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Application Of Reinforcement Learning In Heading 
Control Of A Fixed Wing UAV Using X-Plane 

Platform 
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Abstract: Heading control of an Unmanned Aerial Vehicle, UAV is a vital operation of an autopilot system. It is executed by employing a design of 
control algorithms that control its direction and navigation. Most commonly available autopilots exploit Proportional-Integral-Derivative (PID) based 
heading controllers. In this paper we propose an online adaptive reinforcement learning heading controller. The autopilot heading controller will be 
designed in Matlab/Simulink for controlling a UAV in X-Plane test platform. Through this platform, the performance of the controller is shown using real 
time simulations. The performance of this controller is compared to that of a PID controller. The results show that the proposed method performs better 
than a well tuned PID controller. 
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Introduction 
An unmanned Aerial vehicle, UAV is a space traversing 
vehicle that flies without a human crew on board. UAVs can 
be remotely controlled, semi-autonomous, autonomous or a 
combination of these. They are the future of aerial vehicles 
and they present an area of great interest to the control 
engineering fraternity. UAVs have a wide range of 
applications including surveillance, search and rescue, 
target tracking, digital mapping and weather observations. 
To accomplish these autonomous missions, it is essential to 
have a reliable heading control i.e. lateral direction control, 
thus an autopilot system is used. Autopilots were first 
developed for missiles but later extended to aircrafts and 
ships. Due to the nonlinearity of the system dynamics and 
parameter uncertainty in UAVs, several control techniques 
including PID control [1] [2], where two PID controllers were 
used in tandem, for the lateral and longitudinal motions. In 
[3] H ∞ control strategy was used. Adaptive control 
strategies have been applied; fuzzy systems in [4] [5], 
active disturbance rejection control, ADRC in [6] [7]. In [7] 
ADRC was applied to stabilize the UAV during aeriel 
refueling. In [8] an adaptive backstepping approach was 
used to obtain directional control of a fixed wing UAV, 
where the dynamics of the cross track error was derived 
using the lateral system equations of motion. This paper 
presents an adaptive control strategy based on 
reinforcement learning technique. This is due to the high 
nonlinearity of the system dynamics associated with small 
flying aerial vehicles and lack of complete knowledge 
vehicle dynamics for parameter estimation.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Reinforcement learning explores actions from available 
courses of action and chooses the best course of action 
based on the reward it gets, hence suitable for this kind of 
application. A nonlinear model of a small sized fixed wing 
UAV is taken, which is linearized about a stable trim point 
and decoupled into longitudinal and lateral designs. The 
lateral design will be used in design of the controller. The 
proposed controller will act on the deflection angles of the 
two lateral control surfaces i.e. the aileron and rudder. This 
rest of this paper is organized as follows: Section II 
presents the basics of UAV control, section III introduces 
reinforcement learning principles, section Iv gives a brief 
preview of X-Plane test platform, section V gives a design 
of the controller, section VI provides the results and 
discussion and the conclusion is given in the last section. 
 

UAV Control Basics 
A brief discussion of a UAV control basics is considered.  
Figure 1 shows the UAV can move about the axes of 
motion (x,y,z) from its centre of gravity [9]. 
 

 
 

Figure 1: UAV axes 
 

The position control of the UAV is converted to angular 
control in the three principle control axes: roll (φ), pitch (θ) 
and yaw (Ψ). The control surfaces for a fixed wing UAV are 
as illustrated in Figure 2: 

 Ailerons to control the rolling  

 Elevator to control the pitching 

 Rudder to control the yawing movement  
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Figure 2: UAV control surfaces 
 

In addition to these three control surfaces, the engines 
throttle controls the engines power. The derivation of 
equations of motion for fixed wing UAV is given in [10] [11]. 
The nonlinear equations of motion are linearized around a 
level flight trim condition and the linear models thus 
obtained are used to cater for the aircraft natural 
longitudinal and lateral modes. Thus a lateral state space 
model decoupled from within the linear model is then used 
with inputs of aileron and rudder to control the heading of 
an aircraft [12]. The decoupled lateral model state space 
equation is given as  
 

 ̇                      
 
Where      is the decoupled lateral state space model with 
[            ]  as the state variables.    is the roll rate,   is the 
sideslip angle,     is the yawing rate and    is the roll angle 

of a UAV.        is the control input and comprises of    the 

aileron deflection and       the rudder deflection.      is the 
state matrix and       the input matrix. The linear state 

space model is given as in [11] as 
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Reinforcement Learning 
Reinforcement learning, RL is learning what to do – how to 
map situations to actions, so as to maximize some 
numerical reward. The learning agent is not told the correct 
actions; instead it explores the possible actions and 
remembers the reward it receives. It is inspired by natural 
learning mechanisms where animals adjust their actions 
based on the reward or punishment stimuli received from 
interacting with the environment [13]. The RL model 
consists of a set of environment states       ; a set of 

actions       that an agent can perform at each state, and 

as a consequence of its action, the agent receives a 
numerical reward   . At each time step, an agent 
implements a mapping from states to probabilities of 
selecting each possible action. This mapping is called the 

agent’s policy and denoted as     which maximizes the 

cumulative reward of an agent over time as [13]  
 

