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Abstract
Climate change and human encroachment are some of the ma-
jor threats facing several natural ecosystems around the world.
To ensure the protection of ecosystems under threat, it is im-
portant to monitor the biodiversity within these ecosystems to
determine when conservation efforts are necessary. For this to
be achieved, technologies that allow large areas to be monitored
in a cost effective manner are essential. In this work we inves-
tigate the use of acoustic recordings obtained using a low cost
Raspberry Pi based recorder to monitor the Hartlaub’s Turaco
in central Kenya. This species is endemic to East Africa and
faces habitat loss due to climate change. Using simple features
derived from the spectrograms of the recordings, a Gaussian
mixture model classifier is able to accurately screen large data
sets for presence of the Hartlaub’s Turaco call. In addition, we
present a method based on musical note onset detection to de-
termine the number of calls within a recording.
Index Terms: Biodiversity monitoring, bird species recogni-
tion, Raspberry Pi.

1. Introduction
Ecosystems around the world face a number of threats including
climate change and human encroachment. In order to protect
these habitats, there is need to develop technologies to monitor
biodiversity within ecosystems to detect any damage before it
is too late. Traditional approaches to biodiversity monitoring
involve the survey of species richness within the ecosystem of
interest [1]. This requires trained experts to spend a significant
amount of time in the ecosystem in order to carry out the sur-
vey. This approach is costly and time consuming and can not
scale to the large number of ecosystems that require monitor-
ing. This has led to efforts to develop more efficient approaches
to biodiversity monitoring which include rapid biodiversity as-
sessment (RBA) where the species survey is limited to a few
indicator species [2]. While RBA is faster than a complete sur-
vey, it still requires an expert to go to the field and this is not
always possible.

One alternative to traditional biodiversity monitoring ap-
proaches is to use acoustic signals recorded in the ecosystems
of interest to try and infer the biodiversity of the ecosystem.
Given an acoustic recording, one can in principle determine
the species vocalising in the recording and thereby determine
species presence and richness. The recordings can either be
annotated by an expert or processed using species identifica-
tion software to determine the species present in the recording.
Acoustic approaches to biodiversity monitoring have been in-
vestigated by a number of authors and found to be a promis-
ing and scalable approach [3, 4]. Some of the advantages of
this approach include: 1) Audio recordings can be archived to
serve as a permanent record of the state of the ecosystems at the
time of the survey. 2) Experts are not needed to collect the data

as the recordings can be collected by people trained to handle
the recording equipment only. 3) Acoustic recordings can be
used to perform analysis at various levels starting from a large
scale biodiversity assessment [3, 4] to a survey of a particular
species [5].

Despite these advantages, a number of shortcomings re-
main. Firstly, recording equipment can be costly to obtain and
setup. Second, audio recording generates a large amount of data
which can be time consuming to analyse especially if we must
listen to these recordings manually. As a result, efforts to make
bioacoustic approaches more cost effective and less time con-
suming are important. In [6], the authors describe the use of a
low cost audio recorder to monitor diverse ecosystems. In [7]
the authors describe a system to screen large datasets for the vo-
calisation of a particular species, the Screaming Piha (Lipaugus
vociferans) in a tropical forest in French Guiana.

In this work we develop and test a low cost acoustic mon-
itoring system based on the Raspberry Pi microprocessor for
use in acoustic monitoring of bird species. The Raspberry Pi
is a low cost programmable microprocessor with much of the
functionality of a modern computer and this makes the devices
suitable for both recording and processing of the recordings.
We use the recordings to detect the presence of the Hartlaub’s
Turaco (Tauraco hartlaubi), a ubiquitous forest species with a
distinct call. This species is endemic to East Africa and faces
habitat loss due to climate change and human encroachment.

2. Data Collection
2.1. Study Area

The study was conducted at the 120 acre Dedan Ki-
mathi University Wildlife Conservancy (DeKUWC) located at
0°23’17.0”S 36°57’43.2”E. The conservancy has three ecologi-
cal zones namely open grassland, undisturbed indigenous forest
and aquatic zones. See the map in Figure 2.

