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Preface

The last quarter of a century has seen enormous developments
in general statistical methods for incomplete data. The EM
algorithm and its extensions, multiple imputation and Markov
chain Monte Carlo provide a set of flexible and reliable tools
for inference in large classes of missing-data problems. Yet, in
practical terms, these developments have had surprisingly
little impact on the way most data analysts handle missing
values on a routine basis. My hope is that this book will help
to bridge the gap between theory and practice, making a
multipurpose kit of missing-data tools accessible to anyone
who may need them.

This book is intended for applied statisticians, graduate
students and methodologically-oriented researchers  in search
of practical tools to handle missing data. The focus is applied
rather than theoretical, but technical details have been
included where necessary  to help readers thoroughly
understand the statistical properties of these methods and the
behavior of the accompanying algorithms.

The methods presented here rely on three fully parametric
models for multivariate data: the unrestricted multivariate
normal distribution, loglinear models for cross-classified
categorical data and the general location model for mixed
continuous and categorical variables. In addition, the missing
data are assumed to be missing at random, in the sense defined
by Rubin (1976). My reviewers have correctly pointed out that
many other vitally important topics could (and perhaps
should) have been addressed: non-normal models such as the
contaminated normal and multivariate-t; repeated measures
and restricted covariance structures; censored and coarsened
data; models for nonignorable nonresponse; latent variables;
and hierarchical or random-effects models. Imputation for
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complex surveys and censuses, a topic in which I am deeply
interested, deserves much more attention than it received. For
better or worse, I decided to limit the material to a few
important subjects, but to treat these subjects thoroughly and
illustrate them with non-trivial data examples.

This book would not have been possible without the
generous support and encouragement of many friends,
colleagues and agencies. Don Rubin, whose countless
contributions to the area of missing data provided a
springboard for this work, was the first to suggest publishing it
as a book. The initial round of software development was
sponsored by Frank Sulloway, whose wonderfully incomplete
dataset provided the first and most colorful application of
these methods. Additional support was provided by the Bureau
of the Census, the United States Department of Agriculture
and the National Center for Health Statistics. Many helpful
comments and suggestions were given by John Barnard, Rose
Brunner, Andrew Gelman, Bonnie Ghosh, Xiao-Li Meng,
Susan Murphy, Maren Olsen, Ritz Scheuren, Stef van Buuren,
Recai Yucel and Alan Zaslavsky, and the editorial and
production staff at Chapman & Hall. Data on the Foreign
Language Attitude Scale were contributed by Mark Raymond.
My parents, Chester and Dolores Schafer, created a loving and
stable childhood environment, and my wife Sharon did not fail
to encourage and inspire. Prayer support was provided by Dr.
Samuel C. Lee and members of University Bible Fellowship.

Finally, I must acknowledge my debt to the late Clifford C.
Clogg, to whom this book is dedicated. Cliff’s steady
encouragement and careful review greatly improved the
quality of the book, especially the first five chapters. His
warmth, love for learning, hard work and faith continue to
inspire the many who were close to him. Personally and
professionally, it is most gratifying to know that Cliff regarded
this book as ’good stuff’.

Joseph L. Schafer
University Park, Pennsylvania

October 1996
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CHAPTER 1

Introduction

1.1 Purpose

This book presents methods of statistical inference from
multivariate datasets with missing values where missingness
may occur on any or all of the variables. Such datasets arise
frequently in statistical practice, but the tools for effectively
dealing with them are not readily available to data analysts. It
is our goal to provide these tools, along with the knowledge of
how to use them.

When faced with missing values, practitioners frequently
resort to ad hoc methods of case deletion or imputation to
force the incomplete dataset into a rectangular complete-data
format. Many statistical software packages, for example,
automatically omit from a linear regression analysis any case t
hat has a missing value for any variable. Imputation is a
generic term for filling in missing data with plausible values.
In a multivariate dataset, each missing value may be replaced
by the observed mean for that variable, or, in a slightly less
naive approach, by some sort of predicted value from a
regression model. Almost invariably, after the dataset has been
altered by one of these methods no additional provision for
missing data is made in the subsequent analysis. The research
usually proceeds as if the omitted cases had never really been
observed, or as if the imputed values were real data.

When the incomplete cases comprise only a small fraction
of all cases (say, five percent or less) then case deletion may
be a perfectly reasonable solution to the missing-data problem.
In multivariate settings where missing values occur on more
than one variable, however, the incomplete cases are often a
substantial portion of the entire dataset. If so, deleting them

©1997 CRC Press LLC



 

may be inefficient, causing large amounts of information to be
discarded. Moreover, omitting them from the analysis will
tend to introduce bias, to the extent that the incompletely
observed cases differ systematically from the completely
observed ones. The completely observed cases that remain
will be unrepresentative of the population for which the
inference is usually intended: the population of all cases,
rather than the population of cases with no missing data.

Ad hoc methods of imputation are no less problematic.
Imputing averages on a variable-by-variable basis preserves
the observed sample means, but it distorts the covariance
structure, biasing estimated variances and covariances toward
zero. Imputing predicted values from regression models, on
the other hand, tends to inflate observed correlations, biasing
them away from zero. When the pattern of missingness is
complex, devising an ad hoc imputation scheme that preserves
important aspects of the joint distribution of the variables can
be a daunting task. Moreover, even if the joint distribution of
all variables could be adequately preserved, it may be a
serious mistake to treat the imputed data as if they were real.
Standard errors, p-values and other measures of uncertainty
calculated by standard complete-data methods could be
misleading, because they fail to reflect any uncertainty due to
missing data.

This book presents a unified approach to the analysis of
incomplete multivariate data. We will consider datasets for
which the variables are continuous, categorical, or both. This
approach allows one to analyze the data by virtually any
technique that would be appropriate if the data were complete.
This is accomplished not by simply modifying the data in an
ad hoc fashion to make them appear complete, but by
principled methods that account for the missing values, and
the uncertainty they introduce, at each step of the analysis in a
formal way. These methods tend to be computationally
intensive, requiring more computer time than ad hoc
alternatives. However, they do not require a heavy investment
of analyst time, and can be applied to a wide variety of
problems more or less routinely without special efforts to
develop new technology unique to each problem. This book is
written from an applied perspective, attempting to bring
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together theory, computational methods, data examples and
practical advice in a single source.

1.2 Background

The methods presented here have their origins in two distinct
bodies of statistical literature. The first concerns likelihood-
based inference with incomplete data and, in particular, the
EM algorithm. The second concerns techniques of Markov
chain Monte Carlo: Gibbs sampling, data augmentation, the
Metropolis-Hastings algorithm, and related methods.

1.2.1 The EM algorithm

The EM algorithm is a general technique for finding
maximum likelihood estimates for parametric models when
the data are not fully observed. Although special cases of EM
appear far back in the statistical literature, it was not until
Dempster, Laird and Rubin (1977) coined the term EM and
established its fundamental properties that the generality and
usefulness of this algorithm were realized. EM spawned a
revolution in the analysis of incomplete data, making it
possible to compute efficient parameter estimates, and thus
obviating the need for ad hoc methods like case deletion, in
wide classes of statistical problems.

The influence of EM has been far reaching, not merely as a
computational technique, but as a paradigm for approaching
difficult statistical problems. There are many statistical
problems which, at first glance, may not appear to involve
missing data, but which can be reformulated as missing-data
problems: mixture models, hierarchical or random effects
models, experiments with unbalanced data and many more. In
the last fifteen years, a surprisingly large number of
applications for EM have been found in a wide variety of
fields. Unfortunately, major producers of statistical software
have been rather slow to incorporate general-purpose EM
algorithms for incomplete data into their products. One
notable exception is BMDP, which has EM algorithms for the
multivariate normal model and for unbalanced repeated
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measures with structured covariance matrices (BMDP
Statistical Software, Inc., 1992).

1.2.2 Markov chain Monte Carlo

Markov chain Monte Carlo is a body of methods for
generating pseudorandom draws from probability distributions
via Markov chains. A Markov chain is a sequence of random
variables in which the distribution of each element depends on
the value of the previous one. As we proceed along the
sequence, provided that certain regularity conditions axe met,
the distributions of the elements stabilize to a common
distribution known as the stationary distribution. In Markov
chain Monte Carlo, one constructs a Markov chain whose
stationary distribution is a distribution of interest. By
repeatedly simulating steps of the chain, one is able eventually
to simulate draws from the distribution of interest.

The two most popular methods of Markov chain Monte
Carlo are Gibbs sampling and the Metropolis-Hastings
algorithm. In Gibbs sampling (Geman and Geman, 1984;
Gelfand and Smith, 1990), one draws from the conditional
distribution of each component of a multivariate random
variable given the other components in a cyclic fashion. In
Metropolis-Hastings (Metropolis et al., 1953; Hastings, 1970),
one draws from a probability distribution intended to
approximate the distribution actually of interest, and then
accepts or rejects the drawn value with a specified probability.
Many variations of these are possible, for example, hybrid
algorithms that perform steps of Metropolis-Hastings within
iterations of Gibbs. These methods are related to more
traditional Monte Carlo methods such as importance sampling
(e.g. Kleijnan, 1974) and rejection sampling (e.g. Kennedy
and Gentle, 1980).

As with EM, specific applications of Markov chain Monte
Carlo have been in use for many years, notably in areas of
statistical mechanics and image reconstruction. In the past
decade, however, many new uses for these methods have been
discovered and implemented that are of special interest to
statisticians. In particular, Markov chain Monte Carlo has
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spawned a revolution of its own in the area of applied
Bayesian inference.

In Bayesian inference, information about unknown
parameters is expressed in the form of posterior probability
distribution. Even with relatively simple probability models,
the posterior distribution is often intractable: important
summaries such as moments, marginal densities and quantiles
are not readily available in closed form. Practitioners have
typically resorted to asymptotic approximation, numerical
integration and importance sampling to elicit meaningful
summaries of intractable posteriors. Through Markov chain
Monte Carlo, however, it is now possible in many cases to
simulate the entire joint posterior distribution of the unknown
quantities, and thereby obtain simulation-based estimates of
virtually any features of the posterior that are of interest.

1.3 Why analysis by simulation?

Simulation of posterior distributions enjoys many advantages
over more traditional methods of parametric inference. Some
of these axe listed below.

1. In complex problems it may be easier to implement than
other methods, both conceptually and computationally.

2. It may be the only method currently feasible when the
unknown parameter is of high dimension.

3. It does not rely on asymptotic approximations. The
algorithms converge scholastically to posterior distributions
that are exact, regardless of sample size.

In an era when computing environments are becoming
increasingly powerful and less expensive, simulation promises
to be one of the mainstays of applied parametric modeling and
data analysis in the years ahead.

Simulation is especially attractive at the present time as a
general approach to the analysis of incomplete multivariate
data. There are at least two major reasons for this. First,
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simulation by Markov chain Monte Carlo is a natural
companion and complement to the current tools for handling
missing data, and, in particular, the EM algorithm. Markov
chain Monte Carlo can be applied to precisely the same types
of problems as EM, and, computationally speaking, its
implementation is often remarkably similar to that of EM.
Whereas EM provides only point estimates of the unknown
parameters, however, Markov chain Monte Carlo provides
random draws from their joint posterior distribution. A point
estimate, even if it is efficient, is not especially useful unless
there is also some measure of uncertainty associated with it.
With Markov chain Monte Carlo, Bayesian analogues of the
standard tools of frequentist inference (standard errors,
confidence intervals and p-values) are now readily simulated,
providing these measures of uncertainty.

A second reason why simulation is a natural choice for
missing-data problems is that it facilitates inference by
multiple imputation. Multiple imputation (Rubin, 1987) is a
technique in which each missing value is replaced by m > 1
simulated values. The m sets of imputations reflect uncertainty
about the true values of the missing data. After the multiple
imputations axe created, m, plausible versions of the complete
data exist, each of which are analyzed by standard complete-
data methods. The results of the m analyses are then combined
to produce a single inferential statement (e.g. a confidence
interval or a p-value) that includes uncertainty due to missing
data.

Until now, the task of generating multiple imputations has
been problematic except in some simple cases, such as
univariate examples and datasets with only one variable
subject to nonresponse. No straightforward, general-purpose
algorithms have been available for generating proper multiple
imputations in a multivariate setting. Using techniques of
Markov chain Monte Carlo, however, it is now possible to do
this quite easily.

Like other methods of inference, simulation based on
Markov chains has certain disadvantages. Carrying out a
simulation for a large dataset or a complicated model may
require access to a fast computer with substantial memory.
Monitoring the convergence of Markov chain Monte Carlo
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algorithms can be difficult. Moreover, the use of the Bayesian
paradigm and the introduction of prior distributions for
unknown parameters, even if the impact on conclusions is
minimal, may be regarded by some as artificial or undesirably
subjective. In the chapters ahead, we will try to address these
issues carefully and thoughtfully as they arise.

1.4 Looking ahead

This book presents iterative algorithms for simulating multiple
imputations of missing values in incomplete datasets under
some important classes of multivariate models. The same
algorithms may also be used to draw values of parameters
from their posterior distributions. The algorithms are
described in detail, focusing on practical issues of
computation. The computational efficiency and low data-
storage requirements of the algorithms make them suitable
even for datasets that are quite large, and they have been
applied routinely to datasets with over 10 000 observations
and 30 variables. The use of these algorithms is demonstrated
on a variety of real data examples, with accompanying
discussion on issues of practical importance to data analysts.

Because of their good performance, we believe that these
algorithms will find widespread use in a variety of
applications. We expect that they will become standard
supplements to the current tools of missing-data analysis.
Perhaps the most important aspect of this work is that now, for
the first time, multiple imputation and parameter simulation
are made available to nonspecialists who know the importance
of adjusting for missing data in their inference, but who lack
the resources or special expertise needed to develop and
implement these techniques on their own.

1.4.1 Scope of the rest of this book

Chapter 2 presents the key assumptions that will be made
throughout this book, the parametric data model and the
assumption of ignorable missingness, and discusses their
relevance in various applied settings. Chapter 3 presents

©1997 CRC Press LLC



 

necessary background material on EM and Markov chain
Monte Carlo. Chapter 4 discusses in practical terms the
various methods of conducting inference by simulation. The
remaining chapters describe algorithms for specific
multivariate models and illustrate their use in a variety of
examples. Chapters 5-6 discuss methods for the multivariate
normal distribution; Chapters 7-8, models for cross-classified
categorical data; and Chapter 9, multivariate models for
datasets with both continuous and categorical variables.

Chapters 3 and 4 serve as a reference for the subsequent
chapters. Readers interested primarily in applications may find
it helpful to initially skim through Chapters 3 and 4 and then
return to them as necessary while working through Chapters 5-
9.

1.4.2 Knowledge assumed on the part of the reader

We assume that the reader is familiar with basic concepts of
probability theory, inference based on the likelihood function,
and multivariate distributions, especially the multivariate
normal and the multinomial. Matrix notation will be used
throughout. We assume that the reader is also comfortable
with the basic concepts of Bayesian inference, although not
necessarily having experience with applying Bayesian
techniques in real examples. Some knowledge of standard
categorical-data techniques, especially loglinear models, is
also helpful but not absolutely necessary.

1.4.3 Software and computational details

The algorithms described in this book have been implemented
by the author for general use as functions in the statistical
language S (Becker, Chambers, and Wilks, 1988), using
subroutines written in Fortran-77. The programs are available
to anyone free of charge, and information on them is provided
in Appendix C.

As you read this book, especially the later chapters, you
may be surprised at the unusual amount of attention devoted to
computational issues. Enough detail has been provided to
enable a dedicated reader to reinvent the crucial portions of
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computer programs, if he or she chooses to do so. These
details were provided for the following reasons:

1. to encourage others to implement the algorithms in other
computer languages or software packages, if they are better
served by these environments;

2. to encourage others to improve upon these algorithms, if
they discover ways to make them more efficient; and

3. to foster development of similar algorithms for more
general classes of models, perhaps using these routines as
building blocks for larger and more complex programs.

1.5 Bibliographic notes

A general overview of techniques for missing data, with
discussion of various ad hoc approaches as well as the EM
algorithm, is given by Little and Rubin (1987). The original
article on EM by Dempster, Laird, and Rubin (1977) with
discussion, now almost twenty years old, still provides a
helpful introduction to EM; its simple examples anticipate
many of the major types of EM algorithms in use today. For a
comprehensive bibliographic review of EM, see Meng and
Pedlow (1992).

Excellent overviews of Markov chain Monte Carlo
methods, including data augmentation, Gibbs, sampling, and
the Metropolis-Hastings algorithm, appear in books by Tanner
(1993) and Gilks, Richardson, and Spiegelhalter (1996).
Tanner's book also contains an entire chapter on EM.

A classic introduction to Bayesian inference is given by
Box and Tiao (1992), and Gelman et al. (1995) discuss
practical Bayesian data analysis from a modern perspective.

Good reference material on cross-classified categorical data
and loglinear models is given by Bishop, Fienberg and
Holland (1975) and Agresti (1990).
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CHAPTER 2

Assumptions

2.1 The complete-data model

We will consider rectangular datasets whose rows can be
modeled as independent, identically distributed (iid) draws
from some multivariate probability distribution. A schematic
representation of such a dataset is shown in Figure 2.1. The n
rows represent observational units and the p columns represent
variables recorded for those units. Missing values, denoted by
question marks, may occur in any pattern.

Let Y denote the n × p matrix of complete data, which is not

fully observed, and let yi denote the ith row of Y, i = 1.

Figure 2.1. Multivariate dataset with missing values.
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By the iid assumption, the probability density or probability
function of the complete data may be written

P Y f yi
i

n

( ) ( ),θ θ=
=

∏
1

(2.1)

where f is the density or probability function for a single row,
and θ is a vector of unknown parameters. We will consider

three classes of distributions f:

1. the multivariate normal distribution;

2. the multinomial model for cross-classified categorical data,
including loglinear models; and

3. a class of models for mixed normal and categorical data
(Krzanowski, 1980, 1982; Little and Schluchter, 1985).

On occasion, the two crucial modeling assumptions above,
that the rows are iid, and that the we have correctly specified
(up to the unknown θ) the full joint distribution of all p

variables, will not be needed in their entirety and may be
partially relaxed. We will sometimes be able to accommodate
situations like regression, in which we seek to model the
conditional distribution of one or more response variables
given some predictor variables without specifying any
probability model for the predictors. A discussion of this point
will be given in Section 2.6. For now, we turn our attention to
the mechanism of missingness.

