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Application Of Reinforcement Learning In Heading
Control Of A Fixed Wing UAV Using X-Plane
Platform

Kimathi, S., Kang’ethe, S., Kihato, P

Abstract: Heading control of an Unmanned Aerial Vehicle, UAV is a vital operation of an autopilot system. It is executed by employing a design of
control algorithms that control its direction and navigation. Most commonly available autopilots exploit Proportional-Integral-Derivative (PID) based
heading controllers. In this paper we propose an online adaptive reinforcement learning heading controller. The autopilot heading controller will be
designed in Matlab/Simulink for controlling a UAV in X-Plane test platform. Through this platform, the performance of the controller is shown using real
time simulations. The performance of this controller is compared to that of a PID controller. The results show that the proposed method performs better

than a well tuned PID controller.
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Introduction Reinforcement learning explores actions from available
An unmanned Aerial vehicle, UAV is a space traversing courses of action and chooses the best course of action
vehicle that flies without a human crew on board. UAVs can based on the reward it gets, hence suitable for this kind of
be remotely controlled, semi-autonomous, autonomous or a application. A nonlinear model of a small sized fixed wing
combination of these. They are the future of aerial vehicles UAV is taken, which is linearized about a stable trim point
and they present an area of great interest to the control and decoupled into longitudinal and lateral designs. The
engineering fraternity_ UAVs have a wide range of lateral deSign will be used in dESign of the controller. The
appiications inciuding Survei"ance, search and rescue, proposed controller will act on the deflection angles of the
target tracking, digita| mapping and weather observations. two lateral control surfaces i.e. the aileron and rudder. This
To accomplish these autonomous missions, it is essential to rest of this paper is organized as follows: Section I
have a reliable heading control i.e. lateral direction control, presents the basics of UAV control, section III introduces
thus an autopilot system is used. Autopilots were first reinforcement learning principles, section Iv gives a brief
developed for missiles but later extended to aircrafts and preview of X-Plane test platform, section V gives a design
ships. Due to the nonlinearity of the system dynamics and of the controller, section VI provides the results and
parameter uncertainty in UAVS, severai Controi techniques diSCUSSion and the Conclusion iS giVen in the IaSt Section.
including PID control [1] [2], where two PID controllers were
used in tandem, for the lateral and longitudinal motions. In UAYV Control Basics
[3] H . control strategy was used. Adaptive control A brief discussion of a UAV control basics is considered.
strategies have been applied; fuzzy systems in [4] [5], Figure 1 shows the UAV can move about the axes of
active disturbance rejection control, ADRC in [6] [7]. In [7] motion (X,y,z) from its centre of gravity [9].
ADRC was applied to stabilize the UAV during aeriel
refueling. In [8] an adaptive backstepping approach was ®
used to obtain directional control of a fixed wing UAV, ©
where the dynamics of the cross track error was derived
using the lateral system equations of motion. This paper
presents an adaptive control strategy based on
reinforcement learning technique. This is due to the high
nonlinearity of the system dynamics associated with small ®
flying aerial vehicles and lack of complete knowledge v .
vehicle dynamics for parameter estimation. >i£ =
X yaw
Z
Figure 1: UAV axes
The position control of the UAV is converted to angular
e Kimathi S., Department of Electrical and Electronic control in the three principle control axes. roll (_(p), pitch (6)
Engineering, DeKUT (cell: +254 724 422 204 anq yaw (LIJ).'Thg control surfaces for a fixed wing UAV are
kimathisteve @gmail.com). as |Ilustrat§d in Figure 2: .
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Figure 2: UAV control surfaces

In addition to these three control surfaces, the engines
throttle controls the engines power. The derivation of
equations of motion for fixed wing UAV is given in [10] [11].
The nonlinear equations of motion are linearized around a
level flight trim condition and the linear models thus
obtained are used to cater for the aircraft natural
longitudinal and lateral modes. Thus a lateral state space
model decoupled from within the linear model is then used
with inputs of aileron and rudder to control the heading of
an aircraft [12]. The decoupled lateral model state space
equation is given as

X = Alatxlat + Blatulat

Where xy,, is the decoupled lateral state space model with
[p B r @]T as the state variables. p is the roll rate, B is the
sideslip angle, r is the yawing rate and ¢ is the roll angle
of a UAV. uy,, is the control input and comprises of §, the
aileron deflection and &, the rudder deflection. A, is the
state matrix and Bj,; the input matrix. The linear state
space model is given as in [11] as

]

i

r

W

[Lp Lg L, 0 1P Lsa Ls,
[Yp Yg Y.—1 mgcosb, B+ Ysa  Ysr [Sa]
N, Ng N, 0 r Nsa N |18
0o 0 1 o o 0 0

