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Abstract— This paper reports the development of a soil moisture 
retrieval algorithm for spaceborne passive microwave 
radiometers. The algorithm is based on a modified radiative 
transfer model, so-called DMRT-AIEM model. The 
implementation of this algorithm consists of three steps: 1) 
forward model parameters optimization; 2) lookup table 
generation and 3) lookup table reversion and soil moisture 
estimation. The algorithm was tested at a CEOP (Coordinate 
Enhanced Observing Period) reference site on the Mongolia Gobi. 
The retrieved soil moisture data was compared with the in situ 
observations. The comparison results show that the performance 
of the new algorithm is good, giving a Standard Error of the 
Estimate (SEE) of 3.8% and R-square of 0.4. Moreover, a 
successful TB validation on SSM/I low frequencies was achieved 
by the RTM used in this algorithm. It means this algorithm 
provides a possibility to retrieval around 20 years’ soil moisture 
data from SSM/I observations. 
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I.  INTRODUCTION  
Soil moisture patterns, both spatial and temporal, are the 

key to understanding the spatial variability and scale problems 
that are paramount in scientific hydrology, meteorology and 
climatology. Soil moisture controls the ratio of runoff and 
infiltration, decides the energy flux and influents vegetation 
development and then carbon cycle. A long term soil moisture 
data set on a region scale therefore could provide valuable 
information for researches such as climate change and global 
warming, and then improve the weather forecasting and water 
resources management. But, due to its large variability, it is 
extremely difficult to observe the spatial and temporal 
distribution of soil moisture in a large scale with traditional 
measurement methods. As a result, in recent 30 years, much 
effort has been directed towards observing soil moisture by 
satellite remote sensing approaches. 

Passive microwave remote sensing has been recognized as 
a potential method for measuring soil moisture with a large 
spatial coverage, while the sensors operated at low frequencies 

have been acknowledged to be capable to estimate soil 
moisture reliably[1-4]. For instant, the Advanced Microwave 
Scanning Radiometer for the Earth Observing System (AMSR-
E) is believed to offer state of the art soil moisture estimation 
through the combination of low frequency observations at 6.9, 
10.65 and 18.7 GHz[5-7]. In terms of soil moisture temporal 
distribution, the Special Sensor Microwave/Imager (SSM/I) 
equipped on Defense Meteorological Satellite Program (DMSP) 
satellites, measuring the brightness temperature of the earth at 
19, 22, 37 and 85 GHz with a history around 20 years, is 
highly expected to provide long-term global soil moisture 
estimation[8-10]. 

In this study, we present a new soil moisture retrieval 
algorithm developed at the University of Tokyo. This 
algorithm is based on a modified radiative transfer model[11], 
in which the volume scattering inside soil layers is calculated 
through dense media radiative transfer theory (DMRT)[12] and 
the surface roughness effect is simulated by Advanced 
Integration Equation Model (AIEM)[13]. The optimal values 
of forward model parameters are estimated using in situ 
observation data and lower frequency brightness temperature 
data.  And with those optimized parameters, we run the 
forward model to generate a lookup table, which relates the 
variables of interest, such as soil moisture content, soil 
physical temperature, vegetation water content and atmosphere 
optical thickness, to the brightness temperature or some 
indexes calculated from brightness temperature data. Finally, 
soil moisture content is estimated by linearly interpolating the 
brightness temperature or index into the inversed lookup table. 
The algorithm was tested with AMSR-E match up data set at 
Mongolia region. And the forward model was also validated 
for SSM/I brightness temperature data at same region. 

II. THE ALGORITHM 
The objective of our research is to develop a physically-

based soil moisture retrieval algorithm, which should be able 
to estimate soil moisture content from low frequency passive 
microwave remote sensing data at spare vegetation region.  
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A. The Forward Model 
In our forward model, the downward radiation from 

vegetation and rainfall, which are reflected by soil surface, is 
neglected with considering the fact that the reflection at soil 
surface is much smaller than the emission from the surface. 
The brightness temperature observed by spaceborne sensors is 
then expressed as:  

 
∫ −

−−−−

−−+

−−+=

dRRTeR

eTeeeTT

r
R

r

ccbsb

r

rcrc

)()1))((1(

)1)(1(
)(τ

ττττ

ω

ω  (1) 

where Tbs is the emission of soil layer, Tc is the vegetation 
temperature, Tr is the temperature of rainfall, τc and ωc are the 
vegetation opacity and single scattering albedo, τr and ωr are 
the opacity and single scattering albedo of rainfall. 