2.2 Ignorability

2.2.1 Missing at random

Denote the observed part of Y by Yobs, and the missing part by
Ymis, so that Y = (Yobs,Ymis). Throughout this book, we will
assume that the missing data are missing at random (MAR) in
the sense defined by Rubin (1976).
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A precise definition for MAR will be given momentarily,
but first we describe it in an informal way: the probability that
an observation is missing may depend on Yobs, but not on Ymis,
Another useful heuristic definition of MAR is the following.
Let U and V  be any two variables or non-overlapping groups
of variables. Suppose that we restrict attention to units for
which U is observed and equal to a specific value, say u. MAR
means that among these units, the distribution of V is, apart
from ordinary sampling variability, the same among the cases
for which V is observed as it is among the cases for which V is
missing.

Despite its name, then, MAR does not suggest that the
missing data values are a simple random sample of all data
values. The latter condition is known as missing completely at
random (MCAR). MCAR is only a special case of MAR.
MAR is less restrictive than MCAR because it requires only
that the missing values behave like a random sample of all
values within subclasses defined by observed data. In other
words, MAR allows the probability that a datum is missing to
depend on the datum itself, but only indirectly through
quantities that are observed.

More formally, Rubin (1976) defines MAR in terms of a
probability model for the missingness. Let R  be an n ×  p

matrix of indicator variables whose elements are zero or one
depending on whether the corresponding elements of Y are
missing or observed. We would not in general expect the
distribution of R to be unrelated to Y, so we posit a probability
model for R, P (R|Y, ξ), which depends on Y as well as some

unknown parameters ξ . The MAR assumption is that this

distribution does not depend on Ymis,

P(R|Yobs, Ymis, ξ) = P(R|Yobs, ξ) (2.2)

2.2.2 Distinctness of parameters

To proceed further, we also need to assume that the
parameters θ of the data model and the parameters ξ  of the

missingness mechanism are distinct. From a frequentist
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perspective, this means that the joint parameter space of (θ,ξ)

must be the Cartesian cross-product of the individual
parameter spaces for θ and ξ . From a Bayesian perspective,

this means that any joint prior distribution applied to (θ,ξ)

must factor into independent marginal priors for θ and ξ . In

many situations this is intuitively reasonable, as knowing θ
will provide little information about ξ and vice-versa. If both

MAR and distinctness hold, then the missing-data mechanism
is said to be ignorable (Little and Rubin, 1987; Rubin, 1987).

2.3 The observed-data likelihood and posterior

2.3.1 Observed-data likelihood

Following arguments given by Rubin (1976) and Little and
Rubin (1987), it can be shown that under ignorability, we do
not need to consider the model for R nor the nuisance
parameters ξ  when making likelihood-based or Bayesian

inferences about θ.

Because the observed data  truly consist not only of Y obs,
but also of R, the probability distribution of the observed data
is actually given by

P R Y P R Y dYobs mis( , , ) ( , , )θ ξ θ ξ= ∫

                          = ∫ P RY P Y dYmis( , ) ( ) ,ξ θ (2.3)

where the integral is understood to mean summation for
distributions that are discrete. Under the MAR assumption,
(2.3) becomes
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P R Y P RY P Y dYobs obs mis( , , ) ( , ) ( )θ ξ ξ θ= ∫

= P RY P Yobs obs( , ) ( ).ξ θ (2.4)

The likelihood of the observed data under MAR can thus be
factored into two pieces, one pertaining to the parameter of
interest θ and the other pertaining to the nuisance parameter ξ.

When the two parameters are distinct, then likelihood-based
inferences about θ will be unaffected by ξ  or P (R|Yobs,ξ).

Maximum-likelihood estimation of θ, likelihood-ratio tests

concerning θ, and so on can then be performed without regard

for the missing-data mechanism; that is, the missing-data
mechanism may be safely ignored.

The factor in (2.4) pertaining to θ (or, more precisely, any

function proportional to this factor) is referred to by Little and
Rubin (1987) as the likelihood ignoring the missing-data
mechanism,

L Y P Yobs obs( ) ( ).θ θ∝ (2.5)

For brevity, we will refer to (2.5) as the observed-data
likelihood, although that name should, strictly speaking, be
reserved for the complete function (2.4). Because we assume
ignorability throughout, however, there is never a need to
work with the complete function (2.4), and thus there will be
no ambiguity.

Notice that at first glance, the factorization (2.4) seems to
contain no implicit assumptions about the missingness
mechanism. The joint distribution of any two random
variables, say Z1 and Z2, can always be written as the marginal
distribution of Z1 multiplied by the conditional distribution of
Z2 given Z1. A subtle but important difference exists between
this basic rule of probability and the factorization (2.4),
however, and the distinction lies in the definition of θ. In our

framework, θ refers to the parameters of the model for the

complete data Y = (Yobs Y mis), not the parameters for the
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distribution of Yobs, alone. We assume that the ultimate goal of
the analysis is to draw inferences about the parameters of the
complete-data model, not the parameters governing the
marginal distribution of Yobs. If θ were redefined to pertain

only to Y obs then assumptions like MAR would not be
necessary. This approach has some major conceptual
difficulties, however, and may lead to results that are very
hard to interpret, so we will not consider it further. For an
interesting discussion related to this point, see the exchange
between Efron (1994) and Rubin (1994).

2.3.2 Examples

Example 1: Incomplete univariate data. Suppose that a single
variable is observed for units 1, 2,...n1 < n  and missing for
units n1 + 1,..., n. Let Y = (y1, y2,yn) denote the complete data
and R = (r1, r2,...,rn) the response indicators, where ri = 1 if yi

is observed and ri = 0 if yi is missing. If the distribution of R
does not depend on Y  then the missingness mechanism is
MAR. In fact, in this case it is MCAR. One such mechanism is
simple Bernoulli selection in which each unit is observed with
probability independently of all other units,

P RY r

i

n
ri i( , ) ( ) .ξ ξ ξ= −

=

−∏
1

11

Another MAR mechanism arises when the responding units
are a simple random sample of all units, otherwise.

P RY

n

n
if r nii

n

( , ) ,ξ =






=








−

=∑
1

1

11

0          otherwise.

The latter regards n1 as fixed whereas the former regards n1 as
random. Under either of these mechanisms or any other
mechanism that is MAR, it is appropriate to base inferences
about parameters of the distribution of Y on the observed-data
likelihood. This likelihood may be written
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L Y P Y dYobs mis( ) ( )θ θ=∫

     = ( )
=

+
= +

∏∫∫ ∏K LP y P y dyi
i

n

i n dy
i n

n

n
( | ) | .

1
1

1

1

1

1

1

θ θ

The f ir s t pr o du ct in  the in tegr and  d o es  n ot in vo lve Y mis  an d can 
b e br ou g ht o u t of  th e in teg ral, an d the s eco nd  p r od uct integ r ates 

Figure 2.2. Bivariate data with one variable subject to
nonresponse.

to one, yielding

L Y P yobs i
i

n

θ θ( ) = ( )
=

∏
1

1

,

which is simply a complete-data likelihood based on the
reduced sample y yn1 1

, ..., .

Example 2: Bivariate data with one variable subject to
nonresponse. Consider a dataset with variables Y1 and Y2 as
shown in Figure 2.2, where Y1 is observed for units 1, 2,..., n
but Y2 is observed only for units 1,2,...,n1 < n .The missing
data will be MAR if the probability that Y2 is missing does not
depend on Y2, although it may possibly depend on Y1. Let yi1,
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and yi2 denote the values of Y1 and Y2, respectively, for unit i.
The observed-data likelihood may be written

P y y P y P y y dYi i
i

n

i
i n

n

i i
i n

n

mis( , ) ( ) ( , ) .1 2
1

1
1

2 1
1

1

1 1

θ θ θ
= = + = +

∏∫ ∏ ∏
The first two products in the integrand do not involve Ymis and
the last product integrates to one, hence

L Y P y y P yobs i
i

n

i i
i n

n

( | ) ( , | ) ( | )θ θ θ=
= = +

∏ ∏1
1

2 1
1

1

1

(2.6)

=
= =
∏ ∏P y P y yi
i

n

i i
i

n

( | ) ( | , ).1
1

2 1
1

1

θ θ (2.7)

For example, suppose that Y1 and Y2 have a bivariate normal
distribution with parameter

θ µ σ µ σ σ= ( )1 11 2 22 12, , , , ,

where µ θi iE Y= ( )| and σ θij i jCov Y Y i j= ( ) =| , , ,1 2 .  The

observed-data likelihood may be written as in (2.6),

L Y y yobs
n

i
T

i

n

i( | ) ( ) ( )/θ µ µ∝ − − − }











− −

=
∑Σ Σ1

1
2 1

1

1

2

× − −











− −

= +
∑σ

σ
µ11

2

11
1 1

2

1

1

1

1

2
( ) / exp ( ) ,n n

i
i n

n

y (2.8)

where y = (yi1, yi2)
 T , µ µ µ= ( )1 2,

T
and Σ is the 2 × 2 matrix

with elements σij. Alternatively, the parameter of the bivariate

normal distribution may be expressed as

φ µ σ β β σ= ⋅( , , , , ),1 11 0 1 22 1
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w h e r e  β σ σ β µ β µ1 12 11 0 2 1 1= = −/ ,  a n d

σ σ σ σ22 1 22 12
2

11⋅ = − / ,  so that E Y Y Y2 1 0 1 1| ,ϕ β β( ) = +  and

V Y Y2 1 22 1| , .ϕ σ( ) = ⋅  The transformation ϕ ϕ θ= ( )  is one-to-

one. Following (2.7), the observed data likelihood may be
written in terms of ϕ as

L Y yobs
n

i
i

n

( | ) exp ( )/θ σ
σ

µ∝ − −











−

=
∑11

2

11
1 1

2

1

1

2

1

(2.9)

× − − −











⋅

−

⋅ =
∑σ

σ
β β22 1

2

22 1
2 0 1 1

2

1

1

2
n

i i
i

n

y y/ exp ( ) ,

an expression first given by Anderson (1957).
Expressions (2.8) and (2.9) are equivalent, but the latter has

A, convenient interpretation as the product of two complete-
data likelihood functions: the univariate normal likelihood for
Y1 based on units 1, 2,..., n, and the likelihood for the normal
linear regression of Y2 on Y1 based on units 1, 2,..., n1. Because
the parameters ϕ µ σ1 1 11= ( ),  and ϕ β β σ2 0 1 22 1= ( )⋅, ,

corresponding to these two factors are distinct, inferences
about them may proceed independently. For example,
maximum-likelihood estimates may be obtained by
independently maximizing the likelihoods for ϕ1 and ϕ2, each

of which corresponds to a straightforward complete-data
problem. Expression (2.8) also appears to be the product of
two complete-data likelihoods, but the parameters in the two
factors are not distinct because µ1 and σ11 appear in both.

Example 3: Multivariate normal data with arbitrary patterns
of missing values. Now consider a p-variate normal data
matrix with missing values on any or all variables as in Figure
2.1. It is convenient to group the rows of the matrix according
to their missingness patterns. A missingness pattern is a
unique combination of response statuses (observed or missing)
for Y 1, Y2,..., Yp. With p variables there are 2p possible
missingness patterns: It is usually the case, especially when p
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is large, that not all possible patterns are represented in the
sample. Index the unique missingness patterns that actually
appear in the sample by s, where s = 1, 2,..., S, and let I(s)
denote the subset of the rows i = 1, 2,..., n that exhibit pattern
s. A generalization of the arguments leading to (2.6) and (2.8)
allows us to write the observed-data likelihood as

Σ Σs
i I ss

S

i s
T

s i sy y*

( )

* * * * *exp ( ) ( ) ,
1

2

1

1
2

1

∈=

−∏∏ − − −{ }µ µ (2.10)

where yi
*  denotes the observed part of row i of the data

matrix, and µs
* and Σs

* denote the subvector of the mean

vector  and the square submatrix of the covariance matrix Σ,

respectively, that pertain to the variables that are observed in
pattern s. Notice that if any rows of the data matrix are
completely missing, then those rows drop out of the observed-
data likelihood; under the ignorability assumption, these rows
contribute nothing to the inference and may be ignored.

Despite the concise appearance of (2.10), this likelihood
tends to be a complicated function of the individual means µi

and covariances σij, i ,j = 1, 2,...,p. Except in special cases,

there is no way to express this likelihood as in (2.7) and (2.9),
the product of simple complete-data likelihoods whose
parameters are distinct (Rubin, 1974). Moreover, the first two
derivatives of (2.10) or its logarithm with respect to the
individual µi and σij tend to be very complicated as well,

making (2.10) awkward to maximize by gradient methods
such as Newton-Raphson. A much more convenient method
for maximizing this likelihood is provided by the EM
algorithm (Beale and Little, 1975; Dempster, Laird, and
Rubin, 1977), to be introduced in Chapter 3.

The complicated nature of (2.10) is typical of the observed-
data likelihood functions one encounters with incomplete
multivariate data. Except in special cases, meaningful
summaries of these functions (e.g. modes) are not available in
closed form, nor are they readily computable from classical
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numerical methods; we typically need to resort to special
iterative techniques like EM.

2.3.3 Observed-data posterior

Definition

In the Bayesian framework all inferences are based on a
posterior probability distribution for the unknown parameters
that conditions on the quantities that are observed. Returning
to the notation of Section 2.3.1, the unknown parameters are
(θ,ξ) and the observed quantities are Yobs, and R. By Bayes s

Theorem, the posterior distribution may be written as

P Y R k P R Yobs obs( , | , ) ( , | , ) ( , ),θ ξ θ ξ π θ ξ= −1 (2.11)

where π ⋅( ) denotes a prior distribution applied to (θ,ξ) and k is

the normalizing constant

k P R Y d dobs= ∫∫ ( , | ) ( , ) .θξ π θ ξ θ ξ 

Under the assumption of MAR, we may substitute (2.4) into
(2.11) to obtain

P Y R P R Y P Yobs obs obsθ ξ ξ θ π θ ξ, | , | , | , .( ) ∝ ( ) ( ) ( )

Bayesian inferences about θ alone are based on the marginal

posterior obtained by integrating this function over the
nuisance parameter ξ . When θ and ξ are distinct according to

the definition in Section 2.2.2, the prior distribution factors as

π θ ξ π θ π ξθ ξ, .( ) = ( ) ( )

Hence the marginal posterior for θ is, under ignorability,
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P Y R P Y R dobs obsθ θ ξ ξ| , , | ,( ) = ( )∫

                           ∝ ( ) ( ) ( ) ( )∫P Y P R Y dobs obs| | ,θ π θ ξ π ξ ξθ ξ

        ∝ ( ) ( )L Yobsθ π θθ| , (2.12)

where the proportionality is up to a multiplicative factor that
does not involve θ. Note that R does not appear on the right-

hand side of (2.12) and therefore P Y R P Yobs obsθ θ| , | .( ) = ( )
We have thus shown that under ignorability all information
about θ is summarized in the posterior that ignores the

missing-data mechanism,

P Y L Yobs obsθ θ π θθ| | .( ) ∝ ( ) ( ) (2.13)

We shall refer to (2.13) as the observed-data posterior.
In most practical applications one would not be interested

in the function (2.13) itself but in meaningful summaries of it:
posterior moments, marginal posterior densities and quantiles
of univariate components of θ, etc. Note that these summaries

are typically integrals of the density (2.13) or functions
involving it over the parameter space. In many commonly
used probability models with complete data, computation of
these integrals can be simplified by choosing a prior
distribution for θ within a natural conjugate class (e.g. Box

and Tiao, 1992). With incomplete data, however, the usual
natural conjugate priors no longer lead to posteriors that are
recognizable or easy to summarize.

A bivariate normal example

Let us return to Example 2 of Section 2.3.2 in which Y1 is
observed for all units but Y2 is missing for some. Assuming
that the complete data are bivariate normal with parameter θ =

(µ,Σ), the observed data likelihood is given by (2.8). In the
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absence of strong prior beliefs about θ, a prior distribution

commonly used with complete data is

π θθ ( ) ∝ −Σ 3 2/ , (2.14)

which can be derived by applying the invariance principle of
Jeffreys to µ and Σ (e.g. Box and Tiao, 1992). The prior (2.14)

is said to be improper because it is not a true probability
density function; its integral over the parameter space is not
finite. With complete data this prior leads to a posterior
distribution for θ that is the product of an inverted-Wishart

distribution for Σ and a normal distribution for Σ given µ. The

properties of this normal-inverted Wishart distribution are well
known, and summaries (marginal densities, moments, etc.) are
readily available in closed form. When some values of Y2 are
missing, however, the posterior under (2.14) is no longer
normal-inverted Wishart.

One way to characterize this posterior is to express it in
t e rms  o f  the  a l t e rna t ive  pa ramete r i za t ion
ϕ µ σ β β σ= ( )⋅1 11 0 1 22 1, , , , ,  w h e r e

β σ σ β µ β µ1 12 11 0 2 1 1= = −/ ,  and σ σ σ σ22 1 22 12
2

11⋅ = − / . As

shown in (2.9), the likelihood for ϕ  factors neatly into a

complete-data likelihood for ϕ 1=(µ,σ11) based on all the

sample units and a complete-data likelihood for ϕ 2=(β0,

β1,σ22⋅1)  based on the units for which Y 2 is observed.

Moreover, the prior distribution (2.14) also factors into
independent priors for ϕ1 and ϕ2. To see this, note that ϕ  =

ϕ(θ) is a one-tone transformation, and the density for ϕ
implied by (2.14) can thus be written as

π φ π φ φφ θ( ) = ( )( )− −1 1
J ,

where θ ϕ ϕ= ( )−1  denotes the transformation from ϕ back to

θ, and J  denotes the absolute value of the determinant of the

Jacobian (first-derivative) matrix for the transformation from
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θ to ϕ. Notice that Σ = − = ⋅σ σ σ σ σ11 22 12
2

11 22 1. Moreover,

it will be shown in Section 5.2.4 that J = −σ11
1 , and thus

π φ σ σφ( ) = ⋅−
⋅

−
11

1 2
22 1

3 2 (2.15)

Combining (2.15) with the likelihood (2.9), the observed-data
posterior can be written as

P Y P Y P Yobs obs obsφ φ φ| | | ,( ) = ( ) ( )1 2 (2.16)

where

P Y yobs
n

i
i

n

φ σ
σ

µ1 11
1 2

11
1 1

2

1

1

2
| exp/( ) ∝ − −( )












− +( )

=
∑

and

P Y y yobs
n

i i
i

n

ϕ σ
σ

β β2 22 1
3 2

22 1
2 0 1 1

2

1

1

11

2
| exp .