2.2. Equipment

The audio recordings were collected using a cheap microphone
connected to a Raspberry Pi (RPi). To make the recordings, we
use the open source sound processing software SoX. Figure 1
shows the acoustic sensor system in the lab.

2.3. Acoustic Survey Protocol

Four acoustic recorders were left at locations within the
DeKUWC on 5th January, 2016 with recording starting be-
tween 10am and 12 noon. The acoustic recorder locations are
labelled 1-4. The locations are shown on the map in Figure
2. The points were separated by approximately 100-200 meters
and the recorders were left at these points for approximately
28 hours and were programmed to record for one minute at five
minute intervals. This produced approximately 340 minute long
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Figure 1: The Raspberry Pi based acoustic sensor system.

recordings per site. We set the sampling rate of the recorders to
16kHz at 16 bit resolution.

Figure 2: A map of the DeKUWC with locations of the acoustic
recorders indicated.

2.4. Hartlaub’s Turaco Dataset

From the recordings obtained from the fourth RPi recorder (lo-
cation 4), 12 recordings were chosen which contained vocali-
sations of the Hartlaub’s Turaco and 21 recordings without the
Hartlaub’s Turaco call but containing vocalisations from other
bird species. Each of the recordings was split into six, ten sec-
ond long recordings for use in training and testing our Hart-
laub’s Turaco call classifier.

3. Experiments
3.1. Acoustic Features

Mel frequency cepstral coefficients (MFCCs) are commonly
used in speech processing applications and a number of authors
have used them to recognise bird species from recordings [8].
In this work we use simpler features which have been used in
music genre [9, 10] and acoustic scene classification [11, 12].
These features are: 1) Band Energy Ratio: This is the ratio of
the total energy in a particular spectral band to the total energy
of a frame. We use six logarithmically spaced spectral bands.

2) Spectral Flux: This is the squared difference between the
normalized magnitude spectra of successive frames. We use a
variation of the spectral flux by computing the flux in each of
the six spectral bands 3) Spectral centroid and bandwidth: The
spectral centroid is a measure of the frequency around which
spectral energy is centered while bandwidth measures the dis-
persion of spectral energy around this centroid frequency. 4)
Spectral Rolloff : This is the the frequency below which a given
percentage of the spectral energy is contained. In this work we
use 85%.

These features are computed from the spectrogram of the
acoustic recording resulting in a 15-dimensional feature vector
per frame. To obtain the spectrograms, we divide the signal
into frames of 512 samples each (32 ms at 16kHz) with 50%
overlap and compute the magnitude of the FFT of each frame.
Figure 3 shows a typical spectrogram obtained from a recording
containing the Hartlaub’s Turaco vocalisation.

Figure 3: A typical spectrogram obtained from a recording con-
taining the Hartlaub’s Turaco vocalisation. Regions with the
vocalisation are indicated using the black rectangles.

3.2. Classification

In order to classify the species, we train models using the fea-
tures obtained from the acoustic recordings. We use Gaussian
mixture models (GMMs) with 32 mixture coefficients and clas-
sification is by maximum likelihood. The GMMs are initialized
by applying K-means clustering to the training data. The mod-
els and classifiers were implemented using Bob, an open source
machine learning toolkit written in python [13].

3.3. Counting Hartlaub’s Turaco Call Events

In addition to detection of recordings containing the call of the
Hartlaub’s Turaco, we are interested in counting the number of
calls in a particular recording. This will indicate how long par-
ticular individuals are present in the vicinity of the recording
device and also serve as a surrogate for the number of individ-
uals present. In this work we use an approach similar to that
used in note onset detection in music [14]. Here we first de-
rive a detection function from the acoustic recording. Peaks in
the detection function correspond to locations of the Hartlaub’s
Turaco call. The detection function we use is derived from the
recordings using the following steps. 1) Divide the signal into
frames of 512 samples each (32 ms at 16kHz) with 50% overlap
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and extract the features used to classify the Hartlaub’s Turaco
call. 2) Compute the log likelihood ratio of each frame using
the models trained to identify turaco calls. 3) Smooth this log
likelihood ratio by computing the average log likelihood of the
300 previous blocks. This is so that we only consider blocks in
a 5 second window which is the approximate duration of a call.
4) Fit a polynomial of degree 16 to this smoothed function and
extract peaks that fall within the signal duration. These peaks
correspond to the detected calls.

