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Abstract  

Industrial facilities such as power plants often experience significant production losses due to unanticipated 

failures, suboptimal maintenance, operational activities and challenges in spare parts logistics. Furthermore, they 

portend loss of reputation, significant societal disruptions and poor manpower utilization. Critical performance 

measures for power plants, notably availability of the equipment and repair time, directly affect plant economics 

and reliability. Consequently, maintenance optimization is crucial and requires considering the effects of and 

interaction between factors such as spares availability, diagnosis time, time between overhaul (TBO) and 

accurate maintainability. To realistically model such complexities, a discrete simulation model of critical engine 

subsystems in a thermal power plant is proposed, where various model parameters are derived from actual data 

and expert input, to optimize diagnosis and repair times, TBO and spares availability, while considering engine 

availability and total repair time as performance measures. The developed simulation model returns availability 

of 90.001% and total repair time of 18,313 hours, while the turbocharger is identified as the critical subsystem. 

Optimizing spares availability is observed to have highest impact on equipment availability with TBO having a 

similar impact on the total repair time. Interaction of spares availability and TBO is observed to averagely 

improve the system availability and reduce repair time of the equipment. Utilization and planning of manpower, 

spares sourcing lead times and quality of repair diagnosis are other areas identified requiring attention. The study 

quantitatively evaluates the effects and interactions and further enhances maintenance decision making towards 

optimising the plants’ operational and maintenance related factors. 
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1. Introduction 

1.1 Background 

Industrial facilities like power plants are essential in supplying electric power to the 

population consistently without interruptions. This is amplified when a plant supports critical 

installations, such as in the health and security sectors. Power supply in such cases should not 

experience interruptions, since this could lead to high risks along with both social and 

economic losses. Moreover, most facilities supplying utility grids have contracts specifying 

hefty penalties in the event of deviation from the supply agreement. This makes it imperative 

for such power plants to address factors likely to cause interruption of power production and 

supply. Besides natural disasters and short-supply of consumables like fuel, downtime has a 

pivotal role in contributing to power production interruption. A growing body of literature 

recognizes the important role of maintenance related downtime, contributing to power plant 

downtime and subsequently reduced profitability (Alabdulkarim et al., 2011). It follows that 

addressing maintenance related downtime will considerably reduce power generation 

interruptions, operational and maintenance (O&M) costs. A survey carried out by Jardine and 

Tsang (2013) reports that maintenance budgets on average are 20.8% of the total plant 

operating budget. Integrating such measures would eventually drive the facility towards 
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achieving the expected power plant economics due to savings in maintenance and operational 

costs. Optimal maintenance leads to maximized efficiency and productivity as well as reduced 

waste in both equipment and personnel usage. Apart from maintenance strategies optimization, 

operational aspects such as inventory management, manpower planning and procedures, also 

require to be optimized to ensure successful plant operations. 

 

1.2 Study aim and motivation for the research 

Power plant system reliability is a critical factor in the success of a power generation project. 

Poor reliability directly affects both the plant profitability and availability to generate power 

due to plant downtime. Moreover, loss of availability due to critical equipment downtime 

which may require diverse and intense interventions such us major repairs characterized by 

high repair times and high spares sourcing lead-times, has a significant impact on the 

installations economics, tactical and strategic planning. Increased downtime can be attributed 

to several reasons touching the O&M aspects such as, increased frequency of failures, high 

lead times in sourcing critical spares, imperfect maintenance, human errors in diagnosis and 

maintenance and lack of enough maintenance personnel. Considerable studies in this area 

have considered the main effects of such aspects to the plant performance and thereby 

applying this results in maintenance decision support while ignoring their interactive nature. 

Considering previous optimization studies in maintenance, it is becoming extremely difficult 

to ignore the interactive effects of O&M aspects mentioned above on the plants performance. 

The aforementioned factors, both individually as well as interactively affect maintenance, 

where optimizing them would improve the availability of a given power plant, and reduce 

maintenance time hence improving the economics and performance of the plant. 

 

However, evaluating such complex variables is an arduous task, therefore, a simulation 

approach is advanced. Hence, the motivation of this study to evaluate the effects and 

interactions of various maintenance such as CM, PM and operational variables such as spares 

availability and manpower (technician) capacity to the performance of the power plant, in this 

study, measured through equipment availability and total repair time.  