/( ) ∝ − − −( )











⋅

− +( )
⋅ =
∑

After some manipulation, it can be shown that P Yobsϕ1 |( )  is

the product of a normal and a scaled-inverted chisquare
density,

µ σ σ1 11 1
1

11| , ~ , ,Y N y nobs
−( )

σ χ11 11 2
21| ~ ,Y n Sobs n−( ) −

− (2.17)

where y1  and S11 are the usual sample mean and variance of

Y1, based on all n  units and χn−
−

2
2  denotes an inverted

chisquare variate n (i.e. the reciprocal of a chisquare variate)
with n - 2 degrees of freedom. Moreover, P Yobsϕ2 |( ) can be

shown to be the product of a bivariate normal and an inverted
chisquare,
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β σ β σ| , ~ ˆ, ,22 1 22 1
1

⋅ ⋅
−( )



Y N X Xobs

T

σ ε εχ22 1 1
2

1⋅ −
−| ~ ˆ ˆ ,Yobs

T
n (2.18)

where β β β= ( )0 1, ,
T

X

y

y

y

y

yn n

=



























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







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


1
1

1

11

21

1
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21 1

   

   

   

   

  y =

y12

M M M

, ,

, ,

β̂ = ( )−
X X X yT T1

 and ˆ ˆε β= −y X . Details of the calculations

leading to these posteriors may be found in standard texts on
Bayesian analysis and will be reviewed in Chapters 5-6.

In the above example, a particular factorization of the
observed data likelihood enabled us to express the posterior in
a tractable form. This will not always be the case. One cannot
always factor the observed-data likelihood into complete-data
likelihoods whose parameters are distinct. The techniques of
Markov chain Monte Carlo to be introduced in Chapter 3 will
free us from many of the constraints of mathematical
tractability, allowing us to create random draws from the
observed-data posterior whether or not it can be written in a
tractable form.

2.4 Examining the ignorability assumption

The statistician unaccustomed to missing-data problems might
be led to believe that the observed-data likelihood is always
the relevant likelihood function for θ whenever data are not

fully observed; it is, after all, simply the marginal distribution
of Yobs the observed part of Y . But as we have seen, the
observed data  consist of both Y obs, and R, and one needs the

special condition of ignorability to make the observed value of
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R  noninformative with respect to θ. Therefore it is crucial for

the data analyst to understand the implications of the
ignorability assumption, particularly MAR, and assess its
appropriateness in any given problem.

2.4.1 Examples where ignorability is known to hold

On occasion, the MAR condition is known to hold exactly.
Some examples of this are given below.

Double sampling. In sample surveys that employ double
sampling (e.g. Cochran, 1977), some characteristics, say Y1,
Y2,..., Yk, are recorded for all units in the sample, and then
additional characteristics Yk+1, . . . ,Yp  are recorded for a
subsample of the original sample. If this subsample is selected
by a mechanism that depends on Y1, Y2,..., Yk alone, even in a
systematic or deterministic way, then the missing values of
Yk+1, ...,Yp  for those units not included in the subsample are
MAR.

Sampling for nonresponse followup. In censuses and large
surveys, initial attempts to collect data may fail for a
substantial proportion of units. In a mail-based household
survey, for example, some residents will inevitably fail to mail
back their forms. In many cases, more intensive data-
collection efforts (e.g. personal interviews) would be
successful, but attempting to follow up every nonresponding
unit may be economically infeasible. If the intensive followup
effort is applied to a random sample of nonresponding units,
then the missing data for the remaining nonrespondents is
MAR. A famous early discussion of this method is given by
Hansen and Hurwitz (1946).

Randomized experiments with unequal numbers of cases per
treatment group. In many designed experiments, the
researcher strives to assign an equal number of cases or
subjects to each treatment, because data that are balanced in
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this fashion are typically easier to analyze than data that are
unbalanced. Moreover, principles of efficiency often support
the use of balanced designs. Sometimes balance is not
feasible, however, and the data are unbalanced by design. The
analysis of unbalanced data can often be simplified by
imagining a number of additional cases which, if they were
included in the experiment under the appropriate treatment
groups, would result in a balanced experiment. Because the
hypothetical missing data within each treatment group were
missing with probability one, they are MAR.

Medical screening with multiple tests, where not all tests are
administered to all subjects. In many medical studies, an
inexpensive or easily administered test is given to a large
number of subjects, and for purposes of calibration a second,
more expensive, and more reliable test is administered to a
subsample. The calibrating sample may be chosen completely
at random, on the basis of subject specific covariates, or even
on the basis of the outcome of the first test. As long as all the
information used to choose the subsample is recorded and
regarded as part of the observed data Yobs, then the missing
data will be MAR.

Matrix sampling for questionnaire or test items. In matrix
sampling (e.g. Thayer, 1983) a test or questionnaire is divided
into sections, and groups of sections are administered to
subjects in a randomized fashion. The resulting data matrix
will have rectangular patches of missing data corresponding to
sections of the test or questionnaire that were not administered
to subject groups. If all the variables used in the sampling plan
are included in Yobs, then the missing data will be MAR.

In most of the above examples, the missing data may be
said to be missing by design, because it was never the
intention of the investigator to record all potential variables for
all subjects. When missing data are missing by design, they
tend also to be MAR.
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2.4.2 Examples where ignorability is not known to hold

In many other missing-data contexts, however, it is not known
whether or not the MAR condition is satisfied. Examples
include:

1. Sample surveys where some sampled individuals are not at
home, unwilling to be interviewed, or do not otherwise
provide useful responses to some or all of the questionnaire
items. Notice, however, that if followup data can later be
obtained for a probability sample of nonrespondents, the
missing data can be converted to MAR.

2. Planned experiments where, for reasons unforeseen or
unintended by the investigator, one or more outcomes of
interest cannot be recorded: culture dishes break,
production runs fail, subjects drop out of the study, etc.

3. Observational studies in which data of economic, historic or
other scientific interest are collected for analysis, but for
reasons beyond the control of the investigator some of the
variables desired are simply not available for some cases.

Sometimes the fact that a numerical observation is not
recorded is more like a response than a missing value. In a
laboratory experiment, for example, an animal may die for
reasons related to the treatment that was applied to it. If so,
then the hypothetical missing data, the measurements that
could not be recorded because the animal died, are
counterfactual and poorly defined. In such instances, careful
thought should be given to whether it is sensible to analyze
such data by missing-data methods.

When data are missing for reasons beyond the
investigator s control, one can never be certain whether MAR
holds. The MAR hypothesis in such datasets cannot be
formally tested unless the missing values, or at least a sample
of them, are available from an external source. When such an
external source is unavailable, deciding whether or not MAR
is plausible will necessarily involve some guesswork, and will
require careful consideration of conditions specific to the
problem at hand.
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2.4.3 Ignorability is relative

One final point that must be made is that MAR and
ignorability are relative, defined with respect to a particular set
of observed data Yobs. In many situations, the status of the
missing data (whether or not they are MAR) may change if the
definition of Yobs is changed. For example, consider a sample
survey that involves probability sampling for nonresponse
followup. Let Ymis refer to the data for nonrespondents not
included in the followup effort. If Yobs is the data for
nonrespondents who were included in the followup effort, then
the missing data are MAR. If the definition of Yobs is expanded
to include the original respondents, however, and no
information (e.g. dummy indicator) is retained to distinguish
them from the nonrespondents who were subsequently
followed up, then the missing data are no longer MAR.

In other situations, a nonresponse mechanism may not be
exactly known to the analyst, but covariates are available that
could plausibly explain or predict the missingness to a great
extent. The plausibility of MAR would then depend on
whether these covariates are included in the analysis. Further
discussion of this point is given by Graham et al. (1994) with
regard to attrition in a longitudinal study of adolescent drug
use.

2.5 General ignorable procedures

Virtually all of the missing-data procedures used in statistical
practice, both ad hoc approaches and principled ones, rely at
least implicitly on an assumption of ignorability. Often the
assumptions made are even stronger. For example, the case-
deletion method used by many statistical packages (omitting
all incomplete cases from the analysis) may introduce bias into
inferences about θ unless the missing data are MCAR. Even if

MCAR holds, case deletion may still be grossly inefficient.
We shall call a missing-data procedure a general ignorable

procedure if it is based upon either an observed-data
likelihood or an observed-data posterior. The EM algorithm,
for example, will be seen to be a general ignorable procedure
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because it maximizes the observed-data likelihood. Omitting
all incomplete cases from an analysis, however, is not a
general ignorable procedure because it leads to a different
likelihood or posterior, one based only on the complete cases.
All of the methods developed in this book are general
ignorable procedures.

A common feature of ad hoc missing-data treatments like
case deletion is that they tend to discard information from
certain units and/or variables in order to make the estimation
problem more tractable. General ignorable procedures by
nature, however, do not discard such information because the
observed-data likelihood or posterior conditions fully on Yobs.
From standpoints of efficiency and bias, full conditioning on
Yobs is advantageous because it leads to inferences that are
proper under any missing-data mechanism that is ignorable,
whereas procedures that are not fully conditional may perform
well in some but not all ignorable scenarios. This point can be
illustrated with a simple hypothetical example.

2.5.1 A simulated example

Consider again the bivariate data described in Example 2 of
Section 2.3.2, in which Y 1 is always observed but Y 2 is
sometimes missing. Under a bivariate normal data model with

ignorable missingness, A-data we may easily find the value φ̂
that maximizes the observe likelihood function L Yobsϕ |( )  in

(2.9) and then apply the inverse transformation ˆ ˆθ ϕ ϕ= ( )−1  to

find the maximum-likelihood (ML) estimate for θ .

Straightforward calculation shows that the ML estimate of µ2

is ˆ ˆ ˆ ˆ ,µ β β µ2 0 1 1= +  where β̂0  and β̂1  are least-squares

estimates from the regression of Y2 on Y1 based on units
1,2, ...,n1 and µ1, is the average value of Y1 among units

1,2,...,n (Anderson, 1957). Alternatively, one may compute
µ̂2  by first imputing regression-based predictions for the

missing values of Y2, i.e. letting y yi i2 0 1 1= +ˆ ˆβ β  for i = n1 +
l,...,n, and then computing the average of Y2 among units
1,2,...,n in the imputed dataset.

©1997 CRC Press LLC



 

Estimating µ2 by µ̂2  is a general ignorable procedure

because µ̂2  is obtained by maximizing the observed-data

likelihood L Yobsϕ | .( )  Another plausible estimate is the

complete-case (CC) estimate ˜ ,µ2 1
1

1 2
1= −
=n yi

n
iΣ  the average of

Y2 among the completely observed cases. Estimating µ2 by µ̃2

may certainly be regarded as an ignorable procedure because it
is consistent with the belief that the missing data are MCAR, a
special case of MAR. It is not, however, a general ignorable
procedure because it does not condition fully on Yobs; in
particular, it discards the observed values of Y1 for units n1 +
l,..., n. Consequently, the ML estimate tends to be more
efficient than the CC estimate, and it exhibits better
performance over a variety of missingness mechanisms.

W e can eas ily  com par e th e p er fo r mance o f th e ML and  CC
estim ates by  simu latio n. As  s ho w n in  F ig ur e 2 .2 , let u s  d ef ine

Table 2.1. Simulated means (standard deviations) of the CC and ML
estimates under three MAR mechanisms

R = (r1,...,rn) to be a vector of response indicators where ri = 1
if Y2 is observed and ri = 0 if Y2 is missing for unit i, i = 1,
2,...,n. In particular, consider the class of ignorable
mechanisms in which P(ri = 1|Y) = g(yil) independently for
units i = 1, 2,..., n, where g is some function that maps the real
line into the unit interval [0, 1]. Three possible choices for g
are

constant g y a ai1 1 1 10 1( ) = ≤ ≤, ,

probit selection g y a b yi i2 1 2 2 1( ) = =( )Φ .

interval selection g yi3 1 1( ) =  if a y bi3 1 3≤ ≤ ,  else 0,
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where Φ (⋅) denotes the standard normal cumulative

distribution function. The constant function g1 is MCAR,
whereas g2 and g3 are MAR but not MCAR. A simulation was
conducted in which samples of size n = 100 were drawn from
bivariate normal populations with µ1 = µ2 = 0, σ11 = σ22 = 1

and σ12 = ρ = 0, 0.5 and 0.9, respectively. Random patterns of

missingness were imposed on each sample according to g1

with a1 = 0.5, g2 with a2 = 0, b2 = 1 and g3 with a3 = Φ−1 (0.35)

= -0.385, b3 = -Φ −1 (0.85) = 1.036. These constants were

chosen to yield an expected response rate n1/n of 50% under
each mechanism, a level higher than is found in most typical
applications.

The means and standard deviations of the CC and ML
estimates over 5000 repetitions are shown in Table 2.1. Under
the non-MCAR mechanisms, the CC estimate is biased
whenever ρ ≠ 0. Except under the unrealistic condition that

n n1 1/ ,→  this bias does not vanish as n → ∞,  causing µ̃2  to
be inconsistent. The ML estimate, however, is unbiased and
consistent under the three mechanisms used here, as well as
under essentially all other ignorable mechanisms. From
considerations of bias and consistency, the ML estimate has a
clear advantage over the CC estimate.

In fairness, one should note that it is possible to construct a
missingness mechanism for which the ML estimate would be
less biased than the CC estimate. Such a mechanism would be
neither MAR nor MCAR, but a peculiar nonignorable
mechanism in which Y1 and Y2 would have correlations of
opposite sign among the respondent and nonrespondent
groups. Such mechanisms, although mathematically possible,
are somewhat atypical and should not be expected to occur
often in practice with real data. Further discussion of this point
in an applied setting is given by Schafer (1992).

Under the more restrictive condition of MCAR, both the
ML and CC estimates are unbiased, but ML still has an
advantage over CC for ρ = 0.5 and ρ  = 0.9 because its

variance is lower. This reduction in variance occurs because
Y1 becomes an increasingly valuable predictor of the missing
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values of Y2 as ρ increases. The only situations in Table 2.1

for which CC appears to dominate ML are when Y1 and Y2 are
unrelated (ρ = 0), in which case µ̂2  has more variability than

µ̃2 . Here CC enjoys an advantage because it correctly
assumes that the correlation between Y1 and Y2 is zero,

whereas ML uses an estimated regression line whose slope β̂1
randomly varies about zero. This advantage of CC over ML
would be much less dramatic if the average missingness rate
were lower. Moreover, the benefit of CC s lower variance in
this special situation tends to be outweighed by the protection
against bias afforded by ML when ρ ≠ 0 and the mechanism is

not MCAR.

2.5.2 Departures from ignorability

The above example illustrates the advantages of general
ignorable procedures when missing data are MAR. Even when
the missing data are not precisely MAR, however, general
ignorable procedures still tend to be better than ad hoc
procedures such as case deletion for the following reason:
general ignorable procedures remove all of the nonresponse
bias explainable by Yobs whereas ad hoc procedures may not.

T o  d e m o n s t r a t e  t h i s  p o i n t ,  l e t  u s  m o d i f y  t h e  e x a m p le  o f 
S e ct i o n  2 . 5 . 1  t o  i n c l u d e  a  m e c h a n is m  t h at  i s  n o t  M A R. 
S u p p o s e  th a t  p r o p e n s it y  t o  r e s p o n d  f o r  Y 2  i s  n o  l o n g e r  a
f u n c t i o n  o f  Y 1  b u t  i s  n o w  d i r e c t l y  r e l a t ed  t o  Y 2 .  W e  w i l l
a s s u m e  t h a t  P ( r i  =  1 | Y )  = g ( y i 2 )  in d e p e n d e n t l y  f o r  i  =  1 ,  2 , .. . , 
n .  A  s i m u la t i o n  w a s  c o n d u c t ed  u s i n g  p r o b i t  s el e c t i o n ,  g ( y i 2 ) 
=  Φ ( a 2  +  b 2 y i 2 )  w i t h  a 2  =  0 ,  b 2  =  1  a n d  a l l 
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Table 2.2. Simulated means (standard deviations) of d2 and A2 under
a non-MAR mechanism

other parameters as before. Results shown in Table 2.2 show
that the CC estimate µ̃2  and the general ignorable ML

estimate µ̂2  are equally biased when ρ = 0 but that ML

becomes substantially less biased for larger values of ρ. By

making use of Y1 to predict missing values of Y2, the ML
procedure removes the nonresponse bias in the observed
values of Y2 attributable to Y1. In this example nonresponse is
related to Y2 rather than Y1, but as ρ increases Y1 becomes an

increasingly useful proxy for Y2.
Limited practical experience with real data also suggests

that general ignorable procedures may tend to perform well
even when the ignorability assumption is suspect, especially in
multivariate settings. In surveys containing questions about
income, for example, nonresponse rates on income-related
questions tend to be high, and both experience and common
sense suggest that the probability of response is likely to be
related to level of income. In a study of missing-data methods
for an income question in the Current Population Survey,
Greenlees et al. (1982) established definite relationships
between response and income itself. Upon further
investigation, David et al. (1986) found little evidence of bias
in ignorable procedures that imputed missing values of income
on, the basis of other demographic and questionnaire items
that were observed. This evidence came from knowledge of
the missing values obtained from an external source, the actual
wages and salary reported to the Internal Revenue Service on
the individuals  tax returns. David et al. (1986) also concluded
that further improvements in the missing-data procedures
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would probably come from better modeling of the multivariate
structure of the data, not from nonignorable modeling.