   ∑    

 

   

 

 
where        is a discount factor, which reduces the 

value of future rewards.  In reinforcement learning there is 
dynamic programming, DP  Monte Carlo methods and 
temporal difference, TD method which comprise of Q-
learning and sarsa algorithm where the latter is an online 
learning method [14]. Like Monte Carlo methods, TD 
methods can learn directly from raw experience without a 
model of the environment dynamics and like DP, TD 
methods updates estimates based in part on other learned 
estimates without having to wait for a final outcome [13]. 
The simplest TD method is given as  
 

 (  )    (  )    [        (    )    (  )] 
 
The temporal difference update is         (    )    SARSA 

being an online TD method, estimates   (   ) for the 

current behavior policy π and for all states s  and actions a. 
This is done using the same TD method described above 
but the transitions from state-action pair to state-action pair 
is considered rather than from state to state and hence the 
value of the state-action pairs. 
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This update is done after every transition from a non 
terminal state     . Thus in sarsa we continually estimate    

for the behavior policy π and at the same time change π 
towards greediness with respect to    . 
 

X-Plane 
X-Plane is powerful flight simulator for personal computers. 
It is not a game but rather an engineering tool that can be 
used to predict the flying qualities of fixed and rotary wing 
aircraft with considerable accuracy [15]. The accuracy of X-
Plane makes it a useful tool to predict and test the 
performance of an aircraft and its characteristics. It has the 
capacity to send and receive data to and from other 
devices. This is achieved using the User Datagram 
Protocol, UDP. UDP uses a simple transmission method 
without explicitly handshaking, ordering or data integrity. 
Hence, UDP provides a fast communication due to less 
overhead of network level processing  thus suitable for this 
time-sensitive real time applications as in X-Plane [16]. X-
Plane is able to send and receive data at 99.9 data packets 
per second via UDP. Each data packet is configured to 
carry specific aircraft parameters that are checked in the 
check boxes provided in the X-Plane Input and Output data 
interface as shown in Figure 3. For instance, in the case of 
lateral motion, parameters such as roll, yaw, heading rate, 
roll rate, aileron and rudder stick deflections should  be 
checked. Once these are selected on X-Plane, through 
UDP and loopback addresses it is possible to receive them 
in Matlab/Simulink. This is made possible by using X-Plane 
Communication Library which enables communication 
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between Matlab/Simulink and X-Plane as in Figure 5; 
receiving and sending. Whereby the received packets are 
repackaged for use in Matlab/Simulink environment and the 
sent data is 

 

 
 

Figure 3: X-Plane Test platform UDP communication 
 

Repacked in a format that can be received and processed 
by X-Plane. X-Plane also has the functionality of altering 
the weather conditions i.e. wind speed, shear speed and 
direction and turbulence of an altitude layer as in Figure 4. 
This allows for close to real life flying conditions hence a 
robust simulation environment. 

 

 
 

Figure 4: X-Plane atmospheric layers 
 

 
 

Figure 5: Simulink to  X-Plane Communication Library 
 

Controller Design 
The main control objective is to obtain lateral-directional 
control in order to follow a desired reference heading. 
SARSA algorithm is used to design the controller. From the 
state space model presented above, the associated Ricatti 
coefficient, P is calculated  which is formulated as the 
Algebraic Ricatti Equation, ARE. This Ricatti coefficient is 
used to calculate the Cost function for each state-action 

pair using a simple Lyapunov function            , which is 
reformulated to include references as   (   )  
(   )    (   ) where X are states and Z are references. 
A reward function is calculated as the deviation of the target 
state from the desired state as in [17] which in this work is 
taken as the heading error. 
 