 

2. Relevant Literature review 

The British Standards Institute defines maintenance as a “combination of all technical, 

administrative and managerial actions during the life cycle of an item intended to retain it in, 

or restore it to, a state in which it can perform the required function” (EN13306, 2010). This 

enlarges the scope of maintenance beyond fixing worn or broken components, to incorporate 

various tasks included in corrective maintenance (CM) and preventive maintenance (PM). 

CM is carried out after failures have occurred and have been noted, while PM is carried out 

following repeated analysis or evaluation of degradation (EN13306, 2010). Amongst others, 

PM tasks include condition based maintenance, where maintenance is triggered either by 

detection of deviation from the standard equipment condition or by testing/inspections. PM 

often includes predetermined maintenance via scheduled maintenance, replacement and tests. 

The CM and PM tasks incorporate administrative and managerial actions, such as manpower 

management, spares sourcing and logistics. System reliability and maintenance optimization 

are critical towards any plant’s realization of its objectives and towards overcoming various 

operational challenges (Jardine and Tsang, 2013). System reliability and maintenance 

optimization, are related to some extent, where variables contributing to equipment reliability 

are similarly maintenance related. Component failure severity, for example, which affects 

equipment reliability, is inherently influenced by the accuracy of diagnosis and subsequent, 

the maintenance action intensity. Plant availability, a critical maintenance optimization 

objective, is significantly affected by logistical challenges involved in spare sourcing, which 
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portend higher downtime due to characteristically long sourcing lead times. Due to the 

complex dynamic characteristics of these variables, using classical analytical models in 

optimization is not sustainable, and hence simulation techniques are used, an approach which 

is also corroborated by various studies (Alrabghi and Tiwari, 2016; Nicolai and Dekker, 2008; 

Nowakowski and Werbińka, 2009). Sharma et al. (2011) accentuates that the use of 

simulation in maintenance optimization has been increasing steadily. Several studies in this 

field are reviewed in the next section. 

To determine the components influencing maintenance costs and the availability of the 

turbines in the wind farm, Li et al. (2013) simulated the operation, failure occurrence and 

maintenance of the wind turbines. The study classified pitch, gearbox and generator as having 

high downtime, while pitch and electric system had high failure frequency, and further, they 

concluded that for optimality, manpower planning needs to be addressed. Alabdulkarim et al. 

(2011) modelled field maintenance where maintenance is carried out in remote  and observed 

that maintenance performance (availability) was affected by asset use, labor availability, 

spares availability and provision of accurate fault diagnosis. Virtanen et al. ( 2001) built a 

model depicting aircraft maintenance types and flight operations. The study argues that 

aircraft availability was sensitive to manpower capacity which, in turn, was dependent on the 

type of maintenance carried out. Using a simulation modeling approach where different PM 

scheduling techniques are evaluated while using multi-criteria decision making (MCDM) in 

the decision-making process, Eslami et al. (2014), while modelling an imaginary 

manufacturing line composed of two series machines, argue that the best PM schedule 

incorporates a system plan, line conditions and complexities. Savsar (2015) used discrete 

event simulation (DES) to determine the effects of age based (ABP) and block based (BBP) 

maintenance policies on power plant availability, where he found ABP yielded better results 

than BBP. In a study of aircraft engine maintenance planning, (Razavi, 2015) identified 

lowest total, average grounding and waiting times, and shorter average queue length which is 

operational in nature, as the desirable performance indicators. 

Three important themes to be considered while addressing maintenance optimization emerge 

from the studies discussed so far: (1) maintenance related costs, (2) equipment availability 

and (3) maintenance strategies. In an interesting analysis, Roux et al. (2013) argues that, while 

considering maintenance optimization, maximizing availability is better than other criteria 

such as maintenance cost. In the reviewed studies no attempt was made to quantify the effects 

of the various variables on equipment availability and maintenance or repair time. Moreover, 

the studies have generally dwelt on the systems, for example engines, and seldom evaluated 

critical subsystems constituting the system, for instance, for a power plant engine, cylinder, 

fuel system and turbocharger. This study, while modelling critical subsystems, seeks to 

quantify the effects and interaction of the spares availability, technician capacity, TBO, 

impact factor and diagnosis time due to major repair action on engine availability and total 

repair time, which are key plant performance indicators. 

