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Nanomedicine strategies were first adapted and successfully
translated to clinical application for diseases, such as cancer
and diabetes. These strategies would no doubt benefit unmet
diseases needs as in the case of leishmaniasis. The latter causes
skin sores in the cutaneous form and affects internal organs in
the visceral form. Treatment of cutaneous leishmaniasis (CL)
aims at accelerating wound healing, reducing scarring and
cosmetic morbidity, preventing parasite transmission and relapse.
Unfortunately, available treatments show only suboptimal
effectiveness and none of them were designed specifically for this
disease condition. Tissue regeneration using nano-based devices
coupled with drug delivery are currently being used in clinic to
address diabetic wounds. Thus, in this review, we analyse the
current treatment options and attempt to critically analyse the
use of nanomedicine-based strategies to address CL wounds in
view of achieving scarless wound healing, targeting secondary
bacterial infection and lowering drug toxicity.
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1. Introduction
Leishmaniasis is a protozoan parasitic disease found in parts of the tropics, subtropics and southern
Europe. It is transmitted to humans and animals by the bite of phlebotomine female sandflies which
are the vectors of at least 30 species of the genus Leishmania [1] (figure 1). The most common forms
are cutaneous leishmaniasis (CL), which causes skin sores, and visceral leishmaniasis, which affects
several internal organs.

Leishmaniasis currently affects around 12 million people in 98 countries with a widespread
distribution in the developing world. For CL, estimates of the number of new cases per year have
ranged from approximately 700 000 to 1.2 million or more [2]. Chronic forms of leishmaniasis include
diffuse cutaneous leishmaniasis (DCL), mucosal leishmaniasis (ML) and leishmaniasis recidivans. The
skin sores of CL usually heal on their own, even without treatment. But this can take months or even
years, and the sores leave prominent scars which often lead to social stigmatization. Leishmania
parasites causing CL can be divided into Old World species which include Leishmania major,
Leishmania tropica and Leishmania aethiopica, common around the Mediterranean Basin, the Middle
East, the Horn of Africa, or the Indian subcontinent; and New World species, such as Leishmania
amazonensis, Leishmania mexicana, Leishmania braziliensis and Leishmania guyanensis, which are endemic
to Central and South America [3].

Species-based identification of the parasite is critical for the disease prognosis [4]. Sandflies, humans
and animals can act as host in the transmission of leishmaniasis. In sandflies, the parasites proliferate in
the promastigote (flagellate) distinct forms in the latter’s hind gut. Procyclic promastigotes multiply in
the bloodmeal within the mid-gut transforming into nectomonad promastigotes which migrate to the
anterior mid-gut, transform into lectomonads in a second growth cycle, after which they differentiate
into metacyclic promastigotes for onward transmission into vertebrates [5]. In vertebrates,
macrophages located in the dermis phagocytose the extracellular promastigotes transforming them
into intracellular non-flagellated amastigotes [6] (figure 2). Emerging amastigotes emanating from
lysed macrophages are internalized by neutrophils and dendritic cells (DC). This marks the beginning
of inflammation after several weeks when there is influx of neutrophils, followed by inflammatory
macrophages. At this stage, clinically apparent lesions are observed. In the end, T-cell-derived IFNγ
effects lesion resolution by initiating parasite killing. Subsequently, DC prime and activate antigen-
specific T cells, thereby eliciting the adaptive immune response against Leishmania [7]. In the absence
of any treatment, this process can take up to 18 months.

The development of the disease follows a complex pathway involving interactions between factors
triggered by the host’s innate and acquired immune responses. Inflammatory responses determine
disease expression, i.e. symptomless or subclinical infection, self-healing CL, or chronic leishmaniasis.
In addition, the resolution of the disease is controlled by cell-mediated responses rather than the
humoral immune response and there is strong correlation between T-cell activation and disease
outcome [1] that shows also clear differences between males and females, with males exhibiting a
higher risk of the New World CL, that seems to be driven by a sex-dependent differential immune
response [8].

It is established that sandfly saliva, similar to other haematophagous insects, holds several bioactive
molecules which have anti-inflammatory and immunomodulatory functions. These facilitate blood
feeding as well as potentiate the parasite infection and modulate host immune response [9–12]. The
microenvironment of naive macrophages (M0) provides signals to activate the development of either
‘classically activated’ (M1) by Th1 lymphocytes with a variety of cytokines crucial in the killing of
Leishmania through an oxidative burst [13,14], or ‘alternatively activated’ (M2) via Th2 lymphocytes,
which produce IL-4 and IL-13 cytokines, inducing the M2 phenotype characterized by polyamine
biosynthesis known to support the growth of Leishmania parasite within macrophages and thus overt
disease [14,15]. Sandfly saliva can modify the microenvironment of naive macrophages and produce
signals that favour alternatively activated macrophage (M2) profile in a variety of ways. Sandfly saliva
induces IL-10 to elicit a regulatory response which is linked to the activation of a Th2 through the
upsurge in IL-4 and IL-6 synthesis [16–20].

To date, there is no vaccine or safe drug to inhibit proliferation of the parasite. The absence of
microscopy at basic healthcare facilities in many African countries poses a major challenge in
leishmaniasis diagnosis as the presence of Leishmania amastigotes in clinical specimens is conducted
using direct microscopic examination or molecular analysis. The Leishmania parasite has a complex life
cycle and one of its developmental forms, namely the amastigote, resides within phagocytes, which
explains the challenge of targeting the parasites with specific drugs [21]. Additional challenges
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Figure 2. Transmission of leishmania parasites via the sandfly vector or the human host. Reproduced with permission from [1].
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include side effects caused by toxic drugs, non-responsiveness to treatment due to drug-resistant strains
and poor compliance to treatment. In addition, it is very difficult to find a drug that will be effective
against all forms of CL. The level of inflammation response further complicates treatment.

Nanomedicine forms part of modern medicine strategies to address challenges of both infectious
diseases such as tuberculosis [22] and non-infectious diseases such as cancer [23]. Tissue regeneration
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using nano-based devices coupled with drug delivery are currently being used in clinics to address
diabetic wounds [24]. Thus, in this review, we give an overview of the current treatment options and
attempt to critically analyse the use of nanomedicine-based strategies to address CL wounds, which
includes tissue regeneration, infection management and addressing inflammatory response.
ietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:220058
2. Current diagnosis and treatment options for cutaneous leishmaniasis
2.1. Diagnostic tools
To date, there is no single reference test to detect CL, but observation of amastigotes in clinical specimen
samples confirms the diagnosis. Highly sensitive molecular methods such as PCR are particularly helpful
in mucosal lesions where the parasitic load is low. They further allow for species identification. Recently
developed real-time kinetoplast DNA PCR (KDNA PCR) assays such as loop-mediated isothermal
amplification (LAMP) technique displayed 98% sensitivity on 40 CL patients [25]. Emerging
immunological tests involving the use of chemiluminescent ELISA to quantify anti-α-galactosyl
antibodies are up to nine times higher in people with L. tropica or L. major infections than in healthy
people [26].

