑡) (2)
where 𝐴𝐽 (𝑡) is the coarsest approximation of the signal. The multi-resolution decomposition of 𝑠(𝑡) is the sequence of

{𝐴𝐽 (𝑡), 𝐷𝐽 (𝑡), 𝐷𝐽−1(𝑡),… , 𝐷1(𝑡)}
where,

𝐴𝐽 (𝑡) =
∑

𝑘
𝑎𝑗,𝑘𝜑𝑗,𝑘(𝑡) (3)

𝐷𝐽 (𝑡) =
∑

𝑘
𝑑𝑗,𝑘𝜓𝑗,𝑘(𝑡) (4)

The expansion coefficients 𝑎𝑗,𝑘 (known as the approximation coefficients) and 𝑑𝑗,𝑘 (known as the detail coefficients).

3.2 Determining the time lag
The lag for time series to be input into a neural network using the wavelet transform has never before been determined. This
study used the AC of the Wavelet Transform, which is given by 𝐴𝐽 (𝑡), which is defined in Equation (3), to compute the lag.
The lag employed in the neural network was therefore the mean of the normalized AC increased by a factor of 100 because
this portion of the Wavelet Transform indicates the trend element of the series or signal. Three procedures will be taken to
determine the time lag: normalizing the AC, determining the average AC, and applying a factor of 100.

Normalisation of Approximation Coefficient
The AC will be a sequence of values that define the series’ trend once the time series has been divided into AC and DC. The
observation is more random and has a low correlation with the trend when the AC is less. Normalisation will take the form:

𝐴′
𝐽 (𝑡) =

𝐴 − 𝑚𝑖𝑛(𝐴)
𝑚𝑎𝑥(𝐴) − 𝑚𝑖𝑛(𝐴)

(5)
where 𝐴′

𝐽 (𝑡) is the normalised value of the AC, the values are between the range of 0 and 1.

Average of the Approximation Coefficient
The normalised values of AC will then be averaged in order to find the average trend in the following manner:

�̄�′
𝐽 (𝑡) =

∑𝑛
𝑖=1 𝐴

′
𝐽 (𝑡)

𝑛
(6)

where �̄�′
𝐽 (𝑡) is the average AC, 𝐴′

𝐽 (𝑡) is the normalised values of the ACs and 𝑛 is the length of the series.

Applying a Multiplier
A mutiplier of 100 was used on the average lag, such that the lag will be given by:

MAMBA ET AL 5

𝑀𝑒𝑎𝑛𝐴𝐶 = 100 ∗ �̄�′
𝐽 (𝑡) (7)

The 𝑀𝑒𝑎𝑛𝐴𝐶 will be used to determine ℎ𝑡−1 which is the hidden state for the previous time period. That is, how far back the
model will look.

3.2.1 Justifying the time lag

TABLE 1 Descriptive Statistics of the Approximation Coefficient
Statistic Apple Netflix
Minimum 0.95 824.37
Maximum 711.36 3918.08
Average 115.04 2125.75

• Normalisation: The range in AC is too large and in order to maintain the relationship between among the original data
values.

• Average of AC: To find the average trend to determine the lag of the model.
• Multiplier: The lag must be in a scale that is relevant to the data.

This study adopted an approach that is similar to Surakhi et al. (2021)9 where the autocorrelation coefficient was used to
determine a lag for hourly data.

3.3 Default lags
The study sought to compare the proposed Mean AC lag to other lags for both datasets, while the Default_1, the Default_21
were used for the Apple dataset. The Default_1 and the Default_24 were used for the Netflix dataset. The Default_21 time lag
(for the Apple dataset) is the equivalent of a one month lookback period, taking into account that the stock market does not
operate on weekends. Alternatively, the Default_24 (for the Netflix dataset) is the equivalent of a 2-hour lookback period.