2 Methodology 

The methodology consists of several steps. Step 1 involves data collection and pre-processing, 

Step 2 involves data exploration. Step 3 includes extraction of critical variables to be 

incorporated as input to a simulation model evaluating the impact of alternative O&M 

strategies on power plant availability. Step 4 entails developing the simulation model and 

performing simulation experiments, while Step 5 includes evaluating and interpreting the 

results of the simulation experiments.  
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3.1  Data collection 

In this study, the analysis uses maintenance data describing failures recorded from thermal 

power plant engines. The power plant has fuel oil driven engines for power generation which 

we define as equipment. Each engine consists of several inter-linked subsystems such as 

cylinder, turbocharger and governor. The data was recorded in a free text format and collected 

over five-year period and includes subsystem failure occurrences, failed subsystem and 

components details including date and time of occurrence. The data also includes repair 

actions performed on the failed subsystem, the date and time the repair was finalized, and so 

on.  Owing to data inconsistencies, it was pre-processed using a standardization step 

following the ISO 14224. Data was pre-processed linking the various components with their 

respective subsystem as well as expert consultations were done where clarity was needed. 

 

3.2  Data Exploration 

Following the maintenance data exploration, several aspects are considered towards enabling 

modelling of the study. 

 
(a) Engine subsystems 
The power plant engine was decomposed into subsystems, from which the four critical 

subsystems were selected based on failure frequency and the individual contribution to the 

power lost in megawatts (MW) using pareto analysis. The fifth critical subsystem itemized as 

‘others’ incorporated summation of all the remaining subsystems.  

 
(b) Repair actions 
Four repair actions used in data exploration were classified using estimated repair time 

incurred by the action as corroborated with the maintenance team: (1) do almost nothing takes 

minimum 0 to at most 1 hour repair time, includes minor adjustments for instance tighten 

components and may not cause stoppage, (2) minor repair taking minimum 1 to maximum 7 

hours may not incorporate spare replacement bringing the subsystem back to operational state, 

but may cause deterioration to another level of failure severity, (3) moderate repair taking 7 to 

at most 13 hours considers partial spare replacement and other CM actions and (4) major 

repair that takes over 13 hours invariably requires spares replacement. Both moderate and 

major repair actions incorporate logistical lead times during spares sourcing. 

 
(c) Failure severity 
This depicts the seriousness or harshness of a failure which was used to determine reliability 

measure attained by a subsystem following respective repair actions and subsequently used 

for diagnosis towards appropriate repair action. Low failure severity will have low repair time 

while high failure severity is assumed to have high repair time due to an intense repair action 

needed. In an ideal diagnosis situation, subsystem with low failure severity is directed to a 

lower intense repair action such as do almost nothing or minor repair actions, while one with a 

higher severity to high intense repair actions. The various repair actions have probability of 

increasing or decreasing the failure severity of the subsystem from low index 1 to high with 

index 4. The scheduled maintenance (PM) reduces the failure severity to almost 1 which 

mimics a near renewal state (near AGAN-As Good as New). 

 

3.3  Model output parameters  

The model will have two performance measures of interest as the outputs. Firstly, the engine 

availability also known as Operational availability, is the proportion of time the engine is 

running compared to total time including shutdowns due to failures and planned maintenance. 

It is the probability that an item will operate satisfactorily at a given point in time when used 

in an actual or realistic operating and support environment. We use the running hours against 
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the total running length.  Secondly, total repair time, is the total value of the repair time 

accrued by the engine (five subsystems) on purely repair process. This time value excludes 

the spare sourcing lead time and diagnosis time delays in the corrective maintenance. 

 

3.4  Model parameter extraction 

For the critical subsystems selected for analysis, several parameters derived included time to 

the initial failure generation which is the time the first failure of a respective subsystem 

occurred. Subsystem failure frequency against the four defined repair actions was extracted, 

which was subsequently utilized to derive the utilization probability of the different repair 

actions. The mean time to repair (MTTR) for the respective repair actions was derived from 

the repair-action time classifications using a uniform distribution (due to the classification 

entailing minimum and maximum repair time) while the major repair, a probability 

distribution was fitted due to the infinite upper value of >13 hours. Time between overhaul 