An immunochromatographic rapid diagnostic test (IC-RDT), CL Detect™ kit (InBios International
Inc., USA), was recently developed to detect amastigotes from CL skin lesions. The kit works by
detecting peroxidioxin, produced by Leishmania promastigotes and amastigote from cell lysate. The
sensitivity of this method varied among species and geographical strains. It was reported that the IC-
RDT kit showed high sensitivity (100%) and specificity (96%) to L. major in Tunisia [27] but
demonstrated poor efficiency to detect L. dovani amastigotes within CL lesions from patients in Sri
Lanka (sensitivity 36%). This diagnostic method is highly dependent on parasite count and expression
of peroxidioxin antigen which may vary between Leishmania species [28].
2.2. Treatment options
Available treatments for CL show only suboptimal effectiveness and none of them were designed
specifically for CL (figure 3a). The first-line treatment approach remains pentavalent antimonial drugs
(i.e. sodium stibogluconate or meglumine antimonate) at 20 mg kg−1 per day for 20–28 consecutive
days, which have high toxicity and requires patient hospitalization. Treatment recommendation for CL
by WHO depends on the parasite species, geographical location and the clinical manifestations. No
treatment is recommended for leishmaniasis caused by L. mexicana or L. major [29]. Second-line
treatment includes amphotericin B (AMB) deoxycholate (Fungizone®, 30 days with 1 mg kg−1),
liposomal amphotericin B (AmBisome®, single-dose 10 mg kg−1), pentamidine (Pentam®, 3–5 days
with 4 mg kg−1), miltefosine (MILT) (Impavido®, 28 days with 1.5–2.5 mg kg−1 d−1) and paromomycin
(PRM) (Humatin®, 21 days with 15 mg kg−1 d−1) and are advised for complicated cases, non-
responders to topical treatments, immunocompromised patients and for areas with high possibility of
disease progression to mucosal Leishmania [29]. Amphotericin B is very effective but presents toxic
effects when injected in the deoxycholate form [21]. FDA-approved lipid formulation of amphotericin
B, AmBisome, is better tolerated than conventional amphotericin B but its high cost limits its use [30].
Local therapy such as thermotherapy (use of heat) and cryotherapy (application of subzero
temperatures) have been used due to the thermosensitivity of the parasites [31]. Thermotherapy may
be co-administered with infrared light, laser or direct electrical stimulation. The mechanisms of action
of anti-leishmanial drugs have been detailed in several reviews [32,33] (figure 3b). Trivalent (SbIII)
and pentavalent (SbV) forms of antimony inhibit trypanothione reductase and topoisomerase I
enzymes. Amphotericin B acts on both promastigote and amastigote stages of the parasite by binding
to their cell wall. In addition to affecting the membrane potential of the mitochondria, miltefosine and
paromomycin inhibit cytochrome-c oxidase and protein synthesis respectively causing parasite death
[32]. As a result of toxic side effects associated with these drugs such as nausea, vomiting, diarrhea,
increased blood sugar, etc., careful monitoring of the patients is required.

The duration of treatment for persistent, multiple and large lesions lasts in general more than six
months. However, treatment is only successful in patients with immunocompetent systems. Relapse is
common in immunocompromised patients [2].
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Figure 3. (a) Stepwise decision regarding treatment of CL and (b) mechanism of action of common anti-leishmanial drugs.
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2.2.1. Need for personalized treatment

Therapeutic outcomes depend on (i) host factors (immune system, age, sex, compliance), (ii) parasite
factors (species, strain, virulence, Leishmania RNA virus, resistance gene involved), (iii) drug-related
factors (dosage, pharmacodynamics, pharmacokinetics, preservation, etc.), and (iv) drug resistance.
Drug resistance (DR) is a major issue and occurs as a result of genetic mutations which reduce the
parasite’s response towards a given drug through decreased uptake of the drug by macrophages.
Several mechanisms have been proposed for DR (figure 4) and targeting them may be a viable
strategy to overcome DR. For instance, once inside immune cells, drugs may be inactivated, removed
or relocated into vacuoles. Prodrugs require activation, and following DR, this important activation
process is suppressed. A third mechanism of DR consists of changes in drug/target interaction due to
modifications or higher number of target molecules [34]. Hence, a personalized medicine approach
has enormous potential to improve treatment.
2.2.2. Targeted approach

Following technological advances in clinical research, the availability of complete genome sequence of
Leishmania and better understanding of the biological pathways of the Leishmania species, a number of
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Table 1. Summary of main therapeutic targets, potential drugs (active agent) and their corresponding mode of action.

therapeutic target agent mode of action

glycolysis [35] inhibitors of enzyme transport in glycolysis arrest of glycolytic influx and killing of

parasite

fatty acid and sterol

metabolism [36,37]

fatty acyl-CoA ligase sterols such as

ergosterol and 24-methyl sterol as well

as enzymes involved in sterol

biosynthesis including squalene synthase

disrupts cellular homeostasis of lipids

polyamine metabolism

[38–42]

ornithine decarboxylase, trypanothione

synthetase, trypanothione reductase,

deoxyhypusine synthase and

deoxyhypusine hydroxylase.

interferes with cell survival, growth and

proliferation

proteasome and cell

cycle [43,44]

inhibitors targeting cyclin-dependent

kinases, histone acetyl transferase and

histone deacetylases, SIR2 deacetylase

disrupts cell cycle

ER-mediated pathway

of protein

processing [45–47]

signal peptide peptidase (SPP) and agents

leading to overexpression of calreticulin,

BiP and protein disulfide isomerase (PDI)

interferes with the folding of proteins in

endoplasmic reticulum and with their

transport through the golgi for

secretion outside the cell
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potential therapeutic targets have been identified (table 1). They may eventually pave the way towards
the development of new or repurposed drugs for the treatment of CL.

The key to host-directed therapy is to define the mechanism that would promote immune protection
and mediate immunopathological responses associated with the disease. Cytokines such as IFN-y, IL-12
or IL4 have been shown to control parasite growth and promote healing by increasing protective
immunity [48]. However, while cytokines such TNF-a and IL-1ß are essential for macrophage
activation, excess levels of these cytokines contribute to chronic inflammation. A number of inhibitors
designed to block their pathway have been investigated. The pathological role of CD8T cells which
have shown to produce little IFN-y and become cytolytic in lesions contributing to metastasis in
leishmaniasis patients have been studied. CD8T cell-mediated disease could be blocked by inhibitors
of NLRP3 and IL-1ß [48]. Figure 5 illustrates various targeting approaches in the treatment of
leishmaniasis/CL.

Nano-drug delivery systems (nano-DDS) such as niosomes, liposomes, transfersomes and polymeric
nano-DDS have been designed for topical and oral delivery in CL. Parasitic resistance can be avoided by
using drug-loaded surface-modified nano-DDS systems (mannosylated or thiolated) [49]. Nanoparticles
such as gold complexes have emerged as anti-leishmanial agents whereby gold-based drugs exhibited
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immunomodulation activity, thioredoxin reductase inhibition and redox imbalance [50]. Another
targeting approach for CL is host-directed therapies aiming at modulating the severity of CL,
controlling the inflammatory response rather than solely restraining parasite replication.
 8
3. Nanostructures as carriers for anti-leishmanial drugs
Nanomedicine offers the possibility to enhance drug efficacy while decreasing their toxic effects. They are
currently being used in anti-cancer chemotherapy due to their profile of security and good tolerance, for
instance Nab-paclitaxel (Abraxane) as a first-line treatment of metastatic pancreatic carcinomas and in
second-line therapy for metastatic breast cancer. Nano-based drug delivery optimization for
tuberculosis treatment has also been thoroughly studied [51]. The application of this strategy to
treatment of CL can further be extended to tissue regeneration possibilities. This section gives a
critical analysis of nano-based strategies which have been assessed for CL treatment.

Although manufacturing of nanomaterials is not addressed in detail, the most prominent methods are
shown in figure 6. Today, 3D printing, electrospinning and rapid prototyping are used. Nanostructured
films are available via chemical and physical vapour deposition or various self-assembly methods (such
as Langmuir–Blodgett) [52]. In addition, lithography, particularly photolithographic techniques have
been developed to generate tailored micro- and nanostructures [53].

In the following sections, nanoparticles, nano/microfibres and hydrogels produced for Leishmaniasis
treatment will be discussed in more detail.