 ( )      (      ) 
 
The total value function is calculated, which is a sum of 
previous state-action value function, the current reward and 
the current state-action value function as   
 
 (     )    (     )    [      (     )    (     )] 
 (     )    (     )    [      (     )    (     )] 

  
 
This is updated as the total value function for the next cycle 
of learning. According to [18] it is allowed to have a one 
step gradient search of the value function - exploitation for 
ease of real time implementation and less computational 
burden. This was achieved as the temporal difference 
which is evaluated as 

 
            (         )    (     )  

 
According to [19], an optimal control effort is given as  
          but according to differential games algorithm, 

this is expressed as      
 

 
           where      is taken 

as the change in the optimal cost function – which in this 
work the temporal difference between successive cost 
functions is used as the reinforcement to the optimal 
control. This optimal control implemented this way is 
considered to be compensated of the error(s)/ deviation 
from the reference signal hence the best control effort. The 
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control signals from a feed forward neural network are 
compared with this control signal. Then back propagation 
algorithm updates the feedforward neural network weights 
using back propagation. This implies that we are correcting 
the error in the control deflection in the next control 
deflection through update of weights thus slowly taking our 
deflections to the best available control effort in each 
consecutive cycle greedily. In this work the issue of 
exploration which is also central to RL alongside 
exploitation is not addressed. Here the RL controller only 
exploits the value function and new states are found by 
inference of favourable value functions.  
 

SIL implementation 
The aerodynamic coefficients that constitute the values in 
the mathematical model as provided for in [11] are taken 

from [3]  and [12] as                     
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With the above parameters, the trim condition was obtained 
as: 
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Two simulations were carried out in Matlab/Simulink, one 
using a well tuned PID controller and another using the 
reinforcement learning method described above. Then the 
two designed controllers were used for real time UAV 
control in X-Plane as in Figure 6 below. 
 

 
Figure 6: Software-In-the-Loop Simulation 

 

Results and Discussion 
The state space model given above was used to design 
controllers and hence get the response of the heading rate 
in Matlab/Simulink. Using a well tuned PID controller and 
the method highlighted in [1], the response of the heading 
rate is as shown in Figure 7. The dark solid line shows the 
reference signal and the red solid line the heading rate 
response of the model. Figure 8 presents the heading rate 
response of the model using reinforcement learning 
controller. It can be seen that the controller utilizing 
reinforcement learning has better tracking response as 
compared to a well tuned PID controller; has no overshoots 
and tracks the reference as closely as possible. 

 

 
 

Figure 7: Heading rate response of the  PID controller 
 

 
 

Figure 8: Heading rate response of the RL controller 
 

The designed controllers that gave the above results were 
integrated to become actual real time controllers for a UAV 
in X-Plane platform.  At first, a single step heading 
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reference was designed for an actual flight regime of 50
0
 

initial heading to 100
0
 final heading and the results were as 

below. Figure 9 shows the PID response to the step 
reference. The rise time is 1.4007 seconds and the system 
does not settle within the bounds of 0.5% of final value that 
was specified. The percentage overshoot was calculated as 
6.3119%., which is close to that reported in [1] where a 
mathematical model was used. 
 

 
 

Figure 9: PID controller response to a step heading 
reference 

 
Figure 10 shows the step reference for a RL controller. The 
rise time is 1.2663 seconds as compared to PID’s 1.4007 
seconds and the system settles after 21.371 seconds. As 
can be seen the overshoot is much lesser than the PID’s. 
The percentage overshoot is 3.1083% for the RL controller. 
 

 
 

Figure 10: RL controller response to a step heading 
reference 

 
The preceding results are for UAV simulation in which it is 
commanded from an initial heading of 40

0
. The aircraft is 

then commanded to go to 80
0
 and then 50

0
 and so on. The 

Figures below display the results where the heading  in 

degrees is plotted on the vertical axis against time in 
seconds on the horizontal axis. Figure 11 shows the 
performance of the PID controller for real time heading 
control of a UAV. Figure 12 shows the response of the 
Reinforcement learning controller for the same heading 
control of a UAV. For the RL controller, the first 10 seconds 
the response is poor as compared to the PID controller; this 
is due to the fact that the artificial neural network weights 
are being continually adjusted where initially big 
adjustments are expected then they settle around the 
optimum weights. Thus after 10 seconds the response 
stabilizes and follows the reference more robustly than the 
PID controller. It can also be seen that there is an 
overshoot on the first step heading change but due to 
adaptation that overshoot is eliminated in the consecutive 
step heading angle changes as is evident from the Figure 
12.  PID controller performs well to tracking the reference 
initially from any random position but its tracking response 
is poor, it overshoots in every step reference heading 
change and does not track the reference robustly as is 
illustrated in Figure 11.  

 

 
 

Figure 11: PID controller response to real time heading 

control in X-Plane 
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Figure 12: RL controller response to real time heading 
control in X-Plane 

 

Conclusion 
In this paper, an online adaptive reinforcement learning 
controller for heading control in a fixed wing UAV is 
presented. As it has been shown using simulations in X-
Plane, the RL controller produced better tracking results 
than a well tuned PID controller. The results indicate that an 
online tuned adaptive controller allowed the UAV to achieve 
more satisfactory performance by eliminating overshoots 
while tracking a desired reference heading. 
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