Figure 4 shows the spectrogram of an audio recording con-
taining the Hartlaub’s Turaco call and the detection function
used to extract call locations. From this we see that the de-
tection function (green curve) peaks at the end of the call and
the polynomial fit (red curve) is able to detect the peaks of this
function. In this case six call events are detected including one
spurious detection as there are actually five call events.

Figure 4: The spectrogram of an audio recording containing the
Hartlaub’s Turaco call (top panel) and the detection function
used to extract call locations (bottom panel).

4. Results
4.1. Recognition of The Hartlaub’s Turaco Call

We trained GMM models with 32 mixture coefficients to detect
the presence and absence of the Hartlaub’s Turaco call. The data
were divided in half and one half used for training and the other
half for testing. Figure 5 show the receiver operating charac-
teristic of the GMM Hartlaub’s Turaco call classifier. The area
under the curve is 0.97 and the selected operating point corre-
sponds to a true positive rate of 93% and a false positive rate of
7%. Code and data to reproduce the experiments are available
on Github https://github.com/ciiram/BirdPy

4.2. Screening The Dataset

Using the GMM model trained using the training data and the
threshold chosen for the classifier to operate at a true positive
rate of 93% and a false positive rate of 7%, we run the GMM
model on all the recordings obtained at location 4 to determine
which files had the Hartlaub’s Turaco call. For each frame, we
compute the log likelihood ratio. As our detection function,
we use the average log likelihood of the previous 300 frames
(approximately 5 seconds) to classify the recording (see Figure
4). If the mean of the detection function is above the threshold,

Figure 5: Receiver operating characteristic of the GMM Hart-
laub’s Turaco call classifier.

the recording is classified as having the Hartlaub’s Turaco call.
Of the 332 files screened, 122 were classified as having puta-
tive Hartlaub’s Turaco calls including the 12 files used to train
the classifier. Each one minute file was processed in approxi-
mately 5 seconds. Figure 6 shows the spectrogram of one of
the files classified as containing the call. It is the spectrogram
of the recording obtained at 06:15 on 6th January, 2016. Visual
inspection of the spectrograms classified as containing the call
showed that the classification was accurate.

We also compute the number of Turaco calls detected in
each one minute file. Figure 7 shows a plot of the number of
calls per minute detected at location 4 between 12:35 on January
5th, 2016 and 16:10 on January 6th, 2016. We see that calls are
detected throughout the day at this location with the latest call
detected at 18:45 and the earliest call detected at 06:05.

Figure 6: The spectrogram of one of the files classified as con-
taining the Hartlaub’s Turaco call.

5. Discussion and Conclusions
To form an accurate picture of the state of an ecosystem using
acoustic recordings, it may be important to build recognizers
for particular species known to be common in the ecosystem.
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Figure 7: Number of Hartlaub’s Turaco calls per minute de-
tected at location 4 between 12:35 on January 5th, 2016 and
16:10 on January 6th, 2016.

This is an approach that has been successfully used in a num-
ber of studies such as detecting calls of the Screaming Piha in
French Guiana [7] and detecting Nightjar calls in Northumber-
land, UK [5]. Here we successfully demonstrate the screening
of a large audio dataset for calls of the Hartlaub’s Turaco which
is a ubiquitous species in montane forests in Kenya with a dis-
tinct call. The screening is based on a GMM classifier trained
to achieve a true positive rate of 93% and a false positive rate
of 7%. In addition to detecting presence of calls in a recording,
we are able to detect the number of such calls. There are 332
one minute recordings obtained at location 4, approximately 5.5
hours of audio. We are able to screen each recording in less that
5 seconds with the entire dataset screened in approximately 20
minutes. Building automatic systems such as the one described
here makes screening of these large datasets feasible.
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