3.1. Nanoparticles
Poor performance of drugs poses a major challenge for delivery of drugs to specific cells. The biological
barriers encountered by the therapeutic modalities favour dissemination of the disease like
intramacrophage location of parasite, lack of oral bioavailability, permeability across the cutaneous
tissue and active efflux of the drug. Indeed, hydrophilic drugs such as paromomycin cannot pass the
skin in its free form and are thus unable to kill parasites within macrophages [54]. Moreover, adverse
side effects of current anti-leishmanial drugs led to increased interest in the use of nanomedicine for
leishmaniasis therapy. Nanomedicine may be administered through oral, IV or through cutaneous
routes with IV being the most frequent route.

Nanoparticles (NPs) offer the possibility of overcoming physiological barriers to enter cells,
improving drug solubility, multiple drug loading with high drug content, enhanced stability, control
drug distribution in the body, as well as good circulation throughout the body. In CL, the parasite is
located in skin macrophages, and dendritic cells, including Langerhans cells, together with lymph
nodes and mucosal cells in mucosal CL. Therefore, the effectiveness of drugs may be increased by
specifically targeting these tissues. Indeed, control over the chemical and structural properties of NPs
allow the specific delivery of multiple drugs to targeted sites via surface modification with
biomolecules and therapeutic drugs [55]. To reduce adsorption of blood proteins and to decrease
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unspecific biodistribution, NPs may be functionalized with biocompatible materials. The size and surface
charge of NPs may be controlled for more specific accumulation and biodistribution. For instance, NPs
with size smaller and larger than 150 nm are retained in the liver and the spleen, respectively [56].
Positively charged NPs are trapped in liver, spleen and lungs [57]. In addition, the action of drugs
may be controlled through modification of NPs with ligands such as antibodies, peptides, lipids,
carbohydrates and nucleic acid which allow recognition of pathophysiological markers of
leishmaniasis on the parasites or infected cells [58].

The use of NPs can increase the effectiveness of leishmaniasis treatment, reduce toxic side effects and
frequency of the medications [59]. Chitosan is an interesting material for NPs fabrication due to its
positive charge which favours adsorption by negatively charged cell membranes [60]. In addition, it
showed intrinsic anti-leishmanial activities against Leishmania parasites [61]. In vivo studies in L. major
murine model confirmed that chitin was a better immunomodulator compared with chitosan due to
enhancement of IL-10 and TNF-α productions by chitin microparticles (MPs) compared with chitosan
MPs [62]. Metal NPs especially Au and Ag have high anti-leishmanial activities due to the metal-
oxidation capability, causing greater damage to cell membranes [55]. Table 2 summarizes the main
NPs drug delivery systems investigated for leishmaniasis treatment.

There are a few promising NPs containing the biopolymer lignin that may play a crucial role in the
future. In the wake of global climate and resource pressures, it is more urgent than ever to also design
new research approaches as sustainably as possible. Lignin is the second most abundant and
renewable natural biopolymer [81]. One quarter of wood contains lignin along with cellulose-related
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Table 3. Summary of LNPs drug delivery systems used for disease treatment.

LNP system (preparation
method, lignin origin/isolation
process and average size)

drug-loaded (%
encapsulation
efficiency)

loading
capacity
(%) main findings

kraft LNPs dialysis technique

(129.88–203.5 nm) [86]

irinotecan

(67.6 ± 2.0)

13.6 ± 0.6 LNPs reduced the IC50 value of irinotecan

by almost threefold

organosolv-type LNPs

(stabilized by citric acid)

self-assembly method

(85.9–104 nm) [87]

curcumin

(92 ± 4)

— in vitro release experiments showed that

curcumin-loaded LNPs achieved high

stability in simulated gastric fluid

enzymatically hydrolysable

lignin (EHL) hollow NPs

dialysis technique (396–

405 nm) [88]

doxorubicin-

hydrochloride

(>60)

>12.5 encapsulation of the drug was enhanced

by the pore volume and surface area

LignoBoostTM softwood kraft

LNPs dialysis technique

(221 ± 10 nm) [89]

Sorafenib

(68 ± 19)

7 ± 2 morphology of the drug-loaded pLNPs

did not change compared with empty

LNPs. Less than 4% of the pure drug

was released at pH 5.5 and 7.4, due

to low solubility of SFN in aqueous

solutions

benzazulene

(77 ± 10)

8 ± 1 anti-proliferative effect of benzazulene in

different cell lines (EA.hy926, MDA-

MB-231, MCF-7, PC3-MM2 and CaCo-2)

after incorporation into LNPs was

enhanced

alkali LNPs (131.2–183.6 nm)

self-assembly method [90]

resveratrol (>90) 23.8 addition of Fe3O4 within the NPs

increases the stability, accumulation

and anti-cancer effect of resveratrol

significantly improved compared with

free agents

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:220058
11

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 J

un
e 

20
22

 

components in trees and plants [82]. Current applications cover bio-based chemicals and high-
performance polymer nanocomposites [83]. Promising lignin-based composites are under investigation
for drug delivery and biomedical applications [84]. For this purpose, lignins can be converted into
lignin-based hydrogels and/or nanoparticles (LNP) which are increasingly being studied for
controlled drug release [85] for different types of molecules. The most promising lignin-based
approaches are presented in table 3.

The most common method used for LNP belongs to the group of self-assembly techniques. For this,
the lignin is dissolved in an organic solvent, and the LNP are subsequently formed by adding an anti-
isolating agent, as shown in figure 7 [91].

The formation of micelles can also be achieved by dialysis process as recently shown by Gericke et al.
For this purpose, organosolv lignin was embedded in a biocompatible polysaccharide matrix
(xylanphenyl carbonate and cellulose acetate phthalate) to form hybrid LNP, promising structures for
pharmaceutical applications [92].

3.2. Micro/nanofibres
Compared with NP delivery systems, micro- and nanofibres have not been extensively investigated for
anti-leishmanial drug loading. Micro- and nanofibrous mats have high surface area allowing high



OH

OH

O
H

OH

O
H

OH
OH

OH

amphiphilic
lignin molecule

addition of an
antisolvent

+addition of an
antisolvent

self-assembly self-assembly

= hydrophobic aromatic group (phenylpropanoid units) = hydrophilic part (OH and COOH groups)

lignin dissolved
in a polar solvent

Figure 7. A schematic proposal for the formation of LNPs [91]. Copyright Elsevier 2022.
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drug encapsulation efficiency and may be compressed to form oral tablets, thereby increasing patient
compliance and reducing costs linked to conventional chemotherapy which requires hospitalization [93].

Laha et al. [93] successfully fabricated compressed cross-linked amphotericin B-loaded gelatin
nanofibrous oral tablets which exhibited excellent zero order drug release kinetic for up to 10 days. To
prevent initial burst release, the tablet was coated with sodium alginate (SA) to control initial fluid
penetration [94]. SA coating also increased the stability of the tablet under physiological pH.

The topical application of drugs for CL requires drug penetration within the dermis, where the
parasites are internalized into macrophages. Using a polyvinyl alcohol (PVA)-based electrospun mat
as chalcone delivery system [95], it was found that the nanosystem allowed mostly retention of the
drug in the upper skin layer while the nanoemulsion form penetrated much deeper. In vitro testing
using amastigotes of L. amazonensis revealed greater efficiency of parasitic growth inhibition compared
with the free forms of the chalcones.

Alishahi et al. [96] engineered a topical anti-leishmaniasis drug delivery system to treat CL
using electrospun core–shell nanofibres made up of the biocompatible polymers polyethylene oxide
(5% w/v), gelatin (1% w/v), polyvinyl alcohol (PVA, 6% w/v) and chitosan (3% w/v). A maximum
of 20% (w/w) glucantime was loaded and 84% of the drug was released in vitro within the first 9 h.
The amount of glucantime loaded into the fibres did not alter their cytotoxicity towards NIH3T3 cell
line. The topical delivery mats were non-toxic to fibroblast cells (NIH3T3) and were able to eliminate
78% of L. major promastigotes in vitro.