TABLE 2 Justification of Default Lags
Dataset Lag Related Work Citation Application to study

Apple Default_1 1, 6, 12 and 18 previous
steps Xiao et al. (2017)5 1 day to predict daily data

Default_21 1, 2, 3, 24, 48 and 168
hours to predict daily data Petneházi(2019)7 Extended 168 hours to 21

days (a month) to predict daily data

Netflix Default_1 1 previous step to
predict the next

Xiao et al. (2017)5 and
Petneházi(2019)7

1 previous period used to predict
the next

Default_24 24 hours to predict hourly
data Surakhi et al. (2021)9 24*5 = 120 minutes = 2

hours to predict 5-minute data

Table 2 shows a brief summary of the motivation behind the default lags whose performance was compared to the performance
of the proposed Mean AC lag.

6 MAMBA ET AL

3.4 Vanishing Gradient Resilient Optimized Gated Recurrent Unit with time lag
The decomposition coefficients that are resultant from the decomposition using the SWT were subjected to the Granger Causality
test to determine if they each Granger-caused the closing stock price before being fed into the neural network. The proposed
model differs slightly from the OGRU proposed by Wang et al. (2019)22 in that it employs different activation functions for
the OGRU layers. The paper used the Tanh, but this proposed methodology will use a ReLU, Sigmoid and the ELU. The
ReLU is newer than all other activation functions, including the Sigmoid and Tanh. It is also very easy to use and effective
at circumventing the limitations of other previously popular activation functions and it is not largely affected by the vanishing
gradient problem. Likewise, the ELU activation function smooths slower than the ReLU and it produces negative inputs, thus
making it a great substitute for the ReLU. This model was first fit on the training data and then tuning of parameters made use
of the validation set. Lastly, the test set was used as the actual price, so that residuals are calculated using the predicted price.

3.4.1 Model Assumptions
Before undertaking this study, the following assumptions were considered in determining the methodology:

1. Different activation functions perform differently for different models and datasets.
2. The OGRU model can be applied to both univariate and multivariate datasets.
3. The OGRU model works on time series data of different frequencies and sample sizes.

3.4.2 Model Configuration
The model was configured using the following preprocessing, split, layers and trainable parameters.

Normalising Data
Before training the model, the data (decomposition coefficients used as regressors and the regressand) was first normalised using
the MinMaxScaler as shown below:

𝑥′ =
𝑥𝑖 − 𝑚𝑖𝑛(𝑥𝑖)

𝑚𝑎𝑥(𝑥𝑖) − 𝑚𝑖𝑛(𝑥𝑖)
(8)

Splitting Data
Thereafter, the training and test sets were determined. In this study, a ratio of 70:30 was used to determine the training:test split,
and the test set was further split into the validation set. Of note here is that the splitting criteria was set "no shuffling" because
this is time series data.

Dropout and Dense Layer
In order to avoid overfitting the model applied drop-outs of 0.1 or 0.2 (10 or 20 percent) and to make the model more robust,
the model added a dense layer. This study also used 16, 32, 48 and 64 neurones depending on the most optimal. On the other
hand, the study used 40 epochs for the hyperparameter tuning stage and 100 epochs to fit the optimal model.

Loss Function and Optimizer
The loss function that was used for the gradient descent stage of training the model was the Mean Square Error (MSE) and this
study opted to use the ’ADAM’ optimizer. This optimizer was chosen because it is the best compared to other optimizers in
terms of computational time and limiting the parameters to be tuned.

Trainable Parameters
Trainable parameters are also known as weights of the neural network model. Too many weights in a model cause overfitting for
simple task and small datasets. This was not an issue in this study because the data used was highly unstationary, which made
more weights more suitable in the learning process. In this study, weight distribution relied on random numbers and these were
not tuned. Parameters in a GRU and subsequently, an OGRU are calculated as:

𝑝 = 3(𝑛2 + 𝑛𝑚 + 2𝑛) (9)

MAMBA ET AL 7

where 𝑝 is the number of parameters, 𝑚 is the input dimension and 𝑛 is the output dimension. The three comes from the 3
sets of operations requiring weight matrices; that is the new candidate vector, update gate and reset gate as specified below.