(TBO) and MTTR for PM were derived from the preventive maintenance planning manual of 

the engine. Performing the maintenance task, though, does not absolutely eliminate the failure 

from occurring, but it does delay it and may lessen the severity when it does occur depending 

on the respective repair action carried out. The estimation of impact of repair actions on the 

subsystem risk of failure was modelled using “Failure Severity” parameter, which was 

initially randomly assigned to the subsystems. Depending on the type of repair action (do 

almost nothing to major repair) carried out and the prior failure severity (low-1 to high-4), 

posterior severity will be modelled. The diagnosis time, is the estimated time that a failed 

subsystem will take while being diagnosed to indicate the type of failure severity hence 

identify the appropriate intervention or repair action, the latter identified by the maintenance 

team. Time to next failure (TNF) for each subsystem was determined by computing the time 

between repairing the subsystem to operable state up until its next failure. The time data was 

fitted to a probability distribution for the CM actions. Other parameters such as frequency of 

failure repairs that utilized spares were derived to give the probability of spares requirement 

for each CM action. Spares availability ƿ also referred to as instantaneous reliability of spares 

(Louit et al., 2011), was introduced and provided by the plant supply chain, as the estimated 

probability of the power plant having stocks on hand to deal with the maintenance 

requirement. Sourcing lead-time for both local and imported spares was derived similarly 

from the plant supply chain. Manpower resource planning and scheduling including shift 

schedules for the main maintenance personnel was retrieved from the maintenance planning 

schedule. This included the estimates of maintenance staff engaged in both PM and CM repair 

actions in the respective two shifts per day.  
 

3.5  Modelling 

A discrete event simulation modelling framework which mimics aspects such as subsystem 

failure generation, subsequent undertaken repair actions (CM and PM) and normal running 

until the next failure occurrence was developed. An impact factor ɛ ranging from 0 to 1, was 

introduced for estimating the subsystem hazard rate (impact of the repair action on the TNF of 

the subsystem) in each repair action. The extreme values ɛ =0 depict ‘as bad as old’ while ɛ = 

1 construe ‘as good as new’ (AGAN). Probabilistic modelling was performed to model the 

deterioration process of the subsystems based on the specific repair actions utilized. 

 

3.6  Analysis, evaluation and interpretation 

This section encompasses two parts where in the first part, the model results following “as is” 

basis are considered while in the second part, a set design of experiment (DOE), following a 

full 2k factorial design (k as the number of variables to evaluate their effect to the engine 

availability and total repair time) was conducted and computations of the main effects and 
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interactions generated. Main effect is the effect of one variable on the performance measure, 

while ignoring the effects of all other variables, for instance the effect of increasing TBO to 

the engine availability ignoring other variables. An interaction is the effect of one variable on 

the performance measure, whilst depending on the level of another variable. 

4 Results and discussions 

4.1.  Data collection and pre-processing  

The maintenance data from the power plant was recorded in a free text structure and required 

standardization to meet the data structural requirement. Data standardization was done 

following the ISO 14224:2016. This enabled the data to be categorized using the various 

subsystems which was output for the data exploration discussed in the next section.  

 

4.2.  Data exploration 

Figure 1 illustrates a pareto chart prioritizing the engine subsystems in the plant using 

individual contribution to the power lost in Megawatts (MW). What stands out in the chart is 

the first four subsystems i.e. cylinder, governor, turbocharger and lubrication system 

cumulatively contribute 86% of total power lost hence were selected as critical subsystems to 

be modelled. In this study the four critical subsystems are modelled with an extra one “others” 

which is a summation of the remaining subsystems. In the maintenance decision support 

context, explicit strategic focus on the four critical subsystems would potentially improve and 

enhance the engine performance. 

 
Figure 1.Pareto analysis for subsystem/components using Power lost 

 

4.3.  Model parameter extraction 

Table 1 summarizes the time to the initial failure and the time to the next failure (TNF) for 

each of the critical subsystems selected. The computation of the time to the initial failure was 

done with an assumption of the analysis commencement of January 2011. Table 1 shows the 

governor has the highest value of time to first failure inferring its less susceptibility to failure 

during the early running hours after commissioning compared to other subsystems. Time to 

next failure (TNF), mainly mimicked Weibull and Exponential distribution’s parameters. The 

Weibull distribution estimate represented as WEIB (α, β) with shape or slope parameter β and 

scalar parameter α and exponential distribution has the mean. The TNF distributions had a 

third parameter distribution (  ) also known as location parameter or failure free time.   

indicates that failures start at a finite time and not at t=0, for instance, turbocharger failures  
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( = 16). The governor, lubrication system, cylinder and others fit an exponential distribution. 

A continuous distribution bounded on the lower side which signifies failure occurrences that 

are independent of each other and randomly distributed and could be attributed to high 

replacement strategy hence tending to near constant or steady state. 