Core–shell nanofibres made up of polylactic acid (PLA) and polyethylene glycol (PEG), loaded with
amphotericin B were developed by Gonçalves et al. [97]. It was synthesized by solution blow spinning
(SBS) and expressed high in vitro anti-leishmaniasis activity against L. amazonensis and L. braziliensis. It
was reported that the nanofibres loaded with 1, 0.5 and 0.25% of amphotericin B (Amp B),
respectively, killed all promastigotes in the culture media. In vitro controlled release of Amp B showed
some promising characteristics. Release of the antifungal and anti-leishmaniasis drug started within
1 h, followed by a gradual increase in rate till day 7.

Liang et al. [98] reported on the electrospinning of poly(ε-caprolactone) (PCL)-grafted lignin (PCL-g-
lignin) copolymer CNFs which showed excellent antioxidant and anti-inflammatory properties and low
cytotoxicity. PCL-g-lignin CNFs inhibited the formation of reactive oxygen species and activated
antioxidant enzyme activity through an autophagic mechanism. The nanofibrous PCL-lignin
membrane can be implanted during arthroscopic surgery and provided effective osteoarthritis
therapy. Arginine-derived lignin NF was prepared by electrospun lignin NF, which has suitable
viscosity that can be used for enhanced spreadability of topical application. In vivo wound healing test
was demonstrated in rats. The arginine-based lignin NF accelerated wound healing and increased re-
epithelialization, collagen deposition and angiogenesis compared with lignin NFs and arginine [99].
Ago et al. [100] developed a fibre material composed of lignin, polyvinyl alcohol and cellulose
nanocrystals (CNC). They investigated the morphology of the electrospun lignin/PVA/CNC fibres,
focusing on understanding the distribution of polymers on the fibre surfaces as a function of fibre
composition. The fibre properties of this composite material and its fibre surface characteristics, such
as surface energy, make it an extremely interesting candidate for the development of a fibre material
for controlled drug delivery. Electrospun softwood kraft lignin/polyamidoamine dendrite (PAMAM)
polymer blends exhibited strong interaction between the phenolic groups of lignin with the amino
groups of PAMAM [101]. This not only improved the mechanical and thermal properties of the mats,
but also enhanced adhesion to the profile required for a drug release material. A highly stretchable
electrospun lignin-based biomaterial was developed containing poly(methyl methacrylate) (PMMA)
and poly(ε-caprolactone) (PCL) which showed high biocompatibility with human skin fibroblasts
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[102]. A lignin copolymer synthesized using β-butyrolactone and/or ε-caprolactone was further coupled
with poly(3-hydroxybutyrate) (PHB) to prepare PHB/lignin NFs using electrospinning techniques [103].
The obtained PHB/lignin NFs showed enhanced tensile strength and elongation with good
biodegradability and biocompatibility.
ietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:220058
3.2.1. Electrospun wound dressing

Rahimi et al. [104] designed an electrospun wound dressing made of chitosan (CS)-polyethylene oxide
(PEO) nanofibres loaded with berberine and assessed its anti-leishmanial activity against L. major
in vitro. The nanofibres were found to be non-toxic, biocompatible and did not hamper the
proliferation of fibroblast cells. In addition, the nano-scaffolds had prolonged drug release capacity up
to 14 days with 50% release within the first 18 h and 80% at day 3. It was observed that a load of 20%
berberine (w/v) in the nanofibres significantly inhibited growth of promastigotes in vitro (IC50=
0.24 µg ml−1). Tabaei et al. [105] also worked on CS-PEO-berberine nanofibres and demonstrated
accelerated wound healing of Leishmania ulcers in murine model. Efficiency of the wound dressings,
also known as nano-bandages, was assessed in BALB/c mice infected with L. major. Similar to
previous findings [104], the nanofibre mat was biocompatible and demonstrated significant berberine
release rate (from 70.75% on the first day to 80.8% on the third day) up to two weeks. The nano-
bandage proved its efficacy by reducing skin ulcer through promotion of wound healing and reduced
parasitic load in the ulcers. Considering the integration of antimicrobial active electrospun fibres like
for instance, Mg(OH)2-NS PEO/PCL (polycaprolactone), that is reported to be efficiently acting also
against S. aureus and E. coli [106] and the combination with a proangiogenic hydrogel and wound
healing monitoring microenvironment sensor like previously reported [107], there is high potential to
further complete the functionality of a CL-optimized wound healing bandage.
3.3. Hydrogels
Hydrogels were previously reported as suitable carriers for topical drug delivery [108]. Patients usually
seek medical attention after developing well-established lesions which are highly inflamed, ulcerated in
some cases, with lots of damaged tissues and a high parasitic load. Compared with NP formulations
which are often administered intravenously, hydrogel formulations are more easily administered by
directly placing the latter onto the skin lesions. Hydrogels have shown good biocompatibility and
high water content that mimic the features and properties of body tissues (due to their ability to swell
and hydrophilic nature) and highly resemble the wound extracellular matrix.
3.3.1. Enhanced ease of administration and lower cost via topical formulations

The three-dimensional microporous structure of a hydrogel matrix allows for drug encapsulation. This
provides protection from hostile environment to preserve the drug or compound’s full potential, and
in some cases, enhance their anti-leishmanial activity. Poly(N-2-vinyl-pyrrolidone) (PVP) and
poly(vinyl alcohol) (PVA) based clay-hydrogels have been synthesized to encapsulate an antimoniate
drug, N-methyl glucamine using gamma irradiation [109]. PVP : PVA hydrogel (50 : 50) showed a
higher and steady release of N-methyl glucamine even after 15 h in the presence of 1.5% clay and
reduced the leishmaniasis lesion by 99% in a murine model previously infected with L. amazonensis
amastigotes. Similarly, cobalt-60 gamma irradiation was used to cross-link as well as sterilize PVP,
polyethylene glycol (PEG 400), agar and laponite RD clay loaded with amphotericin B (Amp B). The
latter was found to be released in a sustained manner over 12 h and maintained its structure and
activity after exposure to irradiation and elevated temperature. A load of 25.1 nM of Amp B in
1.324 g l−1 hydrogel exerted the best anti-leishmanial activity against L. amazonensis promastigotes
with a 100% growth inhibition within 48 h [110]. Amp B has also been loaded within PVA hydrogels
with good water permeability (452 ± 10 gm−2 d−1) which is an essential feature for the development
of an effective wound dressing to retain a moist environment for better healing and absorption of any
excessive exudates. In addition, the hydrogels showed high ability to potentially hamper secondary
bacterial or fungal infections by acting as barrier against microorganisms. A rather slow and gradual
release of Amp B (74% after 97 h) was reported but did not impact on the system’s anti-leishmanial
activity. They were found to be highly toxic against L. amazonensis and L. braziliensis with a
promastigote death rate of 100% and 99%, respectively, within the first 24 h [111].
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Lalatsa et al. [112] developed an anti-leishmanial self-nanoemulsifying drug delivery system
(SNEDDS) hydrogel. The nano-enabled hydrogels were designed to release antiprotozoal
buparvaquone (BPQ) topically. The hydrogel system improved the solubility of hydrophobic BPQ. The
1% BPQ-SNEDDS gels were applied on lesions of infected BALB/c mice for 7 consecutive days and
were shown to be highly effective against L. amazonensis, with a 99.989 ± 0.019% decrease in parasite
load. The BPQ-SNEDDS hydrogels did not trigger any inflammation and showed good healing
capabilities.