The crucial assumption made by ignorable methods is not
that the propensity to respond is completely unrelated to the
missing data, but that this relationship can be explained by
data that are observed. Whether ignorability is plausible in a
particular setting is therefore closely related to the richness of
the observed data Yobs and the complexity of the data model
P(Y|θ ). If Yobs contains a lot of information relevant for

predicting Ymis, and if the data model is sufficiently complex to
make use of this information, then we should expect the
residual dependence of R upon Ymis after conditioning on Yobs

to be relatively minor. Thus in multivariate datasets where
both the observed data and the complete-data model are rich,
general ignorable procedures may tend to perform well in
practice. Even if they do not perform well, they still may
provide an important and useful baseline for assessing and
comparing any available alternatives.

2.5.3 Notes on nonignorable alternatives

Various approaches to incomplete data that do not assume
ignorability have also appeared in the literature. A detailed
review of nonignorable methods is beyond the scope of this
text, but we note that these nonignorable methods tend to have
a common approach. They generally involve joint probability
modeling of both the data P (Y|θ ) and the missingness

mechanism P(R|Y, ξ) and joint estimation of θ and ξ from Yobs

and R. These joint models for Y and R typically involve more
parameters than can be estimated from Yobs and R alone. In
order to make them identifiable, one must either (a) impose a
priori restrictions on the joint parameter space for θ and ξ  or

(b) impose an informative Bayesian prior distribution on (θ,ξ).

For continuous data, one group of nonignorable methods is
based on models known in the econometric literature as
stochastic censoring or selection models (Heckman, 1976;
Amemiya, 1984). For categorical data, nonignorable
contingency-table approaches are described by Fay (1986);
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Baker and Laird (1988); Rubin, Schafer and Schenker (1988);
Winship and Mare (1989); and Park and Brown (1994). A
review of some nonignorable methods is given by Little and
Rubin (1987, chap. 11). Glynn, Laird and Rubin (1993)
describe nonignorable modeling based on followup data.
Approaches to nonignorable modeling for longitudinal data
are discussed by Conaway (1992, 1994); Diggle and Kenward
(1994); and Baker (1994). Little (1993) discusses in general
terms a class of nonignorable models called pattern-mixture
models, in which the joint distribution of Y and R is specified
in terms of the marginal distribution of R and the conditional
distribution of Y given R.

2.6 The role of the complete-data model

Having discussed at length the assumption of ignorability, we
now return to the role of the model for the complete data
presented in Section 2.1. A good model should be plausible
and have sufficient flexibility to preserve the subtle features of
the data at hand, but in realistic settings one must also,
consider issues of convenience and mathematical tractability.
The classes of models considered in this book, the multivariate
normal for continuous data, loglinear models for cross-
classified categorical data and the class of models for mixed
continuous and categorical data, are general-purpose
multivariate models that are both mathematically tractable and
appropriate in many but not all situations. With categorical
and mixed data, the analyst has considerable freedom to tailor
a model to the particular dataset; two-way, three-way or
higher associations between variables may be included if they
are thought to be important. The multivariate normal model
for continuous data is less flexible, however, because it fits
only pairwise associations. Sometimes the normality
assumption may be made more plausible by applying suitable
transformations to one or more variables (Box and Cox, 1964;
Emerson, 1991).
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2.6.1 Departures from the data model

When making inferences about a parameter θ, the assumed

parametric form of the model and the iid assumption often
play a crucial role. If these assumptions are seriously violated,
then even under ignorability the likelihood (2.5) may be a poor
summary of the data s evidence about θ. Indeed, if the data

model does not hold, the interpretation of θ  itself may be

ambiguous. Selection of a data model should proceed with
care, and diagnostics for assessing goodness of fit should be
used whenever possible. Of course, in all analyses of real (not
simulated) data a probability model is only an approximation
to reality, and some departures from modeling assumptions are
inevitable. In practice one must judge whether these
departures are of a magnitude and nature that seriously impairs
the quality of the inference about θ, or whether they are of

only minor importance and may be safely ignored.

Complex sample surveys

The assumption (2.1) that the rows of the data matrix are
independent and identically distributed (iid) can be
problematic, especially when the rows do not correspond to
observational units that are exchangeable (i.e. like a simple
random sample). This assumption is commonly violated in
large-scale surveys, which typically employ complex
probability sampling methods. Sample surveys often have
special features (unequal probabilities of selection,
stratification, clustering, etc.) that cause the units to be non-
exchangeable.

In some cases, it may be possible to apply the models of
this book to survey data in a way that preserves the integrity of
the complex design. Stratification and the general issue of
design variables are discussed in Section 2.6.2 below. Data
with clusters, naturally occurring groups of observations that
are potentially intercorrelated, should not in general be
handled by iid models. If the clusters are few and large, it may
be feasible to fit separate models for each cluster that treat the
units within clusters as exchangeable. Another possibility is to
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add a cluster identifier to the model as an additional
categorical variable, and posit some simple associations
between this variable and the other variables in the dataset; an
example of this approach is described in Section 9.5.3.

When the number of clusters is large, and there are
relatively few observations per cluster, the data are more
appropriately described by hierarchical probability models
with an explicit multilevel error structure. These models,
sometimes called random-effects or mixed models, have been
extensively applied in the univariate setting with continuous
responses (Laird and Ware, 1982; Searle et al., 1992). Recent
advances in computational methods have allowed extensions
to discrete (Zeger and Karim, 1991) and multivariate
continuous (Everson and Morris, 1996) response models.
Application to problems of missing data in surveys, however,
will typically require hierarchical models for multivariate
categorical responses. A proper treatment of these models is
well beyond the scope of this book. For a detailed example of
such a model in the context of the U.S. Decennial Census, see
Schafer (1995). More discussion of missing-data problems in
complex surveys will appear in Sections 4.3 and 4.5.

The role of imputation

It may be possible to mitigate some of the effects of model
failure through multiple imputation (Section 4.3). Inference by
multiple imputation proceeds in two stages. First, m simulated
versions of the missing data are created under a data model.
Second, the m versions of the complete data are then analyzed
by complete-data statistical techniques, and the results are
combined to produce one overall inference. Sometimes the
complete-data statistical analyses of the second stage will
involve different models than the one used to produce the
multiple imputations in the first stage. When analyzing data
from a sample survey, for example, one may impute the
missing data on the basis of an elaborate multivariate model,
but then proceed to analyze the data using classical
nonparametric survey methods in which inferences are based
entirely on the randomization used to draw the sample (e.g.
Cochran, 1977). Even if the model used for imputation is
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somewhat restrictive or unrealistic, it will effectively be
applied not to the entire dataset but only to its missing part.
Multiple imputation thus has a natural advantage over some
other methods of inference in that it may tend to be more
robust to departures from the complete-data model, especially
when the amounts of missing information are not large.
Hence, even though the classes of models examined in this
book may not realistically describe many of the multivariate
datasets one encounters in the real world, we suspect that they
will still prove useful in a wide variety of data analyses if
applied within the framework of multiple imputation. The role
of modeling assumptions in multiple imputation will be
revisited in Section 4.5.4.

2.6.2 Inference treating certain variables as fixed

Sometimes the only relevant analysis of a multivariate dataset
involves modeling the conditional distribution of certain
variables given others. In regression analysis, for example, the
goal is to model one or more response variables given one or
more predictors. When analyzing data from surveys, it is
common practice to estimate means, proportions, etc. not for
the population as a whole but within subdomains (strata or
poststrata) that are considerably smaller. The individual
subdomain estimates are then combined, using population
proportions derived from an external source (e.g. a census), to
yield estimates for larger domains. The relative sizes of the
subdomains in the population are assumed to be known and
are not estimated from the sample. Similarly, with data from
planned experiments, the relevant analysis is usually a
comparison of mean responses across two or more treatment
groups; the manner in which experimental units are allocated
to treatments is determined by the experimenter and does not
need to be modeled.

In discussing situations like these, we will refer to variables
in a generic sense as either response variables or design
variables, with the latter being those that the statistical
analysis ultimately regards as fixed. Predictors in regression
analyses, variables defining strata or poststrata in sample
surveys and indicators of treatment groups in planned
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experiments are all examples of design variables. When a
dataset contains one or more design variables, the iid
assumption (2.1) is typically violated, as design variables are
often under direct control of the investigator and are thus not
random in the same sense as the response variables are
random. It is usually not desirable to impose any probability
model at all on the design variables, but to model only the
conditional distribution of the response variables given the
design variables.

Datasets with design variables can be accommodated in our
framework with just a few additional assumptions. Suppose
that each row yi of the complete-data matrix can be partitioned
into two parts, a vector ui of design variables and a vector vi of
response variables. Furthermore, suppose that the density of yi

can be factored as

f y f u f v ui u i v u i i| | | , ,|θ α β( ) = ( ) ( ) (2.19)

where α  and β are distinct parameters. Finally, suppose that

the design variables are completely observed for all units.
Under these assumptions, we can write the complete-data
matrix as

Y Y Y U V Vobs mis obs mis= ( ) = ( ), , , ,

where U  denotes the design variables, Vobs the observed
response variables, and Vmis the missing response variables, so
that Yobs = (U, Vobs) and Ymis =Vmis. The probability distribution
of the observed quantities may then be written as

P R U V V P U P V V U dVobs mis obs mis mis| , , , | , | , ,ξ α β( ) ( ) ( )∫  (2.20)

where ξ  is a set of parameters governing the response

mechanism. Under ignorability, this response mechanism does
not depend on Vmis,

P R U V V P R U Vobs mis obs| , , , | , , .ξ ξ( ) = ( )
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Thus the first two factors in the integrand of (2.20) do not
involve Vmis, so (2.20) becomes

P R Y P R U V P U P V Uobs obs obs, | , | , , | | , .θ ξ ξ α β( ) = ( ) ( ) ( ) (2.21)

The factorization in (2.21) implies that inferences about β, the

parameters of the conditional distribution of V given U, may
be based on the conditional observed-data likelihood function

L U V P V Umis obsβ β| , | , ,( ) ∝ ( )
or on the observed-data posterior

P U V L U Vmis misβ β π ββ| , | , ,( ) ∝ ( ) ( )

where πβ is a prior distribution applied to β independently of

any prior on α or ξ. Notice that (2.22) and (2.23) are the same

for all a and even for all P (U|α). In other words, we will

obtain a correct inference about β even if the marginal model

for the design variables is misspecified.
To summarize, when design variables are present we can

often apply a joint probability model such as (2.1) to the
complete data Y, even a model in which the distribution of the
design variables is misspecified. We will obtain correct
inferences about the parameters of interest provided that (a)
the design variables U are observed for all units in the sample,
and (b) the joint density of (U, V) factors into densities for U
and for V|U, with the parameters of the two densities being
distinct. Assumption (b) will be a characteristic of some, but
not all, of the multivariate models used in this book.
Assumption (a) often does hold in practice; it would be
somewhat unusual, for example, for stratification variables in
a sample survey or treatment indicators in a planned
experiment to be missing. In regression analysis with
incomplete predictors, the factorization in (2.21) will not
precisely hold, but it may still be approximately true provided
that the amount of information missing on the predictors is not
large.
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Example: a comparison of two sample means

The experimental data in Table 2.3 reported by Snedecor and
Cochran (1989, Table 6.9.1) show the weight gains of two
groups of female rats, one fed a low-protein diet and the other
fed a high-protein diet. The low-protein group has 7 rats and
the high-protein group has 12. Snedecor and Cochran perform
a classical analysis assuming that the observations are
independent and normally distributed and the within-group
variances are equal. A pooled estimate of the common
variance is

6 425 11 457

17
445 7

( ) + ( ) = .

Table 2.3. Weight gains in grams of two groups of female rats
(28-84 days old) under two diets

on 17 degrees of freedom, and a 95% confidence interval for
the difference in mean weight gain between the two groups is

120 101 445 7
1

7

1

1217 975−( ) ± +



t , . . , (2.24)

where tv,p denotes the pth quantile of the t distribution with v
degrees of freedom. The interval (2.24) extends from -2.2 to
40.2, barely covering zero, so the difference in means is
almost significant at the 0.05 level.

Let us now regard Table 2.3 as incomplete data from a
balanced experiment; that is, we now suppose that the low-
protein group had 12 potential observations, 5 of which are
missing. This supposition is for illustrative purposes only,
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because the analysis of variance for an experiment with a
single factor is no more difficult when the data are unbalanced
than when they are balanced. The complete data could then be
regarded as a 24 × 2 matrix in which the first variable Y1 is a

treatment indicator (0=low protein, 1=high protein) and the
second variable Y2 is weight gain.

Suppose that we modeled the joint distribution of Y1 and Y2

as bivariate normal. The implied marginal normal distribution
of the design variable Y1 would be clearly erroneous. But note
the conditional distribution of Y2 given Y1 implied by this
model, a normal linear regression with constant variance, is
precisely the same model that underlies the classical analysis
and the confidence interval (2.24). Because Y1 is coded as 0 or
1, the slope of this regression is identical to the difference in
mean weight gain between the two groups. Likelihood-based
or Bayesian inferences about the regression slope would yield
essentially the same result as the classical interval (2.24),
perhaps with minor differences depending on how the
observed-data likelihood is summarized or on what prior
distribution is chosen.

One possible advantage of using the bivariate normal model
here is that a general ignorable procedure devised for
incomplete multivariate normal data could be applied to this
dataset and the resulting inference about the regression slope
would still be valid, provided, of course, that the conditional
normal model for Y2 given Y1 was correct. When design
variables are present it will often be convenient to apply
model-fitting and simulation algorithms devised for iid
probability models like the multivariate normal, even though
parts of the model pertaining to the design variables may be
incorrect, because developing a more specialized algorithm
then becomes unnecessary.

This example also raises an unrelated but important issue
regarding unbalanced experimental data. Classical methods of
analysis such as the t-interval in (2.24), and other methods for
unbalanced data arising from more complicated designs (e.g.
Dodge, 1985), almost invariably contain an implicit
assumption that the mechanism causing the imbalance is
ignorable. If the data are unbalanced not by design but by
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accident, e.g. if responses for one or more units could not be
recorded because of mishaps or other unforeseen occurrences,
then these methods should not be applied without first
considering the plausibility of MAR.
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CHAPTER 3

EM and data augmentation

3.1 Introduction

Assuming that the complete-data model and ignorability
assumptions are correct, all relevant statistical information
about the parameters is contained in the observed-data
likelihood L(θ|Yobs) or observed-data posterior P (θ|Yobs).

Except in special cases, however, these tend to be complicated
functions of θ, and extracting meaningful summaries such as

parameter estimates and standard errors requires special
computational tools. EM and data augmentation provide those
tools. The key ideas behind EM and data augmentation are the
same: to solve a difficult incomplete-data problem by
repeatedly solving tractable complete-data problems. As a
result, the two methods share many features in common, and
their implementation in specific examples is often remarkably
similar. In this chapter, EM and data augmentation are
introduced together to highlight the similarities between them.

3.2 The EM algorithm

3.2.1 Definition

EM capitalizes on the interdependence between missing data
Ymis and parameters θ. The fact that Ymis contains information

relevant to estimating θ, and θ in turn helps us to find likely

values of Ymis suggests the following scheme for estimating θ
in the presence of Yobs alone: Fill in  the missing data Ymis
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based on an initial estimate of θ, re-estimate θ based on Yobs

and the filled-in Ymis, and iterate until the estimates converge.
This idea is so intuitively appealing that specific applications
of it have appeared in the statistical literature as far back as
1926 (Little and Rubin, 1987; Meng and Pedlow, 1992).
Dempster, Laird and Rubin (1977) formalized the meaning of
filling in the missing data at each step and presented the
algorithm in its full generality, naming it Expectation-
Maximization or EM.

In any incomplete-data problem, the distribution of the
complete data Y can be factored as

P Y P Y P Y Yobs mis obs| | | , .θ θ θ( ) = ( ) ( ) (3.1)

Viewing each term in (3.1) as a function of θ, it follows that

l Y l Y P Y Y cobs mis obsθ θ θ| | log | ,( ) = ( ) + ( ) + (3.2)

where l(θ | Y ) = logP (Y|θ) denotes the complete-data

loglikelihood, l(θ|Yo b s ) = log P ( Y|θ) the observed-data

loglikelihood, and c  an arbitrary constant. The term
P(Ymis|Yobs, θ), which we shall call the predictive distribution

of the missing data given θ, plays a central role in EM because

it captures the interdependence between Ymis, and θ. When

viewed as a probability distribution it summarizes knowledge
about Ymis, for any assumed value of θ, and when viewed as a

function of θ it conveys the evidence about θ contained in Ymis

beyond that already provided by Yobs.
Because Ymis is unknown we cannot calculate the second

term on the right-hand side of (3.2), so instead we take the
average of (3.2) over the predictive distribution P(Ymis|Yobs,θ(t),

where θ(t) is a preliminary estimate of the unknown parameter.

This averaging yields

Q l Y H ct
obs

tθ θ θ θ θ| | | ,( ) ( )( ) = ( ) + ( ) + (3.3)
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where

Q l Y P Y Y dYt
mis obs

t
misθ θ θ θ| | | ,( ) ( )( ) = ( ) ( )∫

and

H P Y Y P Y Y dYt
mis obs mis obs

t
misθ θ θ θ| log | , | , .

( ) ( )( ) = ( ) ( )∫
A central result of Dempster, Laird, and Rubin (1977) is that if
we let θ(t+1) be the value of θ that maximizes Q(θ|θ(t)), then

θ(t+1) is a better estimate than θ(t) in the sense that its observed-

data loglikelihood is at least as high as that of θ(t),

l Y l Yt
obs

t
obsθ θ+( ) ( )( ) ≥ ( )1 | | . (3.4)

This can be seen by writing

l Y l Y Q Qt
obs

t
obs

t t t tθ θ θ θ θ θ+( ) ( ) +( ) ( ) ( ) ( )( ) ≥ ( ) = ( ) − ( )1 1| | | |

                                       + ( ) − ( )( ) ( ) +( ) ( )H Ht t t tθ θ θ θ| | .1

The quantity Q Qt t t tθ θ θ θ+( ) ( ) ( ) ( )( ) − ( )1 | |  is non-negative

because θ t+( )1  has been chosen to satisfy

Q Qt t tθ θ θ θ+( ) ( ) ( )( ) ≥ ( )1 | |  for all θ. (3.5)

The remainder H Ht t t tθ θ θ θ( ) ( ) +( ) ( )( ) − ( )| |1 , which can be

written

log
| ,

| ,
| , ,

P Y Y

P Y Y
P Y Y dY

mis obs
t

mis obs
t mis obs

t
mis

θ

θ
θ

( )

+( )
( )( )

( )
















( )∫ 1
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is easily shown to be non-negative by Jensen s inequality and
the convexity of the function x log x.