The emission from soil is controlled by the soil properties 
and land surface roughness. Soil properties, such as soil 
temperature, moisture content, and texture profiles, are taken 
into account through dielectric constant models and radiative 
transfer process inside the soil media. In our model, the 
Dobson model[14] is used to calculate the dielectric constant 
of soil; while the radiative transfer process inside the soil is 
simulated by a discrete ordinate method and the scattering and 
emission effects of soil particles are calculated by DMRT. 
Land surface roughness effect is simulated by a physically 
based model, AIEM. By coupling AIEM with DMRT, this 
radiative transfer model for soil media is a fully physically 
based model, hereinafter termed as DMRT-AIEM model. 

As a fully physically based radiative transfer model, the 
parameters of DMRT-AIEM, such as the RMS height, 
correlation length and soil particle size, have clearly physical 
meaning and their values can be obtained from field 
measurement or theoretical calculation.    

B. The Algorithm  
The most notable advantage of our algorithm is the 

parameters used in it have clear physical meanings. This is 
inherited from the strength of the forward radiative transfer 
model. The parameters of forward RTM therefore should be 
optimized before the algorithm application. In detail, the 
implementation of our algorithm consists of three steps as 
following:  

Step 1. Forward model parameters optimization.  The 
parameters to be optimized include RMS height (h), correlation 
length (l), soil particle sizes (r) and vegetation parameter such 
as χ and b′. These parameters are optimized by minimizing the 
cost function expressed as: 
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where the subscript sim denotes the model simulated value and 
obs is the observed value. n is the number of samples used in 
the optimization. p denotes the polarization status: H for 
horizontal polarization and V for vertical. f is the frequency 
operated by sensors in the long wavelength region where the 
atmosphere effect could be ignored, such as the 6.9, 10.7 and 

18.7 GHz of AMSR-E, 1.4 GHz of SMOS and 19GHz of 
SSM/I.   

As done in former paper of authors[15], the observation 
conducted in wet days is used to estimate RMS height and 
correlation length firstly, with considering the fact that there is 
no volume scattering effect in wet soil. And then observation 
done in dry days is used to estimate particle size. 

Step 2. Lookup table generation. When we finished step 1, 
the optimal parameter values are then stored in the forward 
RTM. And then we run the forward model by inputting all 
possible values of variables which are considered in equation 
(1), such as soil moisture content, soil temperature, vegetation 
water content and atmosphere optical thickness. As a result, a 
family of brightness temperature is then generated. Based on 
this brightness temperature database, brightness temperature of 
special frequencies and polarization are selected to composite a 
lookup table or to calculate some indexes to composite a 
lookup table.  

Step 3. Lookup table reversion and soil moisture estimation. 
The lookup table generated in step 2 is reversed to give a 
relationship which mapping the brightness temperature or 
indexes obtained from satellite remote sensing data to the 
variables of interest. Finally, soil moisture content is estimated 
by linearly interpolating the brightness temperature or indexes 
into the inversed lookup table. 

III. APPLICATION 
The presented algorithm was tested at a CEOP (Coordinate 

Enhanced Observing Period)[16] reference site on the 
Mongolia Gobi. The information about this site and AMSR-E 
match up data set can be found from [15] and from the web site 
of Hiroshima University[17].  

A. Best-fitting Parameters for AMSR-E 
For the AMSR-E data, observation obtained from low 

frequency channels (6.925, 10.65 and 18.7 GHz) is used to 
optimize model parameters. Since the wavelength of those 
channels is generally much larger than the diameter of 
atmospheric particles, the atmosphere effect is negligible for 
the data measured with those channels.  