Recently, Risedronate monosodium monohydrate (Ris)-hydroxypropyl methylcellulose (HPMC) and
Eudragit EPO(EuE)-Ris-HPMC hydrogels were assessed to serve as potential new curative treatment
against CL. Decrease in leishmanial lesion size and lower level of L. amazonesis amastigotes were
observed in mice treated with Ris (20 mg ml−1)-HPMC (2%) and EuE (40 mg ml−1)-Ris (20 mg ml−1)-
HPMC (2%). The parasite load at the end of the treatments was higher in the control group compared
with the two systems tested (parasite suppression rate of 69.5% for Ris-HPMC and 73.7% for EuE-Ris-
HPMC). Histological analysis showed vacuole formation in parasites treated with EuE-Ris-HPMC,
suggesting autophagy as the mechanism responsible for amastigote death [113].

3.3.2. Increased skin permeability

To increase skin permeability of amphotericin B, Zare et al. [114] developed a dissolvable microneedle
patch made of PVP and carboxymethyl cellulose. The microneedles on the patch were able to
penetrate rat skin at a depth of 303 ± 8 µm and then dissolved, releasing the encapsulated
amphotericin B. The micropores created by the microneedles in the rat skin did not cause significant
cell damage and were rapidly resealed within 30 min. The cytotoxicity of the patch was also assessed
on HT-29 cells and was found to have no negative effects. The microneedle system demonstrated
effective transdermal delivery with an anti-leishmanial activity up to 86% parasite death.

3.3.3. Infection management and biofilm elimination

Tavakolian et al. [115] developed highly absorbent antibacterial and biofilm-disrupting carboxyl-
modified cellulosic hydrogels for wound healing applications. The hydrogels were surface modified
with polylysine and showed antibacterial properties against both Staphylococcus aureus and
Pseudomonas aeruginosa and were able to kill approximately 99% of the bacteria after 3 h of exposure.
In addition, the hydrogels showed good absorption capacity and promoted the proliferation of
fibroblasts. In another study, novel antimicrobial hydrogels composed of bacterial cellulose and
poly(3-hydroxy-acetylthioalkanoate-co-3-hydroxyalkanoate) (PHACOS) were developed [116]. The
latter displayed fibroblast cell viability of over 85%, had elastic properties comparable to the skin, and
optimum swelling properties for absorbing wound exudates. Double-network adhesive hydrogels
based on cellulose and 3,4-dihydroxyphenylalanine (DOPA)-cation copolymer were successfully
fabricated with tissue-like Young’s modulus below 20 kPa [117]. The catechol-cation cooperation effect
enhanced the wet adhesion property of the hydrogels to skin. The hydrogels displayed rapid
haemostasis, good biocompatibility and antibacterial activity for promising wound healing applications.

Lignin-derived hydrogels have been synthesized by a variety of methods, such as hydrothermal
methods, ultrasonic polymerization, wet spinning, ultrasonic and various cross-linking methods, such
as esterification reaction, copolymerization with other polymers such as acrylic acid [118–120]. A
study by Mahata et al. [121] confirmed that copolymerization with a triazole component improved the
antibacterial and antibiofilm activity of lignin, resulting in down-regulation of interleukins, especially
IL-1, in lipopolysaccharide (LPS)-induced macrophage cells and reduction of inducible nitric oxide
synthase (iNOS) levels. The study was also supported by Western blotting and NF-KB analyses. This
novel lignin-based hydrogel has been shown in vivo to be able to prevent burn wound infections,
promote healing and serve as an anti-inflammatory dressing material. In addition, lignin from two
different sources was cross-linked by different methods, attempting to form bulk and membrane
hydrogels [122]. Results confirmed appropriate water vapour permeability, antioxidant activity and
antimicrobial activity of the membranes indicating their potential use as wound dressing materials. To
create an effective antimicrobial agent in the form of a dressing for the treatment of chronic wounds,
Zmejkoski et al. [118] developed a composite hydrogel of bacterial cellulose and dehydrating polymer
of coniferyl alcohol, a monomer of lignin. The novel composite showed inhibitory or bactericidal
effects against selected pathogenic bacteria, including clinically isolated bacteria. The highest rate of
release of dehydrating polymer of coniferyl alcohol was in the first hour, while after 24 h there was
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still a slow release of small amounts of dehydrating polymer of coniferyl alcohol from composite
hydrogel of bacterial cellulose and dehydrating polymer of coniferyl alcohol during 72 h monitoring.
All results confirmed that the composite is a promising hydrogel for wound healing.
4. Multiple nano-drug delivery systems for simultaneous Leishmania
treatment and wound repair

CL causes important skin damage with scarring. Lesions start with a small erythema which progresses to
a papule, followed by a nodule, an ulcerative/non-ulcerative lesion dependent on the species of the
parasite [1]. Lesion development consists of five main stages namely the initial inflammatory phase,
silent phase, active phase, ulcerative phase and healing phase (figure 8).

In the initial inflammatory phase which may last between a few weeks to months, no pathological
change is noted in the skin [123] and macrophages migrate to the bite site and act as host cells for the
Leishmania amastigotes [124]. The silent phase is characterized by parasite proliferation without
formation of lesions. In the active phase, a nodular lesion is formed accompanied by a decrease in
parasite load. At this stage, other inflammatory cells such as T cells, DCs [125] and Langerhans cells
also infiltrate in the dermis. The final stage marks the development of an ulcerative lesion covered by
apoptosed keratinocytes, dried exudate and a mixture of live and dead amastigotes. The dermis is
transformed to dermal granulomas [126].

Immunological responses play crucial roles during the wound healing process in CL. Cytokines IL-10
and TGF-β have been reported to play paradoxical roles in immunity against CL and in promoting
wound healing [127]. Indeed, IL-10 and TGF-β are responsible for parasite persistence in CL through
suppression of immune responses in CL. On the other hand, they are important accelerators of the
physiological wound healing cascade. As a result, there has to be a compromise in IL-10 and TGF-β
concentrations to enhance parasite elimination along with accelerated wound healing.

4.1. Need for multiple drug platform for anti-leishmanial activity

4.1.1. Lower toxicity and improved efficiency

Nano-drug delivery systems have been loaded with multiple drugs for enhanced efficiency and better
therapeutic effects. Tripathi et al. [128] loaded both amphotericin B and miltefosine into chitosan-
coated lipid nanocarriers. Chitosan coating slowed down the release of the drugs and also increased
uptake in cells compared with the free drug. Electrostatic interaction with macrophages and
combinatorial effect of dual drugs led to improvement in vivo parasite inhibition of 85 ± 4.20% versus
53.26 ± 2.5% for the free amphotericin B. Due to location of amphotericin B within the nanocarriers,
the drug-loaded NPs showed insignificant haemolysis compared with the free drug.



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:220058
16

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 J

un
e 

20
22

 

Similarly, Parvez et al. [129] developed an oral drug delivery system made up of chitosan-grafted solid
lipid nanoparticles (Cs-SLN) loaded with amphotericin B and paromomycin, two anti-leishmanial drugs
(entrapment efficiency 95.20 ± 3.19% and 89.45 ± 6.86% respectively). Cs-SLN was reported to be less
cytotoxic than free amphotericin B, stable in gastrointestinal tract fluids and the chitosan coating
enhanced muco-adhesion of the nanoparticles. An initial burst release of 27.6% amphotericin B and
34.4% paromomycin was observed within the first 6 h followed by a constant and slow drug release
up to 3 days. Cs-SLNs proved its efficacy with a higher anti-leishmaniasis activity (IC50 0.018422 ±
0.005928 µg ml−1) compared with free amphotericin B (IC50 0.316039 ± 0.026423 µg ml−1) and highly
inhibited growth and reduced L. donovani intracellular amastigotes load within macrophages (92.35%).