 

 

Subsystem 

 

Time to initial 

failure (Hrs) 

 

Time to Next Failure(TNF) 

Distribution Parameters 

Corresponding p-value 

X2 Test K-S 

Test 

Governor 2,200 EXPO(2.82e+003) 0.341 >0.15 

Turbocharger 1,998 16+ WEIB (3.55e+003, 0.854) 0.55 >0.15 

Others 640 2 + EXPO (723) 0.316 >0.15 

Lubrication 1,260 13 + EXPO (1.28e+003) <0.005 0.0753 

Cylinder 1,800 40 + EXPO (582) 0.477 >0.15 

Table 1. Various subsystem time to next failure distributions 

 

The turbocharger subsystem fitted a weibull distribution, attributable to the aging and wear 

out effect. The subsystem exhibit shape parameter β < 1, which indicates that the failure rate 

decreases over time. This happens if there are significant defective components failing early 

leading to strategic interventions hence failure rate decreases over time as the defective 

components are either replaced or maintained accurately. The components have their hazard 

rate decreasing due to less severing strategies for instance replacement that have lower impact 

on the RUL hence slight improvement of the TNF. This is contrary to intensive regenerative 

strategy which has a high negative impact on the RUL due to the strategy characteristics 

where the component renewal is near ABAO, hence shorter life experience to the subsystem. 

 

Table 2 provides the different corrective repair actions alongside extracted parameters like 

probability of utilization, repair time classes and MTTR. MTTR followed the repair action 

classification as discussed in Section 3.2. Time utilized under the preventive maintenance 

(overhaul) had a uniform distribution of minimum 192 hours and maximum 224 hours as 

depicted from the preventive maintenance schedule manual. 
 

Repair action 
Repair classification 

(hrs) 

Probability    

% 
MTTR 

Do Nothing 0 - 1.0 9% UNIF (0,1) 

Minor Repair 1.0 - 7.0 48% UNIF (1,7) 

Moderate Repair 7.0 - 13.0 24% UNIF (7,13) 

Major Repair Over 13.0 19% 13 + EXPO (39.6) 

Table 2. Repair time for various repair actions 

 

The impact factor (ɛ) which is the percentage the interaction of the prior failure severity and 

repair action done is introduced to act as a multiplier to the normal operating or running hours, 

which is also known as the time to the next failure (TNF) of an individual subsystem. ɛ 

adopted for the ‘do almost nothing’ repair action was 0.65, ‘minor repair’ 0.75, ‘moderate 

repair’ 0.85, ‘major repair’ as 0.80 and ‘overhaul’ as 0.95, while diagnosis time in hours were 

0.15,0.5,0.7 and 2.0 for the respective CM actions, which was estimated by the plant 

maintenance team. The impact factor was derived from proportionating the respective total 

TNF, comparing with major repair as 0.80 under the assumption that attaining AGAN status 

is difficult in deteriorating systems due to introduction of errors such as diagnosis, tooling and 

human related errors. 
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Table 3 presents the various parameters used in the spare inventory and logistics for instance 

the probability of requiring spares for the respective moderate and major repair actions. The 

percentage requirement of local and import sourcing as well as the respective lead times were 

provided by the experts from the plant maintenance and supply chain departments. 

 

Maintenance 

action 

Spares 

needed 

(%) 

Spares 

availaibility 

(%) 

Spares sourcing 

Local 

(%) 

Lead time 

(Hrs) 

Import 

(%) 

Lead time 

(Hrs) 

Moderate repair 80.19 90 10 1 - 5 90 36-120 

Major repair 100.00 90 5 4 – 24 95 120 –1080 

Table 3. Spares availability and sourcing lead times 

 

4.4.  Model 

The model mimicking the operation of the engine was developed, where the performance 

measurements were engine availability and total repair time. Figure 2 shows a simplified 

schematic model block representation of the developed model. The model developed is 

evaluated initially on an “as is” basis and then a design of experiment analysis is carried out, 

further discussed in the next section. 

 

Initialization of 

failures

Engine

 control

Failure 

diagnosis

Do almost 

nothing

Minor repair

Moderate 

repair

Major repair

Normal

Running 

PM repair 

action

PM or CM?

Repair action 

selection

CM repair actions

 
Figure 2.Schematic block representation of discrete event simulation model 

 

4.5. Analysis of results 

 

(a) Model results 

The model generated an engine availability of 90.001% and total repair time of 18,313 hours. 