Early Stopping
In order to avoid overfitting and having unnecessarily long training periods, the study employed the Early Stopping callback.
This function was specified as:

𝑒𝑠 = 𝐸𝑎𝑟𝑙𝑦𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔(𝑚𝑜𝑛𝑖𝑡𝑜𝑟 =′ 𝑟𝑜𝑜𝑡_𝑚𝑒𝑎𝑛_𝑠𝑞𝑢𝑎𝑟𝑒_𝑒𝑟𝑟𝑜𝑟′, 𝑚𝑜𝑑𝑒 =′ 𝑚𝑖𝑛′) (10)
This callback functionality is employed at the training stage of the model, and it monitors the RMSE in this study which

terminated the training process as soon as the RMSE stopped improving significantly. The callback also makes projections for
the RMSE in future iteration and terminates the training process if the RMSE will not improve. In essence, Early Stopping
terminates under the rule:

𝑅𝑀𝑆𝐸∗ = 𝑚𝑖𝑛(𝑅𝑀𝑆𝐸1, 𝑅𝑀𝑆𝐸2,… , 𝑅𝑀𝑆𝐸𝑛−1, 𝑅𝑀𝑆𝐸𝑛) (11)
where𝑅𝑀𝑆𝐸∗ is the RMSE where the iterations terminate the training process, 𝑛 is the total number of epochs or iterations.

This study did not apply an improvement threshold because the training process could be easily tampered with, especially
because the threshold could be any number.

3.4.3 Model Architecture
Taking the input time series to be (𝑥1, 𝑥2, …, 𝑥𝑡), the model architecture will take the form shown in Figure 2.

FIGURE 2 The Neural Structure of the vanishing gradient resilient OGRU

It is important to note that wherever there is ℎ𝑡−1, 𝑡 − 1 signifies the time steps the model will look back at and this will be
determined by the lag as shown in the previous subsection.

The reset gate will be given by:
𝑟𝑡 = 𝜎(𝑊𝑟[ℎ𝑡−1, 𝑥𝑡]) (12)

where 𝜎 is the sigmoid activation function, 𝑊𝑟 is the weight between the input and ℎ𝑡−1 represents the standard GRU unit
output at time (𝑡 − 1) and 𝑥𝑡 represents the input at time 𝑡.

8 MAMBA ET AL

The update gate will be given by:
𝑧𝑡 = 𝜎(𝑊𝑧[ℎ𝑡−1, 𝑥𝑡 ∗ 𝑟𝑡]) (13)

where 𝑊𝑧 represents the weight between the input and ℎ𝑡−1 in the update gate and 𝑟𝑡 is the reset gate at time 𝑡.

The new candidate value vector created with the ReLU activation will be given by:
𝑛𝑡 = 𝑟𝑒𝑙𝑢(𝑊 ∗ [𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡]) (14)

where 𝑊 represents the update gate’s output 𝑧𝑡 and the weight between the inputs. The ReLU above is a placeholder that
represents the other activation functions to be used. While the hidden layers will be given by:

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + (𝑧𝑡 ∗ 𝑛𝑡) (15)
Finally, the output will be given by:

𝑦𝑡 = 𝜎(𝑊𝑜 ∗ ℎ𝑡) (16)
where 𝑊𝑜 represents the weight of ℎ𝑡.

The fine-tuned vanishing gradient resilient OGRU model which has been trained and validated will be used to make predictions
and these will be compared to the actual test data. This will determine whether or not the model will be fit enough to be used
by traders, portfolio managers and investors to hedge against risk and decision-making.

3.5 Validating the model using Grid Search
Tuning for hyperparameters is very pivotal in deep learning because it massively improves the performance of models. Distinct
combinations of the hyperparameters from Table 3 were assessed for the lowest error. Grid search performed loops of the
different combinations and fit the model on the training data. The evaluation metrics for determining the best combination of
hyperparameters was the RMSE.