4.1.2. Targeting secondary bacterial infections

Ulcerative wounds among CL patients become infected with bacterial and fungal infections from the
environment often when the wounds are not kept hygienically. These secondary infections are
responsible for additional pain, secretion, pruritus and burning sensation. It may delay wound
healing and complicates diagnosis of CL [130].

It has been reported that the normal flora of the skin can influence allergic and autoimmune
responses, assist wound healing and initiate antimicrobial defence. The skin microbiota in CL patients
develop dysbiotic skin microbiota which essentially reduce the diversity of microbial species and
allow the predominance of Staphylococcus and or Streptococcus [131]. The dysbiotic skin microbiota
heighten skin inflammatory responses. When a wound becomes infected, and not properly treated, it
takes significantly longer time to heal [132,133].

In a recent study in Ghana [134], 42 secondary bacteria from 48 CL patients with open wounds were
isolated. Staphylococcus aureus was the most predominant among all the bacteria isolates. However,
several pathogenic bacteria species were also detected, such as Bacillus subtilis, Klebsiella pneumoniea,
Enterobacter cloacae, Aeromonas spp Serratia liquefacien, Providencia rettgeri and Cronobacter spp. It was
intriguing to observe that the majority of these bacteria isolates were resistant to beta-lactam
antibiotics and the third-generation cephalosporin. Notably, 84.6% of the S. aureus isolates were
methicillin and ciprofloxacin resistant while 92.3% were resistant to ampicillin. Among a cohort of 25
CL patients, the presence of Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecalis,
Streptococcus pyogenes and Candida parapsilosis was detected. [130]. The presence of bacteria in the ulcer
border and ‘pain’ and ‘pruritus’ had no influence on wound closure, the presence of ‘secretion’ and
‘burning sensation’ delayed epithelialization time but not total healing time. Kariyawasam et al. [135]
observed that in 61% of CL patients, there was the co-colonization fungal genera such as Malassezia,
Aspergillus, Candida and Cladosporium. In about 50% of the patients, the fungal infections were
responsible for inflammation, and fungal–bacterial infections complicated the diagnosis of CL.

An effective remedy should be able to efficiently tackle the parasite load and treat any secondary
infections occurring simultaneously, thus reducing the drug and financial burden on carers and patients.

Different prototype drug delivery systems have been assessed as potential alternative treatment that
could both eradicate the Leishmania parasites and other microbial pathogen present in the lesion area.
Curcumin-loaded self-emulsifying drug delivery system (cu-SEDDS) formulations have demonstrated
both anti-leishmanial activity against L. tropica (IC50 ranging from 0.19 to 0.37 depending on
concentration of curcumin-loaded) and antibacterial potential against Gram-positive (Staphylococcus
aureus) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae)
pathogens. The amplified antiparasitic and antimicrobial properties of cu-SEDDS, compared with free
curcumin, were attributed to the improved solubility of hydrophobic curcumin which enhanced
cellular intake by parasites and microbes [136].

To overcome barriers of parasite resistance to treatment, unwanted side effects from current
leishmaniasis medications and microbial wound infections, Costa et al. [137] formulated non-cytotoxic
biodegradable polybutylcyanoacrylate nanoparticles coated with polymyxin B (PBCAnp-polB) which
expressed both anti-leishmanial and antimicrobial activity. Inhibition of L. amazonensis promastigotes
were promoted by the PBCA nanoparticles. Moreover, the polymyxin B bound to the nanoparticles
stayed active and was responsible for the antibacterial activity against E. coli, P. aeruginosa and
K. pneumoniae [137]. Titanium dioxide (TiO2) and silver oxide (Ag2O) nanoparticles were also reported
to have anti-leishmanial activity with simultaneous high microbial growth inhibition properties [138].
Ag2O nanoparticles (Ag2Onp) are said to enhance activity of common antibiotics such as penicillin G,
vancomycin, amoxicillin and erythromycin and inhibit growth of multi-drug-resistant bacteria such as
methicillin-resistant Staphylococcus aureus (MRSA) [139]. When Ag2Onps enter a bacterium, they
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interact with the sulfur and phosphorus groups within DNA molecules and make them lose their
replication properties. Consequently, DNA damages occur as the bacterial cell cycle is stopped at the
G2/M phase [140]. Finally, apoptosis is induced due to inhibition of ATP synthesis and the presence
of reactive oxygen species (ROS) causing more damage to DNA and RNA molecules, lipid
peroxidation and amino acid oxidation [141]. ROS also occur at the surface of TiO2 nanoparticles
(TiO2np) causing lipid peroxidation strongly affecting bacterial cells. Another mechanism by which
TiO2nps eradicate bacteria is through the photocatalytic reactions occurring at their surface which
increase cell membrane permeability. Essential components thus leak out of the bacterial cell causing
death [142,143].

Antimicrobial photodynamic therapy (aPDT) that follows a similar ROS-based mechanism via
photoactivation of photosensitive molecules such as porphyrins, phthalocyanines and hydrophilic
benzophenoxazine analogues, have shown efficacy in the eradication of Leishmania and Gram-positive
and Gram-negative bacteria [144–146]. But this approach requires specialized equipment and skilled
personnel or trained patients that need to expose the illuminating LED source to the defined region
following a precise standard protocol.
c.Open
Sci.9:220058
4.2. Wound healing in leishmaniasis
A number of small natural molecules have been repurposed to target simultaneously healing of
leishmanial wounds and apoptosis of Leishmania parasites. Recently, secondary metabolites such as
lignans, alkaloids, phenolic derivatives (chalcones and flavonoids), and terpenes (iridoids,
sesquiterpenes, diterpenes, triterpenoids and saponins) have been reported to possess anti-
leishmanicidal activity [147–151]. Interestingly, flavonoids and alkaloids display dual anti-leishmanial
and wound healing properties.
4.2.1. Inflammatory phase

4.2.1.1. Flavonoids
Curcumin, which has long been used to accelerate wound healing by enhancing fibroblast proliferation,
granulation tissue formation, collagen deposition and tissue remodelling [152], was recently shown to be
cytotoxic to several strains of Leishmania including L. major, L. tropica and L. infantum by inducing cell
cycle arrest at G2/M phase [153]. In fact, curcumin caused the formation of reactive oxygen species
(ROS) and increased the concentration of cystolic calcium which led to DNA fragmentation of the
parasites [154]. Chaubey et al. [155] successfully used curcumin-loaded chitosan NPs to suppress
parasite replication in vivo to a greater extent as a result of higher macrophage uptake compared with
free curcumin.
4.2.1.2. Sesquiterpenes
Artemisinin and its derivatives artemether and artesunate showed in vivo anti-leishmanial activity
against L. amazonensis parasites [156] and limited in vitro amastigote and promastigote activity [157].
The mechanism of action is via production of free radicals which induces parasite death in the
presence of iron sources. Artemisinin has been loaded in nanofibrous mats and successfully used to
accelerate in vivo wound healing through its anti-inflammatory and antibacterial properties [158].
Another sesquiterpene which inhibited L. amazonensis parasite growth is parthenolide [159]. The latter
has been found to display a variety of anti-inflammatory and immunomodulatory effects [160].
In vitro studies revealed that parthenolide inhibits the NFkB pathway by targeting the inhibitor (I)kB
kinase activation or IkBa degradation [161].
4.2.1.3. Triterpenoids
Glycyrrhizic acid extracted from licorice effectively reduced parasite burden in infected macrophages
through inhibition of Cox-2, leading to decreased prostaglandin E2 biosynthesis, which in turn
resulted in increased NO generation in the infected macrophages, thus arresting parasite survival
[162]. It also has anti-inflammatory properties through inhibition of the expression levels of pro-
inflammatory cytokines (TNF-α, IL-1β and IL-6). It also regulated cell proliferation through its
influence on ERK1/2 signalling pathway [163].
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4.2.2. Proliferative phase

4.2.2.1. Alkaloids
Berberine, found in a number of plants such as Annonaceae, Berberidaceae and Menispermaceae, is one
of the alkaloids displaying the highest anti-leishmanial activity [164]. It has been shown to effectively
eliminate L. major parasites in macrophages at a concentration of 10 µg ml−1 and was also effective
against lesions caused by L. panamensis in rats [165]. In addition, the alkaloid has antibacterial
properties and can inhibit Gram-positive and Gram-negative bacteria [166]. Recently, Zhang et al. [167]
showed that berberine reduced inflammation by inhibiting the expression of NF-κB, TNF-a and IL-6,
but increased the expression of VEGF and CD31, which enhanced proliferation of vascular endothelial
cells, and also increased SMA, which promoted proliferation and migration of fibroblasts.