It is convenient to think of one iteration of EM, defined by
(3.5), as consisting of two distinct steps:

1. the Expectation or E-step, in which the function Q(θ|θ (t)) is

calculated by averaging the complete-data loglikelihood
l(θ|Y) over P(Ymis|Yobs, θ(t)); and

2. the Maximization or M-step, in which θ(t+1) is found by

maximizing Q(θ|θ (t)).

Alternately performing the E- and M-steps beginning with a
starting value θ(0) defines a sequence of iterates {θ(t):t =

0,1,2,...}. Dempster, Laird, and Rubin (1977) and Wu (1983)
provide conditions under which this sequence converges
reliably to a stationary point of the observed-data
loglikelihood. In well-behaved problems this stationary point
is a global maximum and EM yields the unique maximum-
likelihood estimate (MLE) of θ, the maximizer of l(θ|Yobs).

Not all problems are well-behaved, however, and sometimes
EM does not converge to a unique global maximum; these
situations are taken up in Section 3.3.1 below.

EM for regular exponential families

The E-step of EM clarifies the intuitive idea of filling in the
missing data under an assumed value of θ. In some problems

(e.g. incomplete data that are purely categorical), we shall see
that the E-step actually does correspond to filling in the
missing data in the sense that it replaces Ymis with its average
or expected value E(Ymis|Yobs, θ) under the assumption θ=θ(t).

In other problems, however, it does not. In particular, when
the complete-data probability model falls in a regular
exponential family, the complete-data loglikelihood based on n
iid (possibly multivariate) observations Y = (y1, y2,..., yn) may
be written
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l Y T Y ng cTθ η θ θ| ,( ) = ( ) ( ) + ( ) + (3.6)

where

η θ η θ η θ η θ( ) = ( ) ( ) ( )( )1 2, , ..., s
T

is the canonical form of the parameter θ,

T Y T Y T Y T Ys
T( ) = ( ) ( ) ( )( )1 2, , ...,

is an s-dimensional vector of complete-data sufficient statistics
and c is a constant term that does not involve θ. Moreover,

each of the sufficient statistics has an additive form,

T Y h yj j i
i

n

( ) = ( )
=
∑

1

for some function hj. Because l(θ|Y) is a linear function of the

sufficient statistics, the E-step replaces Tj(Y) by E(Tj(Y)|Yobs,
θ(t)) for j =1,2, . . . ,s; in other words, the E-step fills in not the

missing elements of Y per se, but rather the missing portions
of the complete-data sufficient statistics. In our regular
exponential-family models, the expectations E(Tj(Y)|Yobs,θ(t))

will be available in closed form and thus the E-step will be
computationally straightforward.

In many cases the M-step will also be straightforward;
Q(θ|θ(t)) will have the same functional form as a complete-data

loglikelihood, so finding θ(t+1) will be computationally no

different from finding the MLE in the complete-data case. For
regular exponential families, the complete-data MLE can be
found as the solution to the moment equations

E T Y t( )( ) =| ,θ (3.7)

where t is the realized value of the vector T(Y) and the
expectation is taken with respect to P(Y|θ) (e.g. Cox and
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Hinkley, 1974). If these equations can be solved for an
arbitrary t, then they can just as easily be solved when t is
replaced by the output of an E-step. In many of the models
appearing in this book, the moment equations can be solved
for θ algebraically, and thus the M-step will be available in

closed form. When an algebraic solution is not available, one
can still maximize the loglikelihood numerically for any given
t using standard complete-data iterative techniques such as
Newton-Raphson. In the latter situation, implementation of
EM would require undesirable nested iterations because each
M-step would itself be iterative. When this arises, however,
we are often able to streamline the computation by applying a
generalization of EM known as ECM, to be discussed in
Section 3.2.5.

3.2.2 Examples

Example 1: Incomplete univariate normal data. Suppose that
Y = (y1, y2,..., yn) represents n iid observations from a
univariate normal distribution with mean µ and variance ψ, so

that θ  = (µ,ψ) is the unknown parameter. The reader may

easily verify that the complete-data loglikelihood l(θ|Y) can be

written in exponential-family form (3.6) with sufficient
statistics

T Y T T y y
T

i
n

i i
n

i
T

( ) = ( ) = ( )= =1 2 1 1
2, , .Σ Σ

Letting t1 and t2 denote the realized values of T1 and T2

respectively, the moment equations

E T n t

E T n n t

1 1

2
2

2

( ) = =

( ) = + =

µ

ψ µ

,

lead immediately to the well-known MLEs µ̂ = = −
=y n yi

n
i

1
1Σ

and ˆ .ψ = −( )−
=n y yi

n
i

1
1

2 2Σ
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Now suppose that only the first n1 components of the data
vector Y are observed, and the remaining n 0 = n - n1

components are missing at random (which, in this simple
example, is equivalent to MCAR). It follows from Example 1,
Section 2.3.2 that the observed-data likelihood L(θ|Yobs) is just

a complete data likelihood based only on Yobs = (y1, y2,..., yn1
)

and the observed-data MLEs for µ and ψ  are thus

y n yobs i
n

i= −
=1

1
1

1Σ  and n y yi
n

i obs1
1

1
2 21−

= − ( )Σ ,  respectively. In

this trivial example the observed-data MLEs exist in closed
form, but one could also compute them using the EM
algorithm. Because of the iid structure the predictive
distribution of the missing data given θ does not depend on the

observed data, and

P Y Y P Y P ymis obs mis i
i n

n

| , | | .θ θ θ( ) = ( ) = ( )
= +
∏

1 1

(3.8)

The E-step replaces T1 and T2 by their expected values under
P(Ymis|Yobs,θ),

E T Y E y y

y n

obs i
n

i i n
n

i

i
n

i

1 1 1

1 0

1

1

1

| ,

,

θ

µ

( ) = +[ ]
= +

= = +

=

Σ Σ

Σ

E T Y E y y

y n

obs i
n

i i n
n

i

i
n

i

2 1
2

1
2

1
2

0
2

1

1

1

| ,

.

θ

ψ µ

( ) = +[ ]
= + +( )

= = +

=

Σ Σ

Σ

Inserting these expected sufficient statistics into the
expressions for the complete-data MLEs yields a single
iteration of EM,

µ µt
i
n

i
tn y n+( ) −

=
( )= +[ ]∑1 1

1 0
1 , (3.9)
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ψ ψ µ

µ

t
i
n

i
t t

i
n

i
t

n y n n

n y n

+( ) −
=

( ) ( )

−
=

( )

= + + ( )





− +[ ]
∑

∑

1 1
1

2
0 0

2

2
1 0

2

1

1 .

(3.10)

In this simple example, the fixed-point equations µ(t+1) = µ(t)

and ψ(t+1) = ψ(t) can be solved explicitly to show that the

iterations converge to the correct observed-data MLEs (Little
and Rubin, 1987).

The behavior of this EM algorithm in a small numerical
example is displayed in Table 3.1. A sample of n1 = 10
observations is shown with mean µ̂  = 48.1 and sample

(maximum-likelihood) variance ψ̂  = 59.4. Arbitrarily

choosing the number of missing observations to be n0 = 3 and
the starting values to be µ(0), the algorithm converges to within

four decimal places of the MLEs by the 11th iteration. It is
apparent from (3.9)-(3.10) that convergence can be accelerated
by taking no to be small, and with n0 = 0 the MLE is achieved
after just one iteration regardless of the starting values. We
shall see in Section 3.3.3 that the rate of convergence in this
example is determined by n0|(n0+n1), the proportion of
observations that are missing. More generally, the
convergence rate of EM is governed by the fractions of
information about components of θ  missing due to

nonresponse.

Example 2: Two binary variables with missing data on both.
Suppose that Y1 and Y 2 are two potentially related
dichotomous variables, each taking values 1 or 2. If the n units
in a sample are iid, the complete data may, without loss of
information, be reduced to an array of counts x=(x11, x12, x21,
x22) having a multinomial distribution, where xij is the number
of sample units having Y1 = i and Y2 = j. Let θ = (θ11, θ12,, θ21,

θ22), where θij is the probability that a unit has Y1 = i and Y2 =

j. We will use the notation x ~ M(n, θ) to indicate that x has a
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multinomial distribution with index n and parameter θ.

Because the complete-data loglikelihood is linear in the cell
counts xij,

l x x x x xθ θ θ θ θ| log log log log ,( ) = + + +11 11 12 12 21 21 22 22

the counts are the sufficient statistics and the MLEs are found
by equating each xij with its expectation nθij; hence the

complete data MLEs are simply the sample proportions
ˆ /θij ijx n=  for i, j=1,2.

Table 3.1. Example of EM for incomplete univariate normal data
with n1 = 10 values observed and n0 = 3 values

If missing values occur on both Y1 and Y2, we can partition
the sample into three parts denoted by A , B  and C,
respectively, where A includes units having both variables
observed, B includes those having only Y1 observed and C
includes those having only Y2 observed. (Any units that have
neither Y1 nor Y2 observed contribute nothing to the observed-
data likelihood and may be excluded from the analysis under
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ignorability.) Each complete-data count xij can then be
expressed as the sum of contributions from each of the three
sample parts, x x x xij ij

A
ij
B

ij
C= + + . Although xij

A  is observed,

xij
B  and xij

C  are not; for sample parts B  and C, we observe

only the marginal totals x x xi
B

i
B

i
B

+ = +1 2  and x x xj
C

j
C

j
C

+ = +1 2 ,

r e s p e c t i v e l y .  T h e  o b s e r v e d  d a t a

Y x x x i jobs ij
A

i
B

j
C= ={ }+ +, , : , ,1 2  can be displayed as in Table

3.2, with a 2 × 2 table cross-classifying the units in A  by Y1

and Y2, a 2 × 1 table classifying the units in B by Y1 alone, and

a 1 × 2 table classifying the units in C by Y2 alone.

A convenient feature of the multinomial distribution is that
if we regard the sum of any set of components of x as fixed,
the conditional distribution of those components becomes
another multinomial and is independent of the remaining
components  (e .g .  Agres t i ,  1990) .  For  example ,  the
cond i t iona l  d i s t r ibu t ion  o f  (x11,  x12)  given

Table 3.2. Classification of sample units by two incompletely
observed binary variables

x1+=x11+x12 is multinomial with parameter (θ11/θ1+,θ12/θ1+)

where θ1+ = θ11+θ12; furthermore, (x11, x12) is conditionally

independent of (x21, x22). Applying this property within parts B
and C of the sample, the predictive distribution of the missing
data given θ  and the observed data becomes a set of

independent multinomials or a product multinomial,
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x x Y M x i

x x Y M x j

i
B

i
B

obs i
B

i i i i

i
C

i
C

obs j
C

j j j j

1 2 1 2

1 2 1 2

1 2

1 2

, , ~ , / , / , , .

, , ~ , / , / , , .

( ) ( )( ) =

( ) ( )( ) =

+ + +

+ + +

θ θ θ θ θ

θ θ θ θ θ

The E-step of EM replaces the unknown counts xij
B and xij

C  in

xij by their conditional expectations under an assumed value
for θ,

E x Y E x x x Y

x x x

ij obs ij
A

ij
B

ij
C

obs

ij
A

i
B

ij i j
C

ij j

| , | ,

/ / .

θ θ

θ θ θ θ

( ) = + +( )
= + ++ + + +

The M-step then estimates θij by E(xij|Yobs, θ). Combining the

two steps yields a single iteration of EM,

θ
θ

θ

θ

θ
ij
t

ij
A

i
B ij

t

i
t j

C ij
t

j
t

n x x x+( ) −
+

( )

+
( ) +

( )

+
( )= +













+




























1 1 ,

i , j=1,2, an expression first given by Chen and Fienberg
(1974).

The data in Table 3.3, previously analyzed by Kadane
(1985), were obtained through the National Crime Survey
conducted by the U.S. Bureau of the Census. Housing unit
occupants were interviewed to determine whether they had
been victimized by crime in the preceding six-month period.
Six months later the units were visited again to determine
whe the r  t he  occupan t s  had  been  v i c t imized  in  the
intervening months. Discarding the 115 households that
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Table 3.3. EM algorithm applied to victimization status of households
on two occasions

did not respond to the survey at either visit, we are left with a
sample of n = 641 for which responses are available at one or
both occasions. The EM algorithm for this example converges
quite rapidly. Starting from a table of uniform probabilities
(all θij = 0.25), the estimated cell probabilities converge to

four decimal places by the fifth iteration as shown in Table 3.3
(b).

One way to summarize the association between two binary
variables is by the cross-product or odds ratio

ω θ θ
θ θ

= 11 22

12 21
,

with ω = 1 under independence. The ML estimate of the odds

ratio is ˆ ˆ / ˆ ˆθ θ θ θ11 22 12 21( ) ( )=3.57. Households that were

victimized during the first period appear to be more than 3.5
times as likely, on the odds scale, to have been victimized in
the second period than households that were crime-free in the
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first period. The question of whether this result is statistically
significant will be addressed shortly.

3.2.3 EM for posterior modes

The EM algorithm is typically presented as a technique for
finding MLEs. As pointed out by Dempster, Laird, and Rubin
(1977), however, EM may also be used to compute posterior
modes, values of θ for which the observed-data posterior

density rather than the observed-data likelihood is highest.
Because the complete-data posterior density under the prior

π(θ) is P(θ|Y) ∝  P(θ|Y) π (θ), it follows from (3.2) that

log | | log | , log .P Y l Y P Y Y cobs mis obsθ θ θ π θ( ) = ( ) + ( ) + ( ) +

Averaging this equation over the predictive distribution of Ymis

given θ = θ(t) gives

Q P Y H ct
obs

t* | log | | log ,θ θ θ θ θ π θ( ) ( )( ) = ( ) + ( ) + ( ) +

where

Q Qt t t* | | log ,θ θ θ θ π θ( ) ( ) ( )( ) = ( ) + ( )
and the functions Q(θ|θ(t)) and H(θ|θ(t)) are defined as before.

If we choose the next iterate θ(t+1) to maximize Q*(θ|θ(t)) i.e.

to satisfy

Q Qt t t* | * |θ θ θ θ+( ) ( ) ( )( ) ≥ ( )1  for all θ,

then each iteration will increase P(θ|Yobs) and in a well-

behaved problem the sequence of parameter estimates will
converge to the mode of P(θ|Yobs).

It is evident that when the prior π(θ) is chosen to be a

constant function over the parameter space, this algorithm
reduces to the maximum-likelihood version of EM. If the prior
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is not constant the M-step will change, requiring maximization
of Q*(θ|θ(t)) rather than Q(θ|θ(t)). The E-step procedure will be

the same as in the maximum-likelihood version, however,
because the E-step is dependent upon a fixed value of θ and

therefore does not involve the prior.

3.2.4 Restrictions on the parameter space

Thus far little has been said about the parameter space or
domain of θ. In many problems it will be the natural parameter

space, the set of all values of θ for which P(Y|θ) is a valid

probability density or probability function. In Example 2 of
Section 3.2.2, for instance, we assumed nothing about the
multinomial parameter π except the minimal requirements

πij ≥ 0  for i,j = 1,2 and π++ = π11 + π12 + π22 = 1. In other

situations, however, it is desirable to restrict θ to lie within

some smaller set Θ0, a subset of the natural parameter space

which is typically of lower dimension. In the 2 × 2

contingency table, for example, we could require the cell
probabilities to satisfy the condition of row-column
independence, πij = πi+π+j for all i and j. Appropriate choices

for Θ0 generate useful classes of models in a variety of

continuous and categorical-data contexts.
It often happens that we want to test a null hypothesis θ ∈

Θ0 versus an alternative hypothesis θ ∈  v1, where Θ0  is a

lower-dimensional subset of Θ1. If θ̂1  is the maximizer of Θ1

over Θ0 and θ̂1 the maximizer over Θ1, then the well known

large-sample approximation

2 21 0
2l Y l Yobs obs d

ˆ | ˆ | ~θ θ χ( ) − ( ) (3.12)

under the null hypothesis, where d = dimΘ1 − dimΘ0, forms

the basis for a likelihood-ratio test (e.g. Cox and Hinkley,

1974). If the drop in 2l(θ|Yobs) as we move from θ̂1  to θ̂0  is
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unusually large when compared to the χd
2  distribution, then

the evidence against the null hypothesis in favor of the
alternative is strong. In performing this test one needs to
maximize the likelihood twice, once over Θ0 and once over

Θ1.

Using the EM algorithm to maximize a likelihood or
posterior over a restricted parameter space is conceptually no
different from applying EM without such restrictions. The
form of the E-step will not change, because taking the
expectation of a quantity with respect to P(Ymis|Yobs,θ) is

computationally the same whether or not θ ∈  Θ0. The M-step,

however, will become a constrained maximization of the
expected complete-data likelihood or posterior over Θ0  and

hence may require special, often iterative, optimization
techniques. To avoid implementing an iterative M-step which
would make the EM algorithm doubly iterative, it is often
helpful to apply a recent extension of EM known as ECM,
described below in Section 3.2.5.

Example: testing hypotheses for an incomplete 2 × 2 table

Returning to the National Crime Survey data in Table 3.3, we
can apply the EM algorithm under the restriction that
victimization status on the first occasion is independent of
victimization status on the second occasion. The E-step is the
same as in the unrestricted case, but the M-step is different. It
is well known that with complete data, the ML estimates under
independence are

θ̃ij
i j i i j jx x

n

x x x x

n
=

+
=

+( ) +( )+
2

1 2 1 2
2 (3.13)

for i,j=1,2. The M-step of EM uses (3.13) with each count xij

replaced by E(xij|θ,Yobs), the output of the E-step. Starting

from a uniform table, EM converges after four iterations to the
restricted ML estimate
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˜ ˜ , ˜ , , ˜

. , . , . , . .