TABLE 3 Dictionary of Hyperparameters
Hyperparameter Vector
Neurones [16, 32, 48, 64]
Batch Size [8, 16, 32, 64]
Drop-out [0.1, 0.2]

The hyperparameter table was formulated as an extension of work done by Miao (2019)23, Adhinata and Rakhmadani (2021)24
and Khalil et al. (2021)25. Advantages of grid search is that the search space is predetermined in the form of tuples, which makes
it easy to control how long the process takes. When compared to manual search, it is computationally less intensive. Finally,
grid search is advantageous because it allows the specification of the metric to be minimized or maximised, in this study, over
and above the validation loss, RMSE was a chosen stopping metric. Even though it suffers from high dimensional spaces, it can
easily to parallelized since the hyperparameter spaces are usually independent of each other.

3.6 Evaluation Metrics
To determine the accuracy of the vanishing gradient resilient OGRU model and to be able to compare it to the OGRU model with
Tanh activation function, the study will use the RMSE and MAE as stated above. These are the most commonly used measures
of prediction accuracy according to literature. This is because both measures are easy to calculate and interprete, and they are
scale-dependent. Using both measurements will be advantageous because models that minimise the MAE forecast the median,
and those that minimise the RMSE forecast the mean. Specifically, these evaluation metrics will be calculated as follows:

MAMBA ET AL 9

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2 (17)

𝑀𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1

|

|

𝑦𝑖 − �̂�𝑖|| (18)
where 𝑛 is the number of observations, 𝑦𝑖 is the actual stock price and �̂�𝑖 is the estimated stock price. The study will also use

computational time or runtime as another evaluation metric.

𝑟𝑢𝑛𝑡𝑖𝑚𝑒 = 𝑡𝑛 − 𝑡0 (19)
where 𝑡𝑛 is the time when the model converges and 𝑡0 is the time when the model begin running.

3.7 Scientific Contributions
In conclusion, this study has the following scientific contributions:

1. The OGRU model has never been stacked with drop-out layers in between and one dense layer.
2. The time lag for the OGRU neural network is determined using the scaled Mean AC. This method used has never been

used to determine a lag before.
3. The OGRU model has not yet been used with the SWT.
4. The OGRU model has not been used with stock price datasets before.
5. The OGRU model has not been implemented with varying activation functions before.

3.8 The Datasets
The study employed 5040 observations of the Apple Daily Closing Stock Price from April 1, 2002 to April 4, 2022. The study
also employed 100,000 observations of the Netflix 5-Minute Closing Stock Price from May 22, 2017 at 12:15 PM through July
1, 2022 at 16:55 PM. While the Netflix data came from Forex Robot Factory, the Apple data came from Yahoo Finance. To
more clearly show the structure and trend of the data, both time series were resampled using the weekly mean.

FIGURE 3 Daily (resampled by weekly mean) Closing Stock Price for Apple Inc. for the period between April 1, 2002 to April
4, 2022

10 MAMBA ET AL

FIGURE 4 5-Minute (resampled by weekly mean) Closing Stock Price for Netflix Inc. for the period between May 22, 2017 at
12:15PM to July 1, 2022 at 16:55PM

4 RESULTS AND DISCUSSION

All data-cleaning and preprocessing as well as experiments were performed in Python3 using a Tensorflow backend. The com-
puter operating system used was the Windows 10, the basic configuration is: CPU is Intel Core i5 with 16GB RAM and 2.40GHz
processing speed.

4.1 Stationary Wavelet Transform (SWT) Decomposition
The study used the SWT to decompose the data into Approximation Coefficients (AC) and Detail Coeffients (DC). The
Daubenchies2 (db2) mother wavelet was used for the decomposition on the Wavelet Toolbox.