The availability achieved using the model was lower than the actual 92% which is attributable 

to the fact that strategies like condition monitoring which have potentially positive impact on 

TNF were not incorporated. To a certain extent the use of distribution estimations increases 

the variability of the results. Further evaluating the total repair time generated of 18,313 hours, 

the lubrication subsystem had the highest repair time, followed by governor and turbocharger 

each contributing 23.2%, 22.2%, 19.5% respectively of the total as depicted in Table 4. 

Despite “other” subsystems incurring the lowest repair time, it had the highest values for both 
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lead-time and diagnosis time, which contribute 58.29% and 3.8% of its individual total 

maintenance time. Further, Table 4 shows different time variables incurred by each subsystem 

cumulating to total maintenance time which incorporates repair, spares sourcing lead-time and 

diagnosis time. The turbocharger incurs the highest total maintenance time compared to the 

other critical subsystems. Both Turbocharger and governor subsystem are characterized with 

high sourcing lead-times implying substantial failures requiring spares sourcing hence, this 

could offer a pointer towards the need of a more plausible strategy, that could incorporate 

spares inventory, reuse, recondition or cannibalization strategies if possible. Cylinder 

subsystem has high diagnosis time which can be attributed to the complexity of the assembly 

which often require disassembly to diagnose internal components in the subsystem. 
 

Subsystem 
Repair Time 

(Hrs) 

Lead-Time 

(Hrs) 

Diagnosis Time 

(Hrs) 

Total Maintenance 

Time (Hrs) 

Turbo charger             3,562.02  1,596.96 119.9 5,278.88 

Governor             4,059.56  1,514.38 101.55 4,927.14 

Cylinder             3,048.00  123.31 241.2 4,615.76 

Lubrication             4,251.25  156.49 93.15 3,297.64 

Others             3,311.22  6,247.69 411.55 10,718.81 

 Table 4. Summary of subsystem times variables 

 

The technician (manpower) utilization for both 6am to 6pm and 6pm to 6am shifts were 

6.40% and 6.44% respectively, while scheduled utilization, which is the average number busy 

divided by the average number available was 8.59% and 13.62% respectively. These values, 

which apply for one engine, are low because the technicians are shared resources utilized by 

the whole plant with several engines. Nonetheless, the values imply similar utilization despite 

the day shift having two technicians while one in the night.  

 
Figure 3.Plot showing effect of varing spares availability on performance measures 

 

This implies that the night shift technician is stretched as he is utilized at the same level of 

two technicians during the day shift, hence higher scheduled utilization. The plant could 

possibly consider three shifts (6am-2pm, 2pm-10pm and 10pm-6am) to balance the utilization 

with the maintenance activities anticipated and ensure proportionate scheduled utilization. 

Moreover, adopted strategy may require to be flexible, as the plant would require more 
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personnel in specific shifts during certain days to ensure other repairs for the other engines 

either in random repairs or scheduled maintenance are done.   

 

It can be seen from Figure 3 that increasing the spares availability increases both the engine 

availability and total repair time. A similar analysis of TBO indicates that increasing TBO 

generates mixed results giving improvements and decline of both performance measures at 

different values. This is a rather interesting outcome which requires further investigation to 

explicitly understand the level of dependency between the variables while impacting the 

performance measures, hence the use of a full factorial experiment as discussed in the next 

section.  

 

(b) Full factorial effects and interactions experiment results 

Process analysis was carried out by varying different parameters such as TBO (7,000 – 12,000 

hours), major repair diagnosis time-Dt4 (0.5 – 3.5 hours), technician capacity-Tc (1 – 4 

persons), spares availability- ƿ (80% - 95%) and major repair impact factor- ɛ4 (0.6-0.9). 

Table 5 provides the generated average main effects on the engine availability and total repair 

time from process analysis step. An increase in TBO from low to high, will averagely 

improve the engine availability by 1.19% while reducing the total repair time by 6,570.07 

hours. An increase TBO means the subsystems, less frequently undergo PM which inherently 

is time intense, hence reduced repair time and further translates to higher engine availability 

due to increased running time. Despite improvement in spares availability generating high 

positive effect on the engine availability up to an average of 20.46%, it has a relatively high 

negative impact on the total repair time averagely increasing by 5,962.11 hours. 
 