According to the in situ observation done in June and 
August, 2003, the vegetation water content (VWC) in this 
region is generally smaller than 0.1 kg/m2. Following the 
research done by Jackson et al. [18, 19], vegetation effect is 
also negligible. The equation (1) is therefore simplified as: 

 
bsb TT =  (3) 

It means the radiative transfer model for AMSR-E in 
Mongolia site is simplified to the soil RTM, DMRT-AIEM. 
And the optimizing parameters are only those three parameters 
related to soil media: RMS height (h), correlation length (l) and 
soil particle sizes (r). The complexity of our RTM and the 
computation cost are also reduced.  

With the optimized parameters, we first run the forward 
model to simulate brightness temperature from 6.9GHz up to 
36GHz with using in situ observation soil moisture and 
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temperature data as input. The brightness temperature 
validation result is shown in figure 1, where the x axis is the 
AMSR-E observation and the y axis is our model output. 

 
B. Retrieval Soil Moisture from AMSR-E 

As shown in figure 1, the simulation result of DMRT-
AIEM is generally good, with better result for vertical 
polarization than for horizontal polarization. And the model 
overestimates brightness temperature at horizontal polarization 
n for all frequencies, while the bias values for each frequency 
are almost same. With those findings, we build a lookup table 
which composed by the soil physical temperature, soil 
moisture content, brightness temperature at 10.65GHz vertical 
polarization and an index named dTB calculated as following: 

 ),65.10(),7.18( HTBHTBdTB −=  (4) 

The lookup table of our AMSR-E algorithm is shown in 
figure 2. As we can see from this figure, the lookup table is 
covering a region in which soil moisture content is varying 
from 2% to 40% and soil physical temperature is varying from 
270K to 303K. Compared with in situ observation values, this 
range is large enough for including all of the actual soil 

moisture and temperature status at Mongolia.  

 
 Since the one-to-one relationship in our lookup table is 

very clear, it get much simple to reverse the lookup table. With 
the reversion of lookup table, soil moisture can be easily 
estimated from AMSR-E data set. In this study, we retrieved 
soil moisture data from July to August, 2003. The estimation 
results are shown in figure 3 for (a) time variation and (b) 
accuracy comparison. 

 
It is clear from figure 3 that the algorithm gives a reliable 

soil moisture content estimation, in both the tendency and 
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Figure 1. Comparasion of simulated brightness temperature with the ones 
observed by AMSR-E 

(a) Time variation of soil moisture (ASSH stations' average)
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Figure 3. Comparation of retrieval results with in situ observation  
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Figure 2. Lookup table for the AMSR-E soil moisture retrieval algorithm 
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quantity. The value of R-square is 0.3953, and the value of 
Standard Error of the Estimate (SEE) is 3.8%. 

C. TB Simulation for SSM/I 
After get the success from AMSR-E, we tried to simulate 

brightness temperature of SSM/I with using same parameters 
in same location. Here, SSM/I match-up data also is for A3 
station, and the time range is from Jul. 1st to Jul. 30th, 2003. 
The brightness temperature simulation results are shown in 
figure 4. The R-square between observed brightness 
temperature and simulated one are also shown in this figure. 

 
It is clear that DMRT-AIEM estimate SSM/I brightness 

temperature in a good quality, showing the values of R-square 
is comparable to the results of AMSR-E comparison. Since 
there is only one lower frequency onboard SSM/I, our 
algorithm can not directly use to estimate soil moisture content 
from SSM/I.  For the observation at 37GHz, the atmosphere 
effect should be included. 

IV. CONCLUSION 
Spatial distributed soil moisture information is an essential 

parameter for hydrological, meteorological and ecological 
studies. This paper presents a simple soil moisture retrieval 
algorithm which successful estimates reliable soil moisture 
content from AMSR-E data at CEOP Mongolia reference site. 
Moreover, it was demonstrated that the forward RTM of this 
algorithm was capable to represent the SSM/I brightness 
temperature data only after the parameters were calibrated by 
AMSR-E data set. Therefore, we have built a bridge between 
the parameters retrieved from AMSR-E and those for SSM/I. 
With some further consideration about the difference between 
AMSR-E and SSM/I, e.g. the footprint size and the observation 
patterns, it is believed that our algorithm could provide a 
possibility to use the long historical global data observed by 
SSM/I. 
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Figure 4. Simulation Results of SSM/I 
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