TABLE 4 Results of SWT Decomposition
Dataset Level of Decomposition Approximation Coefficient Detail Coefficients
Apple 𝑙𝑜𝑔(5040) = 3.7 ≈ 4 AC Level 4 DC Level 1, Level 2, Level 3 and Level 4
Netflix 𝑙𝑜𝑔(100000) = 5 AC Level 5 DC Level 1, Level 2, Level 3, Level 4 and Level 5

The coefficients specified above were used as inputs for the next stage for the multivariate vanishing gradient-resilient OGRU
model.

4.2 Model Configuration
The Mean AC lags were established to be 16 and 42 for the Apple and Netflix datasets, respectively. The decomposition coeffi-
cients were used as inputs for the model. These inputs were normalised to improve training accuracy and reduce computational
time. The data was split into training, validation and test sets and it was not shuffled because it is sequential data. The model was
built using two OGRU layers with two drop-out layers after each OGRU and finally a dense layer at the end. The best model for
the two datasets was searched out by using grid search subject to the hyperparameters specified in Table 3.

4.3 Experiments and best model configuration
The study performed some graphical summaries for the errors according to the models, activation functions and lags for the
different datasets in boxplots and scatter diagrams, before exploring the performance of the best models. A total of 48 models
were tuned for hyperparameters for both datasets. The lag proposed in this study is depicted as MeanAC_16 (for Apple) and

MAMBA ET AL 11

MeanAC_42 (for Netflix), the Default_1 is used for both datasets and the Default_21 (for Apple) and the Default_24 (for Netflix).
Figure 5 shows the summary of RMSE and Runtimes as depicted by the lag use and the activation function. On the left, it is
noted that the Default_1 lag has very low runtimes and errors are evenly distributed.

FIGURE 5 Graphical Summary of RMSE for the Apple Model Performance

The Default_21 lag has the lowest errors, but high runtimes while the MeanAC_16 lag has overall low errors and moderate
runtimes. The proposed lag provides the perfect trade-off between errors and runtime. On the other hand, the ELU activation
function is the best in terms of keeping RMSE below 0.2 and runtimes under 17 minutes. The Tanh activation function also
performed well and the Sigmoid proved to be inefficient in terms of keeping errors low.

Moreover, Figure 6 shows that the model performance for Netflix is relatively better in terms of RMSE, but not runtime (which
is expected since this dataset had 100000 observations). The MeanAC_42 lag contributed to high runtimes, especially because
there was an outlier model with a runtime of 120 minutes.

FIGURE 6 Graphical Summary of RMSE for the Netflix Model Performance

However, the proposed lag still managed to keep errors low and most runtimes were under 30 minutes. The Default_1 lag
performed very well for this dataset. On the activation function part on the right, the ELU still performed best and kept errors
under 0.1 and runtimes below 40 minutes. The ReLU also performed well, but the Sigmoid was the least accurate in terms of
both errors and runtimes (just like in the Apple dataset).

12 MAMBA ET AL

Figure 7 shows summaries for both RMSE and MAE according to dataset and activation function. The Tanh contributed to
very low error metrics, followed by the ELU. The highest contributor to large errors was the Sigmoid activation function and
the ReLU was intermediate.

FIGURE 7 Overall Error Metrics by Activation Function and Dataset

The Netflix dataset has lower errors compared to the Apple dataset. The vanishing gradient resilient OGRU performs better
for big data, which has a high frequency.

4.4 Best Model Performance
The best four models were chosen from each activation function for each of the datasets.

4.4.1 Apple Daily Closing Stock Price Model Performance
The Apple daily dataset performed best with the Default_1 and Default_21 lags as shown in Table 5. The indication here was
that it was best to use the univariate model to predict the daily stock price. However, the second best model suggests otherwise
because it showed that decomposition using the SWT keeps both errors and runtimes even lower than the best model.