Measurement TBO 

Spares 

availability 

Major 

diagnosis 

time 

Technician 

capacity  ɛ4 

Engine Availability 1.19 20.46 -0.92 0.00 0.05 

Total Repair Time   -6,570.07  

       

5,962.11  -97.20 0.00 102.84 
 

 Table 5. Computed main effects of the parameters 

 

The availability of spares potentially reduces the subsystem downtime due to spares sourcing 

lead times which greatly impact the engine running hours, hence improve the availability. 

This high index possibly addresses moderate and major repair actions bottlenecks by 

decreasing sourcing lead times, which could lead to high utilization, thus an increase in the 

total repair time. An increase in the major repair diagnosis time (Dt4) will averagely reduce 

engine availability by 0.92% and decrease total repair time by 97.20 hours which is negligible. 

These mimics increased time to ensure thoroughness in diagnosis and possibly reduction of 

human errors during this exercise. This has a relatively negligible positive impact on the 

repair time where more accurate repairs can be done on the failed subsystem and potentially 

reduce repeat jobs translating to a substantive reduction of the total repair time. Technician 

capacity (Tc) variation has no impact on both performance measures. This is attributed to the 

sharing of resources amongst the engines in the plant without dedication or specialisation. 

Increasing the value of the impact factor due to major repair action (ɛ4) improves the engine 

availability by 0.05% and increases the total repair time by 102.84 hours. This depicts a 

reduction of human errors hence subsystem has lengthened running time before next failure 

which improves the engine availability. The model mimics mostly the retention of the 

respective failure severity on subsystems undergoing major repair hence a high probability for 
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the next failure to be diagnosed towards the moderate or major repair which are time intense, 

which results to an increase in the total repair time. 
 

Table 6 presents sample computed interactions on the engine availability and total repair time 

by the various parameters. The interaction of TBO and ƿ causes a decrease of both engine 

availability and total repair time by a factor of 0.22% and 1,051.26 hours respectively.  

Surprisingly, despite both TBO and ƿ having positive effect or impact on the engine 

availability, their interaction generates a negative effect. Furthermore, despite ƿ having a 

negative effect on total repair time, the interaction generates a positive effect on the same. 
 

Measurement TBO + ƿ ƿ + Dt4 + ɛ4 ƿ +  ɛ4 

ƿ + Dt4 +  

TBO + ɛ4 

ƿ + Dt4 

+ ɛ4 

Engine Availability -0.22 0.54 0.33 -0.22 0.33 

Total Repair Time -1051.26 -29.86 48.78 -113.66 48.78 

 Table 6. Computed sample interactions of parameters 

 

This implies that the TBO effect on the engine availability does not depend on the effect of ƿ, 

signifying that TBO has a negative effect at high spares availability but positive effect at low 

spares availability. While evaluating impact on total repair time, the effect of TBO to some 

extent depends on the effect of spares availability, where spare availability has a negative 

effect at high TBO but positive effect at low TBO. Increasing TBO and spare availability will 

decrease both the engine availability and total repair time and vice versa. The same analysis 

can be done on the computed interactions, which offer worthwhile information for 

maintenance optimization decision support. 

5    Conclusion 

The present study was designed to determine the effects and interactions of various variables 

on engine availability and total repair times using a simulation model. Further to identifying 

the turbocharger as critical among the subsystems using total maintenance time, the study has 

shown that the different subsystems have different repair, logistic and diagnosis times 

characteristics offering different impacts to their life cycle times.  Spares availability was 

indicated to have the strongest effect on engine availability followed by TBO, while TBO had 

strongest effect on total repair time followed by an interaction of both TBO and spares 

availability. The interactions analysis while evaluating the model conceivably support the 

hypothesis that interactions of the variables play a role influencing the performance measures. 

These findings have a significant implication for the understanding parameters that require 

further investigation while carrying out maintenance decision making. These aspects if 

enhanced, would greatly improve the maintenance strategies, resource allocations and ensure 

priorities are set right to improve the availability of the engine and eventually the plant 

economics. This combination of findings provides some support for the conceptual premise 

that while carrying out maintenance optimization a balance of variables used need to be struck 

by considering their effects and interactions. The research will serve as a base for future 

studies and a more in-depth optimization model. 

 

Future work could potentially involve optimization of the critical components of the 

subsystem incorporating additional maintenance and circular economy restorative strategies 

identified such as condition monitoring, spares reconditioning and reuse while incorporating 

cost element to improve the maintenance performance measures. 
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