Reinforcement Learning

Reinforcement learning, RL is learning what to do — how to
map situations to actions, so as to maximize some
numerical reward. The learning agent is not told the correct
actions; instead it explores the possible actions and
remembers the reward it receives. It is inspired by natural
learning mechanisms where animals adjust their actions
based on the reward or punishment stimuli received from
interacting with the environment [13]. The RL model
consists of a set of environment states s, € S; a set of
actions a, € A that an agent can perform at each state, and
as a consequence of its action, the agent receives a
numerical reward r.. At each time step, an agent
implements a mapping from states to probabilities of
selecting each possible action. This mapping is called the
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agent’s policy and denoted as m, which maximizes the
cumulative reward of an agent over time as [13]

o5}

R= ZYtrt

t=0

where 0 < y< 1 is a discount factor, which reduces the
value of future rewards. In reinforcement learning there is
dynamic programming, DP  Monte Carlo methods and
temporal difference, TD method which comprise of Q-
learning and sarsa algorithm where the latter is an online
learning method [14]. Like Monte Carlo methods, TD
methods can learn directly from raw experience without a
model of the environment dynamics and like DP, TD
methods updates estimates based in part on other learned
estimates without having to wait for a final outcome [13].
The simplest TD method is given as

V(s « V(s) + afreg + YV(seq) — V(sp]

The temporal difference update is ri,; + YV(st31). SARSA
being an online TD method, estimates Q"(s,a) for the
current behavior policy 1 and for all states s and actions a.
This is done using the same TD method described above
but the transitions from state-action pair to state-action pair
is considered rather than from state to state and hence the
value of the state-action pairs.

Q(spap) « Q(spap)
+ afre + YQ(Ses1,acs1)
- Q(St' at)]

This update is done after every transition from a non
terminal state s, . Thus in sarsa we continually estimate Q™
for the behavior policy T and at the same time change T
towards greediness with respect to Q™.

X-Plane

X-Plane is powerful flight simulator for personal computers.
It is not a game but rather an engineering tool that can be
used to predict the flying qualities of fixed and rotary wing
aircraft with considerable accuracy [15]. The accuracy of X-
Plane makes it a useful tool to predict and test the
performance of an aircraft and its characteristics. It has the
capacity to send and receive data to and from other
devices. This is achieved using the User Datagram
Protocol, UDP. UDP uses a simple transmission method
without explicitly handshaking, ordering or data integrity.
Hence, UDP provides a fast communication due to less
overhead of network level processing thus suitable for this
time-sensitive real time applications as in X-Plane [16]. X-
Plane is able to send and receive data at 99.9 data packets
per second via UDP. Each data packet is configured to
carry specific aircraft parameters that are checked in the
check boxes provided in the X-Plane Input and Output data
interface as shown in Figure 3. For instance, in the case of
lateral motion, parameters such as roll, yaw, heading rate,
roll rate, aileron and rudder stick deflections should be
checked. Once these are selected on X-Plane, through
UDP and loopback addresses it is possible to receive them
in Matlab/Simulink. This is made possible by using X-Plane
Communication Library which enables communication

286

1IJSTR©2017
Www.ijstr.org



INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 6, ISSUE 02, FEBRUARY 2017

between Matlab/Simulink and X-Plane as in Figure 5;
receiving and sending. Whereby the received packets are
repackaged for use in Matlab/Simulink environment and the

sent data is
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Figure 3: X-Plane Test platform UDP communication

Repacked in a format that can be received and processed
by X-Plane. X-Plane also has the functionality of altering
the weather conditions i.e. wind speed, shear speed and
direction and turbulence of an altitude layer as in Figure 4.
This allows for close to real life flying conditions hence a
robust simulation environment.
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Figure 4: X-Plane atmospheric layers
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Figure 5: Simulink to X-Plane Communication Library

Controller Design

The main control objective is to obtain lateral-directional
control in order to follow a desired reference heading.
SARSA algorithm is used to design the controller. From the
state space model presented above, the associated Ricatti
coefficient, P is calculated which is formulated as the
Algebraic Ricatti Equation, ARE. This Ricatti coefficient is
used to calculate the Cost function for each state-action
pair using a simple Lyapunov function V= XTP X , which is
reformulated to include references as Q(s,a) =
(X—2)TP (X —Z) where X are states and Z are references.
A reward function is calculated as the deviation of the target
state from the desired state as in [17] which in this work is
taken as the heading error.

I'(S) = —C1 (D — Brer)

The total value function is calculated, which is a sum of
previous state-action value function, the current reward and
the current state-action value function as

Q(sy,a1) « Q(sy,a1) + afr; + YQ(szaz) — Q(sy,a,)]
Q(sz,a) « Q(sz,a,) + afrg +'YQ(53'33) — Q(sza,)]

This is updated as the total value function for the next cycle
of learning. According to [18] it is allowed to have a one
step gradient search of the value function - exploitation for
ease of real time implementation and less computational
burden. This was achieved as the temporal difference
which is evaluated as

8t = Teyr + YQ(Ses1,8e41) — QSpay)

According to [19], an optimal control effort is given as
u* = —KX but according to differential games algorithm,

this is expressed as u* = —% R-1gTvV* where VV*is taken

as the change in the optimal cost function — which in this
work the temporal difference between successive cost
functions is used as the reinforcement to the optimal
control. This optimal control implemented this way is
considered to be compensated of the error(s)/ deviation
from the reference signal hence the best control effort. The
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control signals from a feed forward neural network are
compared with this control signal. Then back propagation
algorithm updates the feedforward neural network weights
using back propagation. This implies that we are correcting
the error in the control deflection in the next control
deflection through update of weights thus slowly taking our
deflections to the best available control effort in each
consecutive cycle greedily. In this work the issue of
exploration which is also central to RL alongside
exploitation is not addressed. Here the RL controller only
exploits the value function and new states are found by
inference of favourable value functions.