4.2.2.2. Polyphenols
Resveratrol, primarily found in grapes, showed anti-leishmanial activity against promastigotes in vitro
and was effective against intracellular amastigotes [168]. A derivative tested by Antinarelli et al. was
found to be more active than miltefosine (IC50 < 3.0 µg ml−1). The compound acted through
mitochondrial potential depolarization, plasma membrane permeabilization, interference in the
progression of the cell cycle and accumulation of autophagic vacuoles [169]. In several wound healing
studies, it was shown that resveratrol promoted granulation tissue formation and had strong
angiogenic properties [170]. Moreover, it reduced oxidative stress and promoted fibroblast
proliferation and migration [171]. It decreased scar formation in a rat skin model by suppressing
inflammation and led to well-organized collagen deposition [172].
5. Future perspectives: drug delivery in combination with wound healing
monitoring

5.1. Smart hydrogels to detect and treat bacterial infections and monitor CL wound status
Secondary bacterial infection is one common complication with Leishmaniasis and should be detected as
early as possible allowing specific treatment in time to avoid a chronic course of the disease, further
scarring [173] and misuse/overuse of broad-spectra antibiotics.

At the moment, it is not feasible to ensure a proper monitoring of secondary bacterial infection for
patients in remote and rural areas, because they are costly and require a wound swab sampling by
trained medical personnel unavailable in limited healthcare settings. Standard microbiological
detection requires time-consuming procedures like selective cultivation methods often combined with
chromogenic differential culture medium [174] or faster advanced molecular diagnostic methods
mainly based on polymerase chain reaction (PCR) [175]. The delay generated by this method may
result in missing the optimal treatment window that would offer the best chance to eradicate
pathogenic bacteria before they build up robust biofilms in leishmaniasis ulcera which leads to
chronic bacterial infections.

Efficient monitoring of Leishmaniasis wounds regarding such bacterial infections should be
autonomous and low-cost point-of-care systems. The targets of such sensors to identify bacterial
infection are ranging from the rather unspecific temperature and pH shift [176,177] to specific
bacterial enzymes produced by unique bacteria to be detected [178].

Bacterial enzymes have been addressed by several enzyme responsive smart biomaterials developed
in the past including enzyme responsive polymersomes [179] and colorimetric enzyme substrate
reporter units coupled to a chitosan film [180,181]. This enzyme responsive hydrogel approach was
expanded to a multiplex approach that enables the simultaneous differentiation of various bacterial
enzymes and bacteria via coupling of different specific substrate resulting in different readout
colours [178,182,183] or via spatially separated pattern shape [184,185] of each enzyme-specific
hydrogel.

Such a multiplex approach to monitor several bacteria in parallel would be also needed for
monitoring leishmaniasis wounds that can be colonized by various different bacteria [173,186].

Recent work reported on the opportunity to differentiate both Gram-negative bacteria like E. coli and
Gram-positive bacteria like S. aureus from each other via colour-encoded chitosan hydrogels. This
detection approach is based on the sensitive and rapid detection of bacterial enzymes in a nanomolar
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range within one hour. These enzymes are produced by specific bacteria like β-glucuronidase by E. coli
and α-galactosidase by S. aureus [178]. Recently, a colorimetric chitosan-based sensing hydrogel-coated
paper to quantify E. coli by detection of the enzyme β-glucuronidase was shown to be compatible
with a smartphone camera readout. This proves the potential of autonomous enzyme responsive
hydrogels towards a laboratory-in-a-phone based point-of-care detection of bacterial contamination,
that could be efficiently used also in rural areas of low-income countries, where smartphones are
widely available [187].

As a further step, hydrogels are not only able to sense bacterial infections but also to treat such
infection upon autonomously triggered release of antibiotics, as theranostic materials [177,188],
although the specificity of such smart bandages are highly dependent on the stimulus that triggers the
release.

In the case of Leishmaniasis wounds, biocompatible sensory hydrogels have the potential to monitor
secondary bacterial infections in an optimal manner and offer additional beneficial characteristics like a
good hydration of the wound, their high capacity to take up wound fluid, and their integrability into
wound dressings [61].

Hydrogel systems are currently being applied to the treatment of CL (§3.3.3). Further, there are
promising approaches to use personalized intelligent patches, e.g. based on smart hydrogels but also
integrable bioelectronics for wound healing bandage, in order to both realize in situ monitoring of
wound status marker and autonomous point of care treatment [189]. However, little has been reported
on ‘intelligent’ patches which offer the possibilities to sense and treat CL wounds specifically. They
can be engineered to detect bacterial infection and monitor the status of the lesion for proper wound
management. For instance, Wang et al. developed an injectable chitosan-based hydrogel system doped
with pH-responsive bromothymol blue, thermosensitive beta-glycerophosphate and an NIR-absorbing
conjugated polymer (PTDBD) [190]. Photothermal PTDBD generated heat to eradicate bacteria upon
irradiation of NIR laser inducing a change in pH visualized by a colour change in situ. Thus,
developing smart sensory hydrogels can prove to be highly beneficial for the detection of secondary
bacterial infection, release of anti-leishmanial and antimicrobial agents as well as for visual in situ
diagnosis in CL.

5.2. Non-pharmacological approaches to leishmaniasis
Non-pharmacological approaches to help combat leishmaniasis include modelling studies [191], which
are also useful for disease surveillance, analysis of disease dynamics as well as in determining which
risk factors and therapeutic approaches are essential in eradicating the disease, smartphone
technology [192] and machine learning [193]. Other approaches include public education campaigns
that lead to an awareness of the disease and appropriate prevention strategies; control of disease
vectors as well as the use of insecticides and mosquito nets in endemic regions.

Leishmaniasis dynamics are complex to model because social-economic factors contribute to disease
dynamics. Furthermore, there are a number of Leishmania parasites, and the disease is spread by a
complex vector process in humans and animals that is influenced by a variety of social and economic
factors and through mechanisms that are not fully understood. Nonetheless, there have been a
number of mathematical models on the dynamics of leishmaniasis. Discrete time models were first
used to study VL dynamics between epidemics based on historical data in Assam, India and the
influence of intrinsic and extrinsic factor on the dynamics of the disease [191]. This study showed that
in between epidemics, cases of PKDL were probably a disease reservoir, that fuelled future outbreaks.
Later, Hasibeder et al. [192] developed a compartmental delay-differential equation model to estimate
the number of infected sandflies from a single sandfly during disease spread or the reproduction
number. The extension of this model to human leishmaniasis was limited because they did not
consider asymptomatic cases as a vector source, seasonality of the disease as well as human and
vector population variations. Other investigators have since increased the complexity of models of the
reproduction number by taking into account zoonotic transmission, seasonality and demographic
variations [193–195].