TABLE 5 The best 4 models for the Apple daily dataset
S/N Lag Model Activation Neurons Batch Drop-out RMSE MAE Runtime(m)
1. Default_1 Multivariate Tanh 64 64 0.2 0.01551 0.01040 3.00
2. Default_1 Univariate ReLU 64 64 0.2 0.01312 0.00854 3.67
3. Default_21 Univariate Sigmoid 48 16 0.2 0.05236 0.03567 11.67
4. Default_21 Univariate ELU 64 64 0.2 0.02136 0.01421 12.67

MAMBA ET AL 13

The best model had the highest hyperparameters with 64 neurons, batch size of 64 and the drop-out rate of 0.2. Since the
multivariate model had the lowest runtime, it might be pivotal to decompose the series if time is of the essence.

FIGURE 8 Out-of-sample predictions versus actual Apple daily data with ReLU activation and Default lag

The Default_1 lag is pivotal in accurately predicting the Apple daily stock price as shown in Figure 8. However, the per-
formance of this model can still be improved especially considering the latter parts of the series where the data is highly
volatile.

4.4.2 Netflix 5-minute Closing Stock Price Model Performance
For the Netflix dataset however, the best performer was the proposed MeanAC_42 and the Default_1 as shown on Table 6.
The best model had very low errors of 0.00620 and 0.00487, with the ELU activation function. This big dataset shows that the
decomposition is necessary as 75 percent of the best models are multivariate. The best performing model had 32 neurons, a
batch size of 64 and a 0.2 drop-out. The second best model was given by the ReLU activation function. This means the ELU,
Tanh and the ReLU are recommended activation functions, but the Sigmoid is very costly in terms of errors.

TABLE 6 The best 4 models for the Netflix 5-minute dataset
S/N Lag Model Activation Neurons Batch Drop-out RMSE MAE Runtime(m)
1. MeanAC_42 Univariate Tanh 64 64 0.2 0.00716 0.00533 25.67
2. Default_1 Multivariate ReLU 64 32 0.2 0.00960 0.00717 1.91
3. Default_1 Mutlivariate Sigmoid 64 32 0.2 0.01192 0.00927 4.00
4. MeanAC_42 Multivariate ELU 32 64 0.2 0.00620 0.00487 3.01

Figure 9 is the out-of-sample performance of the best Netflix model and it reflects the accuracy of the error metrics presented
in Table 6. The Mean AC lag shows that it performed very well in making out-of-sample prediction for this dataset as there are
very small deviations throughout the whole series.

14 MAMBA ET AL

FIGURE 9 Out-of-sample predictions versus actual Netflix 5-minute data with ELU activation and Mean AC lag

5 CONCLUSIONS

5.1 Activation Function
After carefully studying the error patterns produced by the various activation functions, the model was observed to work best with
the Exponential Linear Unit (ELU), Hyperbolic Tangent (Tanh) or the Rectified Linear Unit (ReLU) for the higher frequency
data; the 5-minute Netflix data. The Sigmoid activation function must be avoided for the 5-minute data because it leads to
explosive runtimes. On the other hand, the ReLU must be avoided for the daily dataset for the same reason. This study concludes
that in order for the OGRU to be resilient to the vanishing gradient problem, it must be used with the Tanh or the ELU for the
lower frequency data and strictly avoid the Sigmoid activation function for the higher frequency data.

5.2 Decomposition
The best overall model performance came from the Netflix dataset as error metrics were kept very low, while they were on
average larger for all other models. For the Apple daily dataset models performed better when using the univariate version
instead of the multivariate with the Tanh activation function. For the Apple case, the only multivariate model that featured
among the best performers kept errors extremely low and had the fastest runtime. Conversely, the 5-minute Netflix closing stock
price performed best when the multivariate model was used. This was true for the case of the ELU and ReLU. This study thus
concludes that the multivariate models are better applied for higher frequency data. Multivariate models also work well with the
lower frequency data if there is a balance to be struck between runtime and errors.