θ θ θ θ θ= ( )
= ( )

11 12 21 22

0 6631 0 1329 0 1699 0 0341

Notice that the estimated cross-product ratio
˜ ˜ / ˜ ˜θ θ θ θ11 22 12 21( ) ( )  = 1.00 satisfies the independence condition

as required.
To test whether row-column independence is plausible, we

can perform a likelihood-ratio test. For the households that
responded to the survey on both occasions, the loglikelihood
contribution has the form of a complete-data multinomial
loglikelihood,

l Y x x x xA obs
A A A Aθ θ θ θ θ| log log log log .( ) = + + +11 11 12 12 21 21 22 22

The households that responded to the survey only on the first
occasion provide information only about the marginal
probabilities θ1+=θ11+θ12 and θ2+=θ21+θ22; their loglikelihood

contribution has the form of a binomial,

l Y x xB obs
B Bθ θ θ θ θ| log log .( ) = +( ) + +( )+ +1 11 12 2 21 22

Similarly, the households that responded only on the second
occasion contribute

l Y x xC obs
C Cθ θ θ θ θ| log log .( ) = +( ) + +( )+ +1 11 21 2 12 22

The observed-data loglikelihood is the sum of the
loglikelihood contributions from each missingness pattern,

l Y l Y l Y l Yobs A obs B obs C obsθ θ θ θ| | | | .( ) = ( ) + ( ) + ( )
Plugging in the observed data and the restricted ML estimate

θ̃  yields l Yobs
˜ |θ( )  = -575.19, the highest loglikelihood

achievable under independence. Plugging in the unrestricted

ML estimate θ̂  from Table 3.3 (b) yields l Yobs
ˆ |θ( )  = -562.50.

The likelihood-ratio test statistic is thus 2(-562.50 + 575.19) =
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25.38, which is well beyond the plausible range of a χ1
2

random variate. We therefore conclude, not surprisingly, that
victimization status on the two occasions is related.

Perhaps a more interesting and appropriate question for
these data is not whether victimization during the two periods
seems independent, but whether the victimization rate seems
to have changed over time. That is, it may be of interest to test
the hypothesis of marginal homogeneity, θk+ = θ+k, k = 1,2,

which for a 2 × 2 table is equivalent to the hypothesis of off-

diagonal symmetry, θ12 = θ21. With complete data, a

commonly used procedure for assessing marginal
homogeneity/symmetry in a 2 × 2 table is McNemar s test , in

which the statistic

M
x x

x x
= −

+
12 21

12 21

is compared to the standard normal distribution (McNemar,
1947; Agresti, 1990). With incomplete data, we can perform a
likelihood-ratio test by maximizing the likelihood subject to
θ12 = θ21. Under, this restriction, we may collapse the off

diagonal cells into a single cell and express the complete-data
loglikelihood as that of a trinomial,

l Y x x x xθ θ θ θ| log log log ,( ) = + +( ) ( ) +11 11 12 21 12 22 222

with sufficient statistics x11, x22 and (x12 + x21); the moment
equations (3.7) lead immediately to the ML estimates 

(
θ11  =

x11/n, and 
( (
θ θ12 21=  = (x12+x21)/(2n). Revising the M-step to

include the marginal homogeneity/symmetry restriction, EM
quickly converges to

(
θ = ( )0 6970 0 1173 0 1173 0 0685. , . , . . , .

The loglikelihood at this estimate is l Yobs
(
θ |( )  = -564.25, so

the statistic for testing the null hypothesis of marginal
homogeneity/symmetry is 2(-562.50 + 564.25) = 3.50 with a
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p-value of P χ1
2 3 50 0 06≥( ) =. . .  The evidence against

marginal homogeneity/symmetry is thus fairly strong.
Extensions of this procedure for testing marginal homogeneity
in r ×  r  tables for r > 2 are more complicated, because ML

estimates do not exist in closed form; the M-step may be
carried out using techniques of nonlinear programming, as
discussed by Shih (1987).

3.2.5 The ECM algorithm

The ECM or Expectation-Conditional Maximization algorithm
is a useful extension of EM for situations where the M-step
cannot be carried out without iteration (Meng and Rubin,
1993). ECM replaces a complicated M-step with a sequence of
simpler conditional or constrained maximizations known as a
CM-step. ECM retains the reliable convergence properties of
EM while simplifying, and often reducing, the required
computations.

The CM step of ECM is comprised of S  conditional
maximizations in which the Q function is maximized not over
the entire parameter space as in (3.5), but over a smaller set in
which a vector-valued function gs(θ) is fixed at its previous

value for s = 1,2, , S. The set of functions G = {gs(θ) : s =

1, , S } must be pre-selected and must satisfy precise
conditions defined by Meng and Rubin (1993). Once a is
specified, one iteration of ECM proceeds as follows. Given the
current value of the parameter θ(t), first perform an E-step to

obtain Q(θ|θ(t)) as in the EM algorithm. Then find θ(t+1) by

maximizing Q(θ|θ(t)) subject to the constraint

g gs s
t s Sθ θ( ) = 





+ −( )( )1 /

for s=1,2,...,S. The resulting parameter value θ(t+S/S) = θ(t+1)

becomes the input to the next E-step. Clearly Q(θ(t+1)|θ(t)) must

be at least as large as Q(θ(t)|θ(t)), so subsequent iterations will

never decrease the observed-data loglikelihood. Moreover, it
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can be shown that a stationary point of ECM, i.e. a value θ(t)

such that θ(t+1) = θ(t), is also a stationary point and typically a

maximum of the observed-data loglikelihood.
The basic condition required of the set of constraints G in

ECM is that repeated application of the CM-step in the
absence of missing data would result in the likelihood being
maximized over the whole parameter space. Many, but not all,
iterative algorithms used for maximizing likelihoods with
complete data can be interpreted as repeated application of a
CM-step. One example is the method of cyclic ascent or
iterated conditional modes (Besag, 1986), in which θ i s

partitioned into a set of S subvectors and the likelihood
function is successively maximized with respect to each
subvector holding the others constant. Another example is
iterative proportional fitting of loglinear models for
contingency tables (Bishop, Fienberg, and Holland, 1975), in
which the estimated cell probabilities are proportionately
adjusted at each step to match the observed cell proportions on
sets of margins determined by the model. These algorithms
have often been regarded as less desirable than gradient
methods such as Newton-Raphson, because they tend to
converge more slowly in complete-data problems. When
paired with an E-step and applied to incomplete data,
however, they tend to produce computationally stable and
reliable ECM algorithms that are guaranteed to increase the
likelihood at each step.

Our uses of the ECM algorithm will be confined to
loglinear models for categorical data (Chapter 8) and models
for mixed continuous and categorical data that employ
loglinear constraints (Chapter 9). Other examples of ECM and
further references are given by Meng and Rubin (1993).

3.3 Properties of EM

3.3.1 Stationary values

For incomplete-data problems, the most attractive features of
EM relative to other optimization techniques are its simplicity
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and its stability. Rather than maximizing the potentially
complicated function l(θ|Yobs) directly, we repeatedly

maximize the Q function, which is typically much easier and
often equivalent to finding MLEs with complete data.
Moreover, successive iterations of EM are guaranteed never to
decrease l(θ|Yobs) which is not generally true of gradient

methods like Newton-Raphson. In practice, evaluating
l(θ|Yobs) at each step to ensure that it is increasing is often

helpful for assessing the progress of EM and for detecting and
diagnosing programming errors.

As with any optimization technique, however, EM is not
guaranteed to always converge to a unique global maximum.
In well-behaved problems the function l(θ|Yobs) is unimodal

and concave over the entire parameter space, in which case

EM converges to the unique MLE θ̂  from any starting value.
Exceptions occur both in theory and in practice, however, and
one needs to be alert to detect these abnormalities when they
arise.

Multiple modes

Table 3.4 shows a hypothetical bivariate dataset reported by
Murray (1977) with twelve sample units and four missing
values for each variable. Under the assumption that the
complete data are iid observations of a bivariate normal vector
(Y1, Y2), one may calculate the observed-data likelihood using
(2.10). It is apparent that the likelihood function is symmetric
with respect to Y1 and Y2, and that the marginal means (µ1, µ2)

and variances (σ11, σ22) are relatively better estimated than the

correlation coefficient ρ σ σ σ= 12 11 22/ . Using analytical

m e t h o d s  o r  t h e  E M  a l g o r i t h m  f o r  m u l t i v a r i a t e
normal data to be presented in Section 5.3,  one may

Table 3.4. Bivariate dataset with missing values
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verify that l(θ|Yobs) has two modes, one at θ = (µ1,µ2,σ22,ρ) =

(0, 0, 2.67, 2.67, 0.5) and the other at θ = (0, 0, 2.67, 2.67, 

-0.5). EM will converge to the first mode if started with ρ(0)> 0

and to the second mode if ρ(0) < 0.

The bimodality in this example is due to the symmetry of
the data and the unusual pattern of missingness in which the
observations with high leverage, i.e. those that would
contribute the most information about ρ, have one of the two

components missing. In real multivariate datasets where the
data are sparse and/or the missingness pattern is unusually
pernicious, multiple modes do sometimes occur. Unlike this
symmetric example in which the likelihood values at the two
modes are equal, there will typically be one major and one or
more minor modes, and the mode to which EM converges may
change depending on the choice of θ(0). To detect multiple

modes, it is helpful to run EM from a variety of starting values
to see whether it always converges to the same answer.

Saddlepoints

A saddlepoint is a value of θ at which the directional

derivatives of l(θ|Yobs) are zero but which is neither a local

maximum nor a local minimum. EM could possibly converge
to a saddlepoint, but in practice this is quite rare. Convergence
to a saddlepoint requires not only that the saddlepoint exist,
but that the successive iterates of θ approach it only from

certain directions. The loglikelihood for the data in Table 3.4
has a saddlepoint at θ = (0, 0, 2.5, 2.5, 0), and EM converges

to it if started from ρ(0) = 0. However, even a very slight

perturbation from ρ = 0 will cause EM to leave the saddle and

go to one of the two modes. In real data examples
convergence to a saddlepoint is rarely encountered, and thus
saddlepoints are not a cause for concern.
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Likelihood ridges

It may happen that the maximum value of the likelihood
function is achieved not at a single value of θ but at a whole

continuum of values. This phenomenon occurs when one or
more components or functions of θ are inestimable in the

sense that they do not appear in the likelihood, and thus
l(θ|Yobs) is the same for any value of those components; that is,

l(θ|Yobs) is flat in certain directions. Consider the bivariate

dataset shown below.

-2 -1 0 1 2 ? ? ? ? ?

? ? ? ? ? 2 1 0 -1 -2

Under the bivariate normal model l(θ|Ymis) is the sum of two

complete-data loglikelihoods, one pertaining to (µ1, σ11), and

the other pertaining to (µ2, σ22), and the correlation ρ is

inestimable. The maximum value of l(θ|Ymis)  is achieved for
ˆ ˆµ µ1 2 0= = , ˆ ˆσ σ11 22 2= =  and any value of ρ, so the

likelihood is said to have a one-dimensional ridge. If EM were
applied to this dataset from various starting values, it would
converge to different points on the ridge. When the likelihood
has a ridge, any value along the ridge is a stationary value of
EM. The algorithm does not wander aimlessly on the ridge but
stops once the ridge is reached.

When two normal variables are not observed together, the
correlation between them will be inestimable and the
likelihood will have a ridge. Similar results apply to
incomplete datasets with three or more variables. Consider the
trivariate case where Y1 and Y 2 are sometimes observed
together, Y1 and Y3 are sometimes observed together, but Y2

and Y3 are never jointly observed; in this case it can be shown
that the partial correlation of Y2 and Y3  given Y1 is
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inestimable. Estimability of parameters in multivariate normal
datasets where not all variables are observed together is
discussed by Rubin (1974) and Rubin and Thayer (1978). It
should be noted that merely having joint observations of all
variables is not sufficient to guarantee uniqueness of the MLE,
as in the example below.

-2 -1 1 2 0 0 ? ? ? ?

? ? ? ? 0 0 2 1 -1 -2

Here the two joint observations of Y1. and Y2 are identical and
thus provide no information about ρ.

Boundary estimates

Yet another abnormality is an ML estimate on the boundary of
the parameter space. Consider the dataset below for which the
ML estimates are ˆ ˆµ µ1 2=  = , ˆ ˆσ σ11 22=  = 1.80 and = ρ̂  = -1.

-2 0 0 2 -1 1 ? ? ? ?

? ? ? ? 1 -1 2 0 0 -2

If convergence is assessed by relative changes in the
components of θ = (µ1,µ2,σ11,σ22,ρ) then EM will converge

reliably in this example. If ρ is examined on some open-ended

scale, however (for example, the familiar Fisher's z-
transformation
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z = +
−

1
2

1

1
log ,

ρ
ρ

(3.14)

which takes values on the whole real line) then the iterations
of EM will appear to diverge as z → −∞ .

General comments on the method of maximum likelihood

It is important to note that the abnormalities described above,
multiple modes, saddlepoints, ridges and boundary solutions,
are not shortcomings of the EM algorithm but inherent
features of l(θ|Yobs) that would impact any optimization

method. Indeed, when such features exist, EM is often
remarkably well-behaved in comparison with other
computational methods. With incomplete multivariate data,
these abnormalities Are typically associated with small
samples, high rates of missingness and models that are clearly
overparameterized (i.e. having too many parameters) relative
to the amount of information in Yobs. In the data of Table 3.4,
for example, an unusually large portion of the information in Y
about ρ is concentrated in Ymis and inferences about ρ will be

highly sensitive to untestable assumptions about missing data
and the missing-data mechanism.

From a theoretical point of view, the desirability of ML
estimates stems primarily from their large-sample properties.
Under suitable regularity conditions, MLEs are asymptotically
unbiased, normal, and efficient with variance determined by
the curvature of the loglikelihood near the mode (e.g. Cox and
Hinkley, 1974). In large samples the loglikelihood function
tends to be unimodal and approximately quadratic. In such
cases an MLE and an estimate of its variance provide an
excellent summary of the data s information about θ, and

large-sample procedures such as asymptotic confidence
intervals, likelihood-ratio tests, etc. will tend to be reliable.
When this is not the case, however, when the loglikelihood is
oddly-shaped with multiple modes, suprema on the boundary,
etc., the behavior of large-sample procedures may be seriously
impaired and attractiveness of the ML method is greatly
diminished.
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When abnormalities are found in l(θ|Yobs), the analyst is

faced with several options. One option is to reduce the size of
the model by eliminating parameters or imposing restrictions
on the parameter space. Another possibility is to introduce
additional information about θ through a prior distribution π
and base inference on the observed-data posterior P(θ|Yobs)

rather than the observed-data likelihood. A posterior mode
will tend to be a better estimate of θ than the MLE when

substantial prior knowledge about θ is available. Even when

prior knowledge is scarce, however, we will find that adding
small amounts of information through π may be a useful

technique for ensuring that EM converges to a unique value of
θ in the interior of the parameter space. When data are sparse

or missing values occur in such a way that one or more
components of θ are poorly estimated, a judiciously chosen

prior may greatly improve the numerical stability of
computations and perhaps even strengthen the estimate of θ
from a statistical point of view.

3.3.2 Rate of convergence

Like any algorithm for successive approximation, EM
implicitly defines a function that maps the parameter space to
itself. Let θ = (θ1,θ2, . . . ,θk )T be the k-dimensional parameter.

Denote a single iteration of EM by

θ θ θ θ θt t t t
k

t
T

M M M M+( ) ( ) ( ) ( ) ( )= ( ) = ( ( ) ( ) )





1
1 2, , ...

so that both the E and M-steps are incorporated into the vector

function M. Expanding M(θ(t)) in a Taylor series about θ̂
gives a first-order approximation

M M Mt tθ θ θ θ θ( ) ( )( ) − ( ) ≈ ′( ) −( )ˆ ˆ ˆ (3.15)

©1997 CRC Press LLC



 

in the neighborhood of θ̂ , where ′( )M θ  is the k  × k first-

derivative or Jacobian matrix for M(θ) with typical element

∂Mi(θ)/∂θj. If θ̂  is a stationary value of EM, then M( θ̂ ) = θ̂
and (3.15) becomes

θ θ θ θ θt tM+( ) ( )−( ) ≈ ′( ) −( )1 ˆ ˆ ˆ (3.16)

or ε(t+1) = Dε(t), where ε θ θt t( ) ( )≈ − ˆ   is the error in

approximation at step t and D is shorthand for ′( )M θ̂ . EM s

convergence is thus said to be linear, because ε(t+1) is

approximately a linear transformation of ε(t) near the mode.

Newton-Raphson and other superlinear methods have the
property that D = 0 so the Taylor series approximation in
(3.15) is dominated by the smaller second-order term.

The speed at which EM converges in any particular
application is determined by the rate matrix D. In the case of a

scalar parameter we have ε εt tD+( ) ( )≈1  where D is a single

number between 0 and 1. The convergence will be rapid when
D is near zero and slow when D is near one. The situation for
k  ≥  2 is more complicated, however, and depends on the

eigenstructure of D.
Any vector v such that Dv = λv for some constant λ is said

to be an eigenvector of D, and λ  is its associated eigenvalue.

The eigenvalues must also satisfy the equation D I− =λ 0 ,

and because the determinant of a k × k matrix is a polynomial

of order k this equation has at most k distinct roots. When the
roots λ1,λ2,...,λk are distinct the corresponding eigenvectors

v1, v2,...,vk are linearly independent, and any k-dimensional
vector can be written as a linear combination of the
eigenvectors. In particular, we can write the error vector

ε θ θt t( ) ( )= − ˆ  as

ε t
k kc v c v c v( ) − + +1 1 2 2 L .
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Then the error at the next iteration becomes

ε

λ λ λ

t
k k

k k k

D c v c v c v

c v c v c v

+( ) ≈ + +( )
≈ + + +

1
1 1 2 2

1 1 1 2 2 2

L

L ,

and after r iterations,

ε λ λ λt r r r
k k

r
kc v c v c v+( ) ≈ + + +1 1 1 2 2 2 L .