SIL implementation

The aerodynamic coefficients that constitute the values in
the mathematical model as provided for in [11] are taken
from [3] and [12] as m = 1.9kg,b = 1.2m,g = 9.8532, S =

0.32m?,T = 0.3 m,p = 1.225kg/m?, —— = 0.0815

Aerodynamic Coefficients

(1, =230x 10~ (=458 (; =1.30x 107!
(i, =197 (1, =195 (1, =230x 107"
Cp, =442x 1072 (p =135x107 G, =3.03x10°

Gy, =-830x 10 (= 191107 @y, =0

Gy =0 oy =-130x107 ¢ =855x 1072
¢, ==5.05x 107 ¢, =292x107" ey =-150

s = =992 % 107" Gy = -1 04100 g =-382x 10!
iy =126x107 iy ==63x1077 ¢, =690 %107
¢, ==946x 107

Moment of Inertia

[, =894x 107 Ly=14x10~  L,=16x10~
Lo =140% 1072 L=130x107 L, =130x 107

With the above parameters, the trim condition was obtained
as:

[ —1.4000 0 0 94953
A= |—30.9000 -128000 144000 0
14781  —0.4480 —6.080 0
0 1.0000 0 0
0 0.7412
g |614000 12.4000
~3.6700 15.0000
0 0

Two simulations were carried out in Matlab/Simulink, one
using a well tuned PID controller and another using the
reinforcement learning method described above. Then the
two designed controllers were used for real time UAV
control in X-Plane as in Figure 6 below.
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Results and Discussion

The state space model given above was used to design
controllers and hence get the response of the heading rate
in Matlab/Simulink. Using a well tuned PID controller and
the method highlighted in [1], the response of the heading
rate is as shown in Figure 7. The dark solid line shows the
reference signal and the red solid line the heading rate
response of the model. Figure 8 presents the heading rate
response of the model using reinforcement learning
controller. It can be seen that the controller utilizing
reinforcement learning has better tracking response as
compared to a well tuned PID controller; has no overshoots
and tracks the reference as closely as possible.

—data
—Ref

Heading rate

T p ——

I
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Figure 8: Heading rate response of the RL controller

The designed controllers that gave the above results were
integrated to become actual real time controllers for a UAV
in X-Plane platform. At first, a single step heading
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reference was designed for an actual flight regime of 50°
initial heading to 100° final heading and the results were as
below. Figure 9 shows the PID response to the step
reference. The rise time is 1.4007 seconds and the system
does not settle within the bounds of 0.5% of final value that
was specified. The percentage overshoot was calculated as
6.3119%., which is close to that reported in [1] where a
mathematical model was used.

Figure 9: PID controller response to a step heading
reference

Figure 10 shows the step reference for a RL controller. The
rise time is 1.2663 seconds as compared to PID’s 1.4007
seconds and the system settles after 21.371 seconds. As
can be seen the overshoot is much lesser than the PID’s.
The percentage overshoot is 3.1083% for the RL controller.

Figure 10: RL controller response to a step heading
reference

The preceding results are for UAV simulation in which it is
commanded from an initial heading of 40°. The aircraft is
then commanded to go to 80° and then 50° and so on. The
Figures below display the results where the heading in

ISSN 2277-8616

degrees is plotted on the vertical axis against time in
seconds on the horizontal axis. Figure 11 shows the
performance of the PID controller for real time heading
control of a UAV. Figure 12 shows the response of the
Reinforcement learning controller for the same heading
control of a UAV. For the RL controller, the first 10 seconds
the response is poor as compared to the PID controller; this
is due to the fact that the artificial neural network weights
are being continually adjusted where initially big
adjustments are expected then they settle around the
optimum weights. Thus after 10 seconds the response
stabilizes and follows the reference more robustly than the
PID controller. It can also be seen that there is an
overshoot on the first step heading change but due to
adaptation that overshoot is eliminated in the consecutive
step heading angle changes as is evident from the Figure
12. PID controller performs well to tracking the reference
initially from any random position but its tracking response
is poor, it overshoots in every step reference heading
change and does not track the reference robustly as is
illustrated in Figure 11.

Figure 11: PID controller response to real time heading
control in X-Plane

289

1IJSTR©2017
Www.ijstr.org



INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 6, ISSUE 02, FEBRUARY 2017

Figure 12: RL controller response to real time heading
control in X-Plane

Conclusion

In this paper, an online adaptive reinforcement learning
controller for heading control in a fixed wing UAV is
presented. As it has been shown using simulations in X-
Plane, the RL controller produced better tracking results
than a well tuned PID controller. The results indicate that an
online tuned adaptive controller allowed the UAV to achieve
more satisfactory performance by eliminating overshoots
while tracking a desired reference heading.
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