5.3 Lags
The proposed lagging mechanism has proven quite competitive for the higher frequency data as it performed better than all the
other lags. However, it was not as efficient for the Apple daily dataset as the best models comprised of either the Default_1 or
the Default_21. The best models for the Netflix dataset comprised of the Mean AC_42 and Default_1 lags. In terms of runtimes
for the Apple dataset, the Default_21 were the worst while the Default_1 were the best. The Mean AC_16 lag had intermediate
runtimes. In the Netflix case, the proposed lag performed very well by keeping runtimes low. However, when it was used with

MAMBA ET AL 15

the Sigmoid activation, it produced extremely high runtimes. This study thus concludes that the proposed lagging mechanism
is recommended for higher frequency data as it wors well with the Tanh and ELU activations, as well as the multivariate and
univariate models.

Author contributions
Conceptualization, L.S.M., L.N. and A.N.; methodology, L.S.M., L.N. and A.N.; software, L.S.M.; validation, L.S.M., L.N. and
A.N.; formal analysis, L.S.M.; investigation, L.S.M.; resources, L.S.M.; data curation, L.S.M.; writing—original draft prepa-
ration, L.S.M.; writing—review and editing,L.S.M., L.N. and A.N.; visualization, L.S.M.; supervision, L.N. and A.N.; project
administration, L.S.M., L.N. and A.N. All authors have read and agreed to the published version of the manuscript.

ACKNOWLEDGMENTS

This paper would not have been possible without the support of the Pan African University Institute of Basic Sciences,
Technology and Innovation (PAUISTI) and the Jomo Kenyatta University of Agriculture and Technology (JKUAT).

Financial disclosure
None reported.

Conflict of interest
The authors declare no potential conflict of interests.

Data Availability
Data available in a publicly accessible repository that does not issue DOIs were analyzed in this study. The daily Apple
stock price used in this study was downloaded from Yahoo Finance: [https://finance.yahoo.com/quote/AAPL/history?p=AAPL]
and the 5-minute Netflix stock price data was downloaded from Forex Robot Factory: [https://www.forexrobotacademy.com/
forex-historical-data].

ORCID
Luyandza Sindi Mamba: https://orcid.org/0000-0002-3126-9155.

References

1. Ding X, Zhang Y, Liu T, Duan J. Using structured events to predict stock price movement: An empirical investigation. In:
; 2014: 1415–1425.

2. Benrhmach G, Namir K, Namir A, Bouyaghroumni J. Nonlinear autoregressive neural network and extended Kalman filters
for prediction of financial time series. Journal of Applied Mathematics 2020; 2020.

3. Jegadeesh N, Titman S. Returns to buying winners and selling losers: Implications for stock market efficiency. The Journal
of finance 1993; 48(1): 65–91.

4. Nguyen HP, Baraldi P, Zio E. Ensemble empirical mode decomposition and long short-term memory neural network for
multi-step predictions of time series signals in nuclear power plants. Applied Energy 2021; 283: 116346.

5. Xiao Q, Chaoqin C, Li Z. Time series prediction using dynamic Bayesian network. Optik 2017; 135: 98–103.

https://finance.yahoo.com/quote/AAPL/history?p=AAPL
https://www.forexrobotacademy.com/forex-historical-data
https://www.forexrobotacademy.com/forex-historical-data
https://orcid.org/0000-0002-3126-9155

16 MAMBA ET AL

6. Wang Y, Lin K, Qi Y, et al. Estimating brain connectivity with varying-length time lags using a recurrent neural network.
IEEE Transactions on Biomedical Engineering 2018; 65(9): 1953–1963.

7. Petneházi G. Recurrent neural networks for time series forecasting. arXiv preprint arXiv:1901.00069 2019.
8. Munkhdalai L, Li M, Theera-Umpon N, Auephanwiriyakul S, Ryu KH. VAR-GRU: A hybrid model for multivariate

financial time series prediction. In: Springer. ; 2020: 322–332.
9. Surakhi O, Zaidan MA, Fung PL, et al. Time-Lag Selection for Time-Series Forecasting Using Neural Network and Heuristic

Algorithm. Electronics 2021; 10(20): 2518.
10. Al Wadi S, Ismail MT, Altaher AM, Karim SAA. Forecasting volatility data based on Wavelet transforms and ARIMA

model. In: IEEE. ; 2010: 86–90.
11. Mousazadeh A, Aghaei M, Moradzadeh F. Forecasting stock market using wavelet transforms and neural networks and

arima (case study of price index of tehran stock exchange). International Journal of Applied Operational Research 2015;
5(3): 31–40.