Smartphone technology has the capacity for high-resolution image acquisition, processing and
storage, and is widely used in low-resource settings. Cost-effective and easy-to-use smartphone
application software may assist health workers in remote settings in detecting the presence and
severity of the different forms of leishmaniasis as well as monitoring wound healing. Da Silva and
colleagues developed smartphone application software that evaluated the severity of VL based on
images acquired by physicians [196]. Over 90% of the 102 health professionals who used their
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software reported positive expectations and an increase in competency in the treatment of VL.
Smartphones were also used to capture images of skin in possible CL cases, which were then relayed
to infectious disease experts further from the field and used to assist diagnosis [197]. Despite the high
potential of smartphone technology, their use in addressing leishmaniasis remains limited to date.

Machine learning is a form of artificial intelligence that is useful in accomplishing tasks that are
easily done by humans but hard to do through conventional computational methods, such as
pattern recognition. Through convoluted neural networks, machine learning algorithms can be
developed and trained to recognize key features of lower extremity diabetic chronic wounds with
success rates of up to 90% [198–200]. Machine learning can also be integrated into smartphones for
use by health workers to monitor diabetic chronic wound healing [201]. A similar strategy that
integrates smartphone image acquisition capabilities, an image dataset of leishmaniasis wounds and
machine learning software can be used to characterize leishmaniasis wounds, monitor wound
healing, monitor the success of wound healing intervention strategies and address the lack of
experts in low-resource settings. The successful development of this technology would involve
collaborative research efforts between clinicians and researchers in biomaterials, biosensors and
machine learning.
pen
Sci.9:220058
5.3. In vivo models to test the nanostrategies in leishmaniasis
Presently, there is no validated animal model for CL and the predictive validity of current animal models
is often low due to poor correlation between animal and human disease mechanisms [202]. In vivo
models for CL should aim to mimic the natural transmission of the disease such as parasite load, the
presence of saliva and site of inoculation for accurate representation of disease progression. However,
this requires sophisticated facilities and confined laboratories to control the vector.

Hamster, rat species and more commonly inbred mice strains (primary tests), limited dog studies
(secondary tests) and non-human primates (tertiary tests) have been used. The objective of dog
studies is to understand the pathogenicity of the parasite, since the dog is a natural host of L. infantum
[203,204]. The BALB/c–L. major mice model has been used for testing because of its extreme
sensitivity to L. major infection and ease of outcome evaluation. The outcome of the infection is
directly influenced by the immune responses of the host, and L. major infection in BALB/c triggers a
strong Th-2 response to leishmanial antigens, leading to rapid lesion growth and generalized infection
and, eventually, death. Non-human primate models are used with the aim that their relatedness to
humans will lead to a similar mechanism of CL infection and disease progression (table 4).

5.3.1. Importance of the inoculum in model development

The composition and size of inoculum and site of inoculation greatly influences the outcome of
infection. Higher doses of inoculum produce larger lesions, which also develop faster. Footpads
of mice allow easy measurement of lesion and parasite load [202,205,206]. The base of the tail of
rodents and forehead of monkeys are very depicted injection sites [202,207,208]. The ear is used
in mice models for inoculation by infected sandflies to simulate natural infection as the needle
injections primarily deliver parasites subcutaneously, whereas sandfly introduces the parasite intra-
dermally. However, this method requires availability of sandflies and consistent maintenance of
infection rates.

Leishmania evolves over time and thus it is important to use recent isolates of Leishmania from the field
for in vitro as well as in vivo tests [209]. During the course of in vitro growth, most laboratories harvest the
parasite during the late infective stationary phase of growth and employ peanut agglutinin (PNA) to
remove non-metacyclic parasites before inoculation. In rodent models, 1 × 106 metacyclic-enriched
parasites are injected in a volume of 50 µl [205–208].

Lastly, it is important to determine in the strategy of the choice of the animal model, the appropriate
method to follow the infectious state of the animal. The conventional methods such as microscopy or q-
PCR amplification of parasite DNA, are laborious, time consuming and require the euthanasia of large
numbers of animals [202,210]. These methods cannot detect the spread of pathogens to unexpected
anatomic sites or monitor their space/time progression. The latter can be achieved using reporter
molecules which provide a readily measurable phenotype. They are highly sensitive and can be
automated for high-throughput quantification. The use of the firefly luciferase reporter molecule in
transgenic Leishmania species showed promising results in drug evaluation due to its high sensitivity
[211]. It is then possible to follow the infectious evolution in the animal using a bioluminescence



Ta
bl
e
4.
So
m
e
Le
ish
m
an
ia
–a
ni
m
al
m
od
els

fo
rO
ld
W
or
ld
an
d
Ne
w
W
or
ld
pa
ra
sit
es
[2
02
].
+
+
+
,S
tro
ng

ev
id
en
ce
fo
rr
ec
om
m
en
da
tio
n;
+
+
,M

or
e
re
se
ar
ch
ne
ed
ed

be
fo
re
re
co
m
m
en
da
tio
n.

ro
de
nt
m
od
els

no
n-
hu
m
an

pr
im
at
e
m
od
els

BA
LB
/c

hu
m
an
ize
d
m
ice

Yu
ca
ta
n
de
er
m
ou
se

(P
er
om
ys
cu
s

yu
ca
ta
ni
cu
s)

ve
rv
et
m
on
ke
y
(C
hl
or
oc
eb
us

py
ge
ry
th
ru
s)

Sy
ke
s’
m
on
ke
y

(C
er
co
pit
he
cu
s

alb
og
ul
ar
is)

rh
es
us
m
on
ke
y
(M
ac
ac
a

m
ul
at
ta
)

tu
fte
d
ca
pu
ch
in

(C
eb
us
ap
ell
a)

L.
m
ajo
r

Th
2/
Th
1.
Vi
sc
er
al

di
se
as
e
an
d

de
at
h

+
+
de
ve
lo
p
ce
llu
lar

co
m
po
ne
nt
s
of

th
e
hu
m
an

im
m
un
e
sy
ste
m
;T
,B

an
d
NK

ce
lls

—
+
+
+
se
lf-
he
ali
ng

les
ion
.I
Fn
-g

pr
od
uc
tio
n
by

cir
cu
lat
in
g
ce
lls
do

no
tc
or
re
lat
e
w
ith

cu
re

+
+
se
lf-
he
ali
ng

les
ion
s

+
+
+
se
lf-
he
ali
ng

im
m
un
e
re
sp
on
se
s

sim
ila
rt
o
hu
m
an
s

—

L.
tro
pic
a

no
les
ion
,s
low

gr
ow
th

—
—

—
—

—
—

L.
m
ex
ica
na

+
+
lar
ge

no
n-

he
ali
ng

les
ion
s

—
+
+
sin
gl
e
sm
all

les
ion

—
—

—
—

L.
am
az
on
en
sis

+
+
Th
2
les
ion
s

—
—

—
—

+
+
se
lf-
he
ali
ng

les
ion
s

+
+
se
lf-
he
ali
ng

les
ion
s
Th
1/

Th
2

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:220058
21

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 J

un
e 

20
22

 



roya
22

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 J

un
e 

20
22

 

imaging system without needing to euthanize the animal [210]. This is an ideal refinement for conducting
longitudinal studies in a more non-invasive in vivo drug screening model and parasite–host interaction
studies [212].
 lsocietypublishing.org/journal/rsos

R.Soc.Open
Sci.9:220058
6. Conclusion
One major complication of CL is secondary microbial infections. Leishmaniasis ulcerated lesions are
highly prone to bacterial infections that cause purulent discharges, more damage to the skin tissue,
necrosis and inflammation, consequently prolonging the disease and retarding recovery [213]. An
effective remedy should be able to efficiently tackle the parasite load and treat any secondary
infections occurring simultaneously, thus reducing the drug and financial burden on carers and
patients. The challenge also lies in the fact that the wounds are also dependent on the source of the
Leishmania parasite. A combination of biomaterials, scaffold engineering, biosensors, clinical expertise
and machine learning may offer a novel strategic pathway for the well-being of CL patients.
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