In ordinary problems all the eigenvalues will satisfy 0 ≤ λ j

< 1 and successive iterations of EM beginning from any θ(t) in

a neighborhood of θ̂  will shrink the error toward zero. If θ̂  is
a saddlepoint then one or more eigenvalues could exceed one.
If ε(t) happens to be precisely orthogonal to the eigenvectors

corresponding to those eigenvalues, then EM will converge to
the saddlepoint. For a randomly chosen θ(t) in the

neighborhood of θ̂ , however, this will happen with negligible
probability, so in most cases the iterates will diverge from a
saddlepoint. One or more eigenvalues equal to one indicates
that the likelihood is flat in certain directions and is
maximized along a ridge (Dempster, Laird and Rubin, 1977).

The missing information principle

It is well known that in regular problems the large-sample
precision of the MLE is determined by the curvature of the
loglikelihood function. With complete data, the Fisher
information is defined to be

I Y l Y P Y dY* | | | ,θ ∂
∂θ

θ θ( ) = − ( )












( )∫
2

2 (3.17)

where ∂2l(θ|Y)/∂θ2 is the k  ×  k matrix with typical element

∂2l(θ|Y)/∂θi∂θj. One estimate of the covariance matrix of θ̂  in
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large samples is I Y* ˆ |θ( )[ ] −1
 the inverse of the Fisher

information matrix evaluated at the complete-data MLE.
Another, asymptotically equivalent, estimate is the inverse of

I Y l Yˆ | | ,ˆθ ∂
∂θ

θ θ θ( ) = − ( ) =

2

2 (3.18)

which fixes Y In the loglikelihood function at its realized value
rather than averaging over its distribution.

With incomplete data, differentiating (3.2) twice yields

− ( ) = − ( ) − ( )∂
∂θ

θ ∂
∂θ

θ ∂
∂θ

θ
2

2

2

2

2

2l Y l Y P Y Yobs mis obs| | log | , .

Taking the expectation of this over P(Ymis|Yobs,θ), we obtain a

fundamental relationship: the complete information is equal to
the observed information plus the missing information. This
relationship, called the missing information principle by
Orchard and Woodbury (1972), was also investigated by
Dempster, Laird and Rubin (1977), Louis (1982) and Meng
and Rubin (1991a). Assuming sufficient regularity to
interchange the order of differentiation and integration, we can
write the complete information as

I Qc θ ∂
∂θ

θ θ( ) = − ( )
2

2 | ,

the observed information as

I l Yo obsθ ∂
∂θ

θ( ) = − ( )
2

2 | ,

and the missing information as

I Hm θ ∂
∂θ

θ θ( ) = − ( )
2

2 | ,

so that
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I I Ic o mθ θ θ( ) = ( ) + ( ).

Note that each quantity in (3.19) is a function of Yobs

although this fact has been suppressed in the notation. Also
note that the concept of information used in (3.19) is more
consistent with (3.18) than with (3.17), because we have fixed
Yobs  at its realized value and averaged only over the
distribution of the unknown Ymis. A natural large-sample
estimate of the covariance matrix with incomplete data is

I l Yobs0
1

2

2

1
- ˆ | ,

ˆ
θ ∂

∂θ
θ

θ θ
( ) = − ( )









 =

−

(3.20)

where θ̂  is now the observed-data MLE, the maximizer of
l(θ|Yobs).

Missing information and convergence

Dempster, Laird and Rubin (1977) established an important
connection between these information quantities and D =

′( )M θ̂ , the asymptotic rate matrix of EM. In regular problems

where θ(t+1) is obtained as a solution to ∂Q(θ|θ(t))/∂θ=0, they

showed that

D I Ic m= ( ) ( )−1 ˆ ˆ .θ θ (3.21)

In the extreme case where Y mis provides no additional

information about θ not already contained in Yobs, then Im θ̂( )
= 0 and (3.21) implies that EM essentially converges in a
single iteration. More generally, for a scalar parameter (3.21)
implies that D is the ratio of the missing information to the
complete information. For brevity we will call this ratio the
fraction of missing information, although a more precise term
would be the fraction of information missing due to
nonresponse. If we denote the fraction of missing information

©1997 CRC Press LLC



 

in the scalar case by D = λ, then each iteration approximately

multiplies the error by λ,

θ θ λ θ θt t+( ) ( )−( ) ≈ −( )1 ˆ ˆ , (3.22)

which demonstrates one of the fundamental properties of the
EM algorithm: the rate of convergence of EM is determined
by the fraction of missing information.

When θ is a vector of length k > 1 the fraction of missing

information  is no longer a number but a matrix; yet a result
similar to (3.22) holds for multiparameter problems as well.
Suppose we order the eigenvalues of D so that λ1≥λ2≥⋅⋅⋅≥λk,

and let v1,v2,...,vk be eigenvectors of D corresponding to these
ordered eigenvalues. As before, we can write the error vector
as

ε θ θt t
k kc v c v c v( ) ( )= − = + +ˆ

1 1 2 2

for some c1,c2, . . . , ck, so that after r iterations

ε λ λ λt r r r
k k

r
kc v c v c v+( ) ≈ + + +1 1 1 2 2 2 L .

By analogy with (3.22) we may regard λ1,λ2,...,λk as fractions

of missing information corresponding to the particular
directions v1, v2,...,vk . Moreover, if λ2 is strictly less than λ1,

we have

ε λt r r c v R+( ) ≈ +( )1 1 1 , (3.23)

where the remainder term

R c v c v
r

k
k

r

k=






+ +




2

2

1
2

1

λ
λ

λ
λ

L

approaches zero at a rate determined by λ2/λ1. Thus in the

vicinity of the mode
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θ θ λ θ θt t+( ) ( )−( ) ≈ −( )1
1

ˆ ˆ (3.24)

where λ1, is the largest eigenvalue of D . If the s  largest

eigenvalues happen to be equal, then (3.23) becomes

ε λt r r
s sc v c v R+( ) ≈ + + +( )1 1 1 L

where R approaches zero at a rate determined by λs+1/λ1, and

(3.24) still holds. In the multiparameter case, we can thus say
that EM s rate of convergence is governed by the largest
fraction of missing information. Exceptions to this rule are
possible; for example, if ε (t) happens to be precisely

orthogonal to the eigenvector(s) corresponding to the largest
eigenvalue, then convergence will be dominated by the next
largest eigenvalue. For most real-data problems, however, this
basic result does hold. Further results and discussion on the
convergence of EM are given by Meng (1990).

3.3.3 Example

In Example 1 of Section 3.2.2, we derived the EM algorithm
for incomplete univariate normal data and applied it to the n1

= 10 observations displayed in Table 3.1 (a) by assuming that
an additional n0 = 3 observations were missing. By varying the
choice of no we can make the rate of convergence in this
example arbitrarily large or small. Figure 3.1 displays the
iterations of EM in this two-parameter problem from a variety
of starting values under n0 = 10 and n0 = 90, corresponding to
missingness rates of 50% and 90%, respectively. For visual
clarity the variance ψ is shown on the log scale. With n0 = 10

the convergence is quite rapid, whereas for n0 = 90 it is much
slower. Unlike gradient methods EM does not necessarily
follow the path of steepest ascent, but often climbs the
loglikelihood surface by a more circuitous route.
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Figure 3.1. Iterations of EM from various starting values for
univariate normal data with no = 10 and no = 90.

In simple examples like this one, it is feasible to investigate
the convergence properties analytically. The elements of the

matrix ′( )( )M tθ , obtained by differentiating (3.9)-(3.10), are
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∂µ

∂µ
∂ψ

∂ψ
∂µ
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∂ψ
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+( )
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( )
( )

+( )

( )

=

=

= 





−( )
=

1
0

1

1
0 1

2

1
0

0

2

,

,

,

,

where y n yobs i
n

i= −
=∑1

1
1

1  is the observed-data MLE for µ.

Evaluating these derivatives at the mode (i.e. taking θ θt( ) = ˆ )
gives

D M
n n

n n
= ′( ) =









ˆ /

/
.θ 0

00

     0

         

The eigenvalues of this matrix are λ 1 = λ2 = λ  = n0/n.

Whenever eigenvalues are repeated, the corresponding
eigenvectors are not uniquely defined. In fact, because D is
proportional to the identity matrix in this example, any error
vector ε(t) is an eigenvector. Yet the overall convergence rate

is still governed by A, and a single iteration of EM can be

expressed as ε λεt t+( ) ( )≈1 .
In this and other univariate examples, the fraction of

missing information λ is also the rate of missing observations.

In multi-variate applications, however, the fractions of missing
information corresponding to various components of θ will

typically differ from the rates of missing observations, both
overall and on a variable-by-variable basis, depending on the
pattern of missingness and the observed interrelationships
among variables.
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3.3.4 Further comments on convergence

Monitoring and detecting convergence

Two basic methods for monitoring the convergence of EM
involve (a) successive parameter values θ(t), and (b) successive

values of the observed-data loglikelihood l(θ(t)|Yobs). In

practice both are quite useful. Because each iteration of EM is
guaranteed never to decrease the likelihood, evaluating
l(θ|Yobs) at each step is helpful for detecting programming

errors as well as for monitoring the progress of EM in specific
examples. Convergence is typically judged by examining
changes in individual components of θ = (θ1,θ2, . . . ,θk) from

one iteration to the next. If the changes are all relatively small,
for example, if

θ θ θj
t

j
t

j
t( ) −( ) ( )− ≤∈1

for j = 1, 2,..., k and a suitably small ∈  (say, 0.0001), then we

may say that EM has converged  by iteration t.
If the elements of θ continue to change for many iterations

with very little increase in l(θ|Yobs), then it should be taken as

a sign that the loglikelihood is nearly flat in certain directions
and that one or more functions of θ are very poorly estimated.

Often in these problems there is little to be gained from
additional iterations, because the value of θ to which EM

would ultimately converge has loglikelihood only slightly
higher than the current value; the observed data do little to
distinguish between these values of θ. Slow convergence is

also a sign that the fractions of missing information
corresponding to certain aspects of θ are close to one, and that

most of the information about them is being contributed by
P(Ymis|Yobs,θ), the model for the missing data, rather than by

Yobs. Because the correctness of P(Ymis|Yobs,θ) rests on both the

complete-data model and the ignorability assumption, slow
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convergence warns us that inferences about certain aspects of
θ are highly model-dependent. This does not automatically

mean that all inferences about θ are suspect, because in some

problems (e.g. when the missing data are missing by design
and therefore known to be MAR) the model may be quite
trustworthy. In other problems, however, particularly when it
is not known whether the data are MAR, slow convergence is
a useful warning that the estimate of θ may rest largely on our

assumptions about the unknown Ymis, rather than on the known
Yobs. If so, then a simplification of the model, perhaps by
imposing restrictions on the parameter or by eliminating
variables with high rates of missingness, may be a sensible
strategy.

Asymptotic covariance matrices from EM

One drawback of EM relative to other optimization techniques
is that it does not automatically provide standard errors
associated with the parameter estimates. The asymptotic

covariance matrix I0
1− ( )θ̂  defined in (3.20) is not readily

available because implementation of EM does not require
calculation of the derivatives of l(θ|Yobs), which are often

complicated and tedious to derive.
In a comment on the original EM paper, Smith (1977) noted

that for a scalar parameter the iterations of EM provide a good
estimate of λ. From (3.22) it is apparent that after a large

number of iterations λ will be well approximated by ε(t+1)/ε(t),

or equivalently, by ˆ /λ θ θ θ θt t t t t( ) +( ) ( ) ( ) −( )= −( ) −( )1 1 ,

because

λ̂ θ θ
θ θ

ε ε
ε ε

λε ε
ε λ ε

λt
t t

t t

t t

t t

t t

t t
( )

+( ) ( )

( ) −( )

+( ) ( )

( ) −( )

( ) ( )

( ) − ( )= −
−

= −
−

≈ −
−

=
1

1

1

1 1
.
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This estimate of λ  may be used to obtain a large-sample

standard error for θ̂ , because (3.19) and (3.21) imply that the

asymptotic variance of θ̂  is

I Ic0
1 1 1− −( ) = ( ) −( )ˆ ˆ /θ θ λ .

For exponential families, Ic
− ( )1 θ̂  is the complete-data

asymptotic variance calculated from the expected sufficient
statistics obtained at the last E-step. In other words, a standard

error for θ̂  can be obtained simply by inflating the complete-
data standard error by 1 − λ , where λ  is estimated from the

steps of EM.
In most real-data applications, of course, θ  is

multidimensional, and obtaining a covariance matrix for θ̂  is
less straightforward. A general numerical procedure for
approximating given by Meng and Rubin (1991a), is called
Supplemented EM or SEM. From (3.19) and (3.21) it can be
shown that

I I I I D Dc c0
1 1 1 1− − − −( ) = ( ) + ( ) −( )ˆ ˆ ˆ .θ θ θ (3.25)

Meng and Rubin show how the elements of D M= ′( )θ̂  can be

estimated by repeated runs of a forced EM  in which all but
one of the individual elements of θ are fixed at their MLEs.

The procedure corresponds to numerical differentiation with
step sizes determined by EM. For a k dimensional parameter
one needs to perform k runs of forced EM, one to estimate
each row of D. Using (3.25), the numerical estimate of D is
then combined with the complete-data asymptotic covariance

matrix Ic
− ( )1 θ̂  to produce I0

1− ( )θ̂ . Implementation of SEM

thus requires only the code for computing an asymptotic
covariance matrix from complete data and the code for the EM
algorithm itself.

An asymptotic covariance matrix for θ̂  is typically used in
conjunction with the large-sample normal approximation
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ˆ ~ , ˆ ,θ θ θ−( ) ( )( )−N I0 0
1 (3.26)

which can be justified from either a frequentist or a Bayesian
perspective (e.g. Cox and Hinkley, 1974). This approximation
is expected to work well when the sample size is sufficiently
large that l(θ|Yobs) resembles a quadratic function in the

vicinity of d. In practice the validity of (3.26) often depends
on the scale of the parameter, and transformations may need to
be applied to one or more components of θ to make the

approximation more accurate. Transformations to improve
normality will alter the form of the complete-data covariance

matrix Ic
− ( )1 θ̂ . When l(θ|Yobs)  has unusual features such as

multiple modes, ridges or suprema on a boundary, then the
value of an asymptotic covariance matrix is dubious at best,
and (3.26) should not be used for making inferential
statements about θ.

For many of the multivariate models and data examples in
this book, the potentially large number of parameters makes
the implementation of SEM computationally prohibitive. In
some cases the validity of the normal approximation (3.26)
will be suspect as well, even on a carefully chosen scale for θ.

For this reason, we will adopt simulation rather than
asymptotic approximation as the primary method of inference.
In multiparameter problems, simulation is often feasible even
when the dimension of θ is very large. Moreover, simulation-

based inferences can be made about any transformation or
function of θ with no special analytic work involved.

Elementwise rates of convergence

Apart from obtaining asymptotic standard errors, it may still
be useful to examine rates of convergence corresponding to
the individual elements of θ = (θ1,θ2, , θk). These rates may

be estimated from the iterations of EM by
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λ̂
θ θ

θ θ
j
t j

t
j
t

j
t

j
t

( )
+( ) ( )

( ) −( )=
−

−

1

1
(3.27)

for j-1,2,...,k  at suitably large values of t. Unlike the
eigenvalues of D, which are the fractions of missing
information corresponding to the eigenvectors, these
elementwise rates pertain to u1,u2,...,uk, where uj is a unit
vector with a one in position j and zeroes elsewhere. As noted
by Meng and Rubin (1991a), in most cases (3.27) will
estimate the largest eigenvalue of D, because uj will have a
nonzero component corresponding to the first eigenvector. If
uj happens to be precisely orthogonal to the first s
eigenvectors, then (3.27) will converge to the (s+1) st largest
eigenvalue of D . Consequently, the elementwise rates of
convergence typically provide the first and perhaps a few
additional eigenvalues of D, which can be a useful diagnostic
for assessing how much information about θ is contained in

P(Ymis|Yobs,θ) relative to Yobs.

For the EM example in Table 3.1, estimates λ̂1
t( ) and λ̂2

t( ) of

the elementwise rates of convergence corresponding to the
mean µ and the variance ψ, respectively, are displayed in

Table 3.2. As previously shown, the eigenvalues of D are both
equal to n 0/n=3/13=0.2308, and the elementwise rates
converge to this number quite rapidly. Very close to the mode,
successive values of θ are nearly identical and computation of

(3.27) becomes numerically unstable. It is generally wise to
compute (3.27) using double precision arithmetic and to
estimate the rates from the last few iterations before numerical
instability becomes evident. Note that in a multiparameter
problem these elementwise rates alone are not sufficient
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Table 3.5. Iterations of EM for incomplete univariate normal
data with estimated elementwise rates of convergence

to obtain standard errors for the individual elements of θ̂ . As

seen from (3.25), the variance of a single element of θ̂
generally depends on the entire D matrix, whereas the
elementwise rates provide at most only a few eigenvalues of
D.

In some problems one or more components of θ may have

no missing information at all. In the bivariate normal data
depicted in Figure 2.2, for example, there are no missing
observations of Y1 and hence µ1 and σ11 all have no missing

information. An EM algorithm for these data would converge
to the ML estimates for µ1 and σ11 all in a single step from any

starting value. When one or more components of θ converge

immediately, the elementwise rates of convergence from the
remaining components still estimate the largest fractions of
missing information.
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Accelerating convergence

The linear behavior of EM near the mode suggests some
potentially useful methods for accelerating convergence.
Rearranging (3.16), we can obtain an estimate of 0 in terms of
two successive iterates θ(t) and θ(t+1),

˜ ,θ θ θ θt t t tI D+( ) ( ) − −( ) ( )= + −( ) −( )1 1 1 (3.28)

which is typically closer to the mode than θ(t+1). This

technique, commonly known as Aitken acceleration, can make
a linearly convergent algorithm like EM almost superlinear.
When the individual components of θ appear to be converging

at the same elementwise rate, (3.24) suggests that

θ̃ θ λ θ θt t t t+( ) ( ) − −( ) ( )= + −( ) −( )1
1

1 11 (3.29)

may also work well, where λ1 is the largest eigenvalue of D.