12. Skehin T, Crane M, Bezbradica M. Day ahead forecasting of FAANG stocks using ARIMA, LSTM networks and wavelets.
In: ; 2018: 334–340.

13. Lahmiri S. Wavelet low-and high-frequency components as features for predicting stock prices with backpropagation neural
networks. Journal of King Saud University-Computer and Information Sciences 2014; 26(2): 218–227.

14. Chandar SK, Sumathi M, Sivanandam S. Prediction of stock market price using hybrid of wavelet transform and artificial
neural network. Indian journal of Science and Technology 2016; 9(8): 1–5.

15. Kulaglic A, Üstündağ BB. Stock price forecast using wavelet transformations in multiple time windows and neural networks.
In: IEEE. ; 2018: 518–521.

16. Jarrah M, Salim N. A recurrent neural network and a discrete wavelet transform to predict the Saudi stock price trends.
International Journal of Advanced Computer Science and Applications 2019; 10(4): 155–162.

17. Štifanić D, Musulin J, Miočević A, Baressi Šegota S, Šubić R, Car Z. Impact of COVID-19 on forecasting stock prices: an
integration of stationary wavelet transform and bidirectional long short-term memory. Complexity 2020; 2020.

18. Qiu J, Wang B, Zhou C. Forecasting stock prices with long-short term memory neural network based on attention
mechanism. PloS one 2020; 15(1): e0227222.

19. Althelaya KA, Mohammed SA, El-Alfy ESM. Combining deep learning and multiresolution analysis for stock market
forecasting. IEEE Access 2021; 9: 13099–13111.

20. Biazon V, Bianchi R. Gated Recurrent Unit Networks and Discrete Wavelet Transforms Applied to Forecasting and Trading
in the Stock Market. In: SBC. ; 2020: 650–661.

21. Arévalo A, Nino J, León D, Hernandez G, Sandoval J. Deep learning and wavelets for high-frequency price forecasting. In:
Springer. ; 2018: 385–399.

22. Wang X, Xu J, Shi W, Liu J. OGRU: An optimized gated recurrent unit neural network. In: . 1325. IOP Publishing. ; 2019:
012089.

23. Miao Y. A Deep Learning Approach for Stock Market Prediction. Computer Science Department Stanford University 2019.
24. Adhinata FD, Rakhmadani DP. Prediction of Covid-19 Daily Case in Indonesia Using Long Short Term Memory Method.

Teknika 2021; 10(1): 62–67.
25. Khalil EAH, El Houby EM, Mohamed HK. Deep learning for emotion analysis in Arabic tweets. Journal of Big Data 2021;

8(1): 1–15.

	Multivariate and Univariate Prediction of Stock Prices using an Optimized Gated Recurrent Unit with a Time Lag Proportional to the Wavelet Approximation Coefficient
	Abstract
	Introduction
	Literature Review
	Related Work on Time Lags
	Related Work on Forecasting Models

	Materials and Methods
	Stationary Wavelet Transform (SWT)
	Determining the time lag
	Justifying the time lag

	Default lags
	Vanishing Gradient Resilient Optimized Gated Recurrent Unit with time lag
	Model Assumptions
	Model Configuration
	Model Architecture

	Validating the model using Grid Search
	Evaluation Metrics
	Scientific Contributions
	The Datasets

	Results and Discussion
	Stationary Wavelet Transform (SWT) Decomposition
	Model Configuration
	Experiments and best model configuration
	Best Model Performance
	Apple Daily Closing Stock Price Model Performance
	Netflix 5-minute Closing Stock Price Model Performance

	Conclusions
	Activation Function
	Decomposition
	Lags

	Acknowledgments
	References