These acceleration techniques require an estimate of D or at
least its largest eigenvalue, which can be obtained by analytic
methods or from the iterations of EM. The use of Aitken-type
acceleration methods for EM have been investigated by Louis
(1982); Laird, Lange and Stram (1987); and Lansky and
Casella (1990). Another technique, proposed by Belin and
Diffendal (1991), is to estimate the jth component of θ by

˜ ˆθ θ λ θ θj
t

j
t

j j
t

j
t+( ) ( ) − −( ) ( )= + −( ) −( )1 1 11 (3.30)

for j = 1,2,...,k, where λ̂ j  is the estimated elementwise rate of

convergence for θj given by (3.27). This third method, which

may be regarded as intermediate between (3.28) and (3.29), is
easier to compute than (3.28) and more appropriate than (3.29)
in situations where the elements of θ appear to be converging

at different rates.
Care should be taken in the use of these accelerated

versions of EM, as they are not guaranteed to increase the
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loglikelihood at each step. Acceleration should not be
employed until θ(t) is close enough to the mode for (a) the

steps of EM to be approximately linear, and (b) the estimated
fractions of missing information to be stable. As previously
mentioned, slow convergence of EM in an incomplete-data
problem should be taken as a warning that certain aspects of θ
are being estimated primarily from P(Ymis|Yobs,θ) rather than

Yobs. In such problems it is sometimes more reasonable to bail
out  of the current analysis and fit a simpler model, rather than
to continue iterating with a model whose parameters are
poorly estimated.

Convergence and prior information

When EM is being used to find a posterior mode rather than
an ML estimate, the missing information principle described
in Section 3.3.2 applies but in a slightly modified form. The
decomposition of (3.19) becomes

I I I Ic o mθ θ θ θπ( ) = ( ) + ( ) + ( ),

where Ic(θ), Io(θ) and Im(θ)  are defined as above, and the

additional term Iπ(θ)  is the information contained in the prior

distribution,

Iπ θ ∂
∂θ

π θ( ) = − ( )
2

2 .

This term will be small when π is relatively flat and large

when π is sharply peaked. The basic relationship (3.21)

between these information quantities and the rate matrix

D M= ′( )θ̂  still applies,

D I Ic m= ( ) ( )−1 ˆ ˆ ,θ θ
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but the complete information matrix Ic θ̂( )  now includes prior

information. The introduction of a prior may thus be expected
to reduce the magnitude of D and accelerate the convergence
of EM in most cases. In particular, this will be true when the
prior introduces substantial information about those aspects of
θ that are most poorly estimated, those that influence the

largest eigenvalue of D.

Convergence properties of ECM

The ECM algorithm introduced in Section 3.2.5 shares many
of the convergence properties of EM. Like EM, it increases
the loglikelihood at each step and converges reliably to a local
maximum or (rarely) a saddlepoint of the loglikelihood. Like
EM, it also exhibits linear convergence in the vicinity of the
mode. ECM can be thought of as a combination of two
linearly convergent algorithms: an EM algorithm, which
pertains to the incomplete-data aspects of the problem, and a
CM or conditional maximization algorithm, which pertains to
the maximization of the likelihood in the complete-data case.
As pointed out by Meng and Rubin (1992a), there seems to be
little advantage to replacing the linearly convergent CM step
with one or more steps of a superlinear technique such as
Newton-Raphson, because the overall convergence of the
combined algorithm will still be linear. Moreover, unless the
superlinear algorithm is run to full convergence at each M-
step, the loglikelihood would not be guaranteed to increase at
each iteration.

With ECM, the global and elementwise rates of
convergence cannot immediately be interpreted as fractions of
missing information, because the simple identity

D I Ic m= ( ) ( )−1 ˆ ˆθ θ  does not generally hold. Basic results on

ECM s rate of convergence, including relationships between
the D matrix and information quantities, have been established
by Meng (1994). Some of these results are counterintuitive;
for instance, examples can be constructed where ECM
converges more quickly than EM. A numerical method for
obtaining large-sample covariance matrices from ECM, called
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Supplemented ECM or SECM, is described by Meng and
Rubin (1992a).

3.4 Markov chain Monte Carlo

Markov chain Monte Carlo is a collection of techniques for
creating pseudorandom draws from probability distributions.
In recent years it has been a subject of intense interest among
statisticians, spawning a wide range of applications as well as
a great deal of innovative theoretical work. In a broad sense,
the goal of Markov chain Monte Carlo is to generate one or
more values of a random variable Z , which is typically
multidimensional. Let P(Z)=f(Z) denote the density of Z,
which we call the target distribution. Rather than attempting to
draw from f  directly, we generate a sequence {Z(1),
Z(2),...,Z(t),...} where each variate in the sequence depends in
some fashion on the preceding ones, and where the stationary
distribution (i.e. the limiting marginal distribution of Z(t) as
t → ∞ ) is the target f. For a t sufficiently large, Z(t) is
approximately a random draw from f. Markov chain Monte
Carlo is attractive when f is difficult to draw from directly, but
drawing each variate in the sequence is straightforward.

Markov chain Monte Carlo methods have often been
classified under Bayesian computation  or Bayesian
posterior simulation  because many of the best known current
applications have a strong Bayesian flavor; when viewed
strictly as simulation methods, however, there is nothing
inherently Bayesian about them. Also, despite the popularity
of the term Markov chain Monte Carlo, depending on how the
methods are viewed some of them are not strictly Markovian.
In this new and rapidly evolving field, the lack of well defined
and broadly accepted terminology has sometimes been a
source of confusion. The reader should understand that names
given to the methods below, and the definitions of these
methods, are not universally accepted and may differ
somewhat from what other authors have written.

This list of Markov chain Monte Carlo methods is not
meant to be exhaustive, but concentrates on some that have
proven most useful in the analysis of incomplete multivariate
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data. Presentations in a more general setting and additional
references are given by Gelfand and Smith (1990); the articles
by Gelman and Rubin (1992a), Geyer (1992) and Smith and
Roberts (1993) with accompanying discussions; and Tierney
(1994). Applications of Markov chain Monte Carlo are
discussed by Gelfand et al. (1990); Casella and George
(1992); Smith and Roberts (1993); and Gilks et al. (1993),
among others. A comprehensive overview including theory
and applications appears in the books by Tanner (1993) and
Gilks, Richardson, and Spiegelhalter (1996).

3.4.1 Gibbs sampling

Gibbs sampling is the most popular and well known form of
Markov chain Monte Carlo. Suppose that a random vector Z is
partitioned into J subvectors,

Z Z Z Zt t t
J
t( ) ( ) ( ) ( )= ( )1 2, , ..., ,

Let P(Z) denote the joint distribution of Z, which is also the
target distribution to be simulated. In Gibbs sampling, we
iteratively draw from the conditional distribution of each
subvector given all the others. Given the value of Z at step t,
say

Z Z Z Zt t t
J
t( ) , , ..., ,= ( ) ( ) ( )

1 2

the value of Z at step t+1,

Z Z Z Zt t t
J
t+( ) +( ) +( ) +( )= ( )1

1
1

2
1 1, , ..., ,

is obtained by successively drawing from the distributions

©1997 CRC Press LLC



 

Z P Z Z Z Z
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t t t
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1
1

1 2 3
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1

2 1
1
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1
1

1
2

1
1
1

+( ) ( ) ( ) ( )

+( ) +( ) ( ) ( )

+( ) +( ) +( )
−
+( )

( )
( )
( )

~ | , , ...,

~ | , , ...,

~ | , , ...,

M
(3.31)

in a slight abuse of notation. In other words, we draw from the
conditional distributions of Z1, Z2, up to ZJ, conditioning each
time on the most recently drawn values of all other subvectors.

After the full set of subvectors has been drawn, we repeat
the whole process to obtain Z(t+2), Z(t+3) and so on. The
sequence {Z(t):t=0,1,2,...} forms a Markov chain which, under
mild regularity conditions, has a stationary distribution equal

to P(Z); that is, Z Zt( ) →  in distribution as t → ∞ .
The name Gibbs is not at all descriptive of this method, but

actually refers to a class of probability distributions on lattice
systems that have been used in problems of spatial analysis
and statistical image reconstruction (Besag, 1974). The first
use of Gibbs sampling in this context was made by Geman and
Geman (1984), who provided a proof of convergence for a
discrete Z with finite state space. The method was
independently derived for J=2 by Li (1988), who presented an
argument for convergence in the continuous case. Other
convergence proofs under various conditions are given by
Schervish and Carlin (1992); Liu, Wong, and Kong (1994,
1995); and Tierney (1994).

The regularity conditions necessary to establish
convergence of the Gibbs sampler in a general setting are
somewhat technical, but they do tend to be satisfied in most
problems of practical interest. Informally, one can say that
sufficient conditions Are (a) that the target distribution P(Z)
must be a genuine probability distribution, and the sequence
(3.31) must be the actual conditional distributions
corresponding to this target; and (b) that the sample space of Z
must be connected  in the sense that it must be possible to

P Z Z Z ZJ
t t

J
t| , , ...,1

1
2

1
1
1+( ) +( )

−
+( )( )
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reach any point in the sample space from any other point by
repeated sampling from the conditionals in the manner of
(3.31); periodicity and absorbing states are not allowed. For
more discussion, see Roberts (1996) and Tierney (1996). For
some examples of nonconvergence, see Casella and George
(1992); Arnold (1993); and Section 3.5.2 below.

As pointed out by Liu, Wong and Kong (1995), the
conditional distributions (3.31) in the Gibbs sampler need not
be drawn from in any particular order in each iteration, nor do
they need to be drawn from equally often. As long as each
conditional distribution is visited infinitely often, the
stationary distribution will be P(Z). As a practical matter, of
course, different visitation schemes will have different
properties when only a finite number of iterations are
performed. The distributions (3.31) are sometimes called the
full conditionals  because each one is the distribution of a

subvector given all the other subvectors. Other sets of
conditional distributions may also be grouped together to form
sampling schemes that will converge to P(Z), as described by
Gelfand and Smith (1990).

3.4.2 Data augmentation

Closely related to Gibbs sampling is the data augmentation
algorithm of Tanner and Wong (1987). Suppose that a random
vector z is partitioned into two subvectors, z = (u, v), where the
joint distribution P(z) is not easily simulated but the
conditional distributions P(u|v)=g(u|v) and P(v|u)=h(v|u) are.
At iteration t, let

Z z z z

u v u v u v

t t t
m
t

t t t t
m
t

m
t

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

= ( )
= ( ) ( ) ( )





1 2

1 1 2 2

, , ...,

, , , , ..., ,

be a sample of size m from a distribution that approximates the
target distribution P(z). This sample is updated in two steps.
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U u u ut t t
m
t+( ) +( ) +( ) +( )= ( )1

1
1

2
1 1, , ...,

is created by drawing

u g u vi
t

i
t+( ) ( )( )1 ~ |

independently for i = 1, 2,...,m. Next,

V v v vt t t
m
t+( ) +( ) +( ) +( )= ( )1

1
1

2
1 1, , ...,

is drawn as an iid sample from the equally weighted mixture

of the conditionals h v ui
t| +( )( )1 ,

w
h v U

m
h v ui

t

i

m

i
t| | ,+( )

=

+( )( ) = ( )∑1

1

11
(3.32)

which completes the new sample

Z u v u vt t t
m
t

m
t+( ) +( ) +( ) +( ) +( )= ( ) ( )





1
1

1
1

1 1 1, , ..., ,

Using functional analysis, Tanner and Wong (1987) show that
the distribution of Z(t) converges to P(z) as  t → ∞ . This
result does not require a large value of m; in particular, with m
= 1 data augmentation reduces to a special case of the Gibbs
sampler (3.31) with the random quantities z = (u, v) partitioned
into two subvectors, u and v. More generally, if we modify the
second step of each iteration by sampling

v h v ui
t

i
t+( ) +( )( )1 1~ |

independently for i = 1, 2,...,m rather than drawing them from
the mixture (3.32), then the algorithm becomes m independent,
parallel runs of a Gibbs sampler. The mixing of the
conditionals h(v|u) at each iteration may not provide much
practical benefit in speeding the convergence of the Z(t) but
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when m is large (3.32) provides a good analytic approximation
to the marginal density P (v)=eP(  u,v) d u  i f  s u c h  a n
approximation is desired.

Application to missing-data problems

The name data augmentation arose from applications of this
algorithm to Bayesian inference with missing data. In many
incomplete-data problems, the observed-data posterior
P(θ|Yobs) is intractable and cannot easily be summarized or

simulated; when Yobs is augmented  by an assumed value of
the Y mis, however, the resulting complete-data posterior
P(θ|Yobs,Ymis) becomes much easier to handle. Consider the

following iterative sampling scheme: given a current guess θ(t)

of the parameter, first draw a value of the missing data from
the conditional predictive distribution of Ymis,

Y P Y Ymis
t

mis obs
t+( ) ( )( )1 ~ | , .θ (3.33)

Then, conditioning on Ymis
t+( )1 , draw a new value of θ from its

complete-data posterior,

θ θt
obs mis

tP Y Y+( ) +( )( )1 1~ | , . (3.34)

Repeating (3.33)-(3.34) from a starting value θ(0) yields a

stochastic sequence θ t
mis

tY t( ) ( )( ) ={ }, : , , ...1 2  whose stationary

distribution is P(θ|Ymis|Yobs), and the subsequences {θ(t) : t  =

1,2,...} and  Y tmis
t( ) ={ }: , , ...1 2  have P(θ|Yobs) and P(Ymis|Yobs)

as their misrespective stationary distributions. Following the
terminology of Tanner and Wong (1987), we will refer to
(3.33) as the Imputation or I-step and (3.34) as the Posterior or
P-step, because (3-33) corresponds to imputing a value of the
missing data Ymis and (3.34) corresponds to drawing a value of
θ from a complete-data posterior. For a value of t that is
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suitably large, we can regard θ(t) as an approximate draw from

P(θ|Yobs); alternatively, we can regard Ymis
t( )  as an approximate

draw from P(Ymis|Yobs).
Many particular examples of the algorithm (3.33)-(3-34)

will appear throughout the remainder of this book. The first
use of this algorithm seems to have been made by Li (1988)
who presented an argument for convergence and used it to
create imputations of Ymis. in incomplete-data problems. The
algorithm can be regarded either as a special case of data
augmentation with m=1 or as a special case of Gibbs sampling
with (Ymis,θ) partitioned into Ymis and θ. Because the former

name is more descriptive for incomplete-data problems, we
will refer to it as data augmentation rather than Gibbs
sampling. For the most part, however, we will use only the
special case of data augmentation with m=1. On occasion we
will perform m > 1 parallel runs of data augmentation, but we
will keep the runs independent; that is, we will not employ
mixing (3.32) at each iteration.

Data augmentation bears a strong resemblance to the EM
algorithm. The E-step of EM calculates the expected
complete-data sufficient statistics, whereas the I-step of data
augmentation simulates a random draw of the complete-data
sufficient statistics. The implementation of an I-step is
typically very similar to that of an E-step, usually requiring
only minor modifications of the computer code. The M-step of
EM is a maximization of a complete-data likelihood, while the
P-step of data augmentation is a random draw from a
complete-data posterior. The computational requirements of
EM and data augmentation are therefore quite similar, as both
involve repeated application of complete-data methods to
solve an incomplete-data problem.

3.4.3 Examples of data augmentation

Example 1: Incomplete univariate normal data. Suppose that
Y=(y1, y2,...,yn) is an iid sample from a normal distribution
with mean µ and variance ψ which, for the moment, is
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assumed to be known. If we apply a normal prior distribution
to µ with mean µ0 and variance τ, it follows that the posterior

distribution of µ given Y is also normal with mean

E Y
n

n
y

n
µ ψ

ψ τ
τ

ψ τ
µ|( ) =

+







+

+







−

− −

−

− −

1

1 1

1

1 1 0 (3.35)

and variance V(µ|Y) = (nψ-1+τ--1)-1, where y  is the sample

mean of y1,y2,...,yn. Letting τ →  ∞ , the posterior becomes

normal with mean y  and variance n-1ψ, which may also be

obtained by applying Bayes' s formula with the improper
diffuse prior π(µ) ∝  c where c is a constant (e.g. Box and

Tiao, 1992).
Now suppose that only the first n1 elements of Y are

observed and the remaining n0=n-n1 are missing. Under
ignorability and the diffuse prior π(µ) ∝  c the observed-data

posterior P(µ|Yo b s ) becomes normal with mean

y n yobs i
n

i= −
=∑1

1
1

1  and variance n1
1− ψ . In this trivial

example, values of µ from P(µ|Yobs) can be simulated directly

using standard routines for generating normal random variates.
We can also simulate them iteratively, however, using the data
augmentation routine of (3.33)-(3.34). Given a current

parameter value µ(t), the I-step simulates Ymis
t+( )1  by drawing

y Y Ni
t t

obs
t+( ) ( ) ( )( )1 | , ~ ,µ µ ψ (3.36)

independently for i = n1+1,...,n. The P-step then proceeds to draw

µ(t+1) from the complete-data posterior P Y Yobs mis
tµ | , +( )( )1 ,

anormal distribution with mean

y n y yt
i
n

i i n
n

i
t+( ) −

= = +
+( )∑ ∑+[ ]1 1

1 1
11

1
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and variance n-1ψ.

In this simple example of data augmentation, one may
analytically verify that the distribution of µ(t) approaches the

correct observed-data posterior N y nobs , 1
1−( )ψ  as t → ∞. This

is possible because of the following well known property of
the normal distribution: If U|V ~ N(V,a) and V ~ N(b,c) then U
~ N ( b,a+c ). Applying this property, the conditional
distribution of µ(t) given Yobs and the previous iterate µ(t-1) is

easily seen to be

µ µ λ µ ψ λt t
obs

t
obsN y y n( ) −( ) −( ) −+ −( ) −( )



| ~ , ,1 1

1
1 21

where λ = n0/n and conditioning on Yobs has been suppressed

in the notation. Similarly, the conditional distribution of µ(t)

given Yobs and µ(t-2) is also normal, with mean

E E E

E y y

y y

t t t t t

obs
t

obs
t

obs
t

obs

µ µ µ µ µ

λ µ µ

λ µ

( ) −( ) ( ) − −

−( ) −

−( )







= 











= + −











= + −
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1

ψψ λi −( )4 .

Repeating this argument t  times gives the marginal
distribution of µ(t) in terms of the starting value µ(0),

µ µ λ µ ψ λ
t

obs
t

obs
tN y y n( ) ( ) ( ) −+ −





−











| , ,
0 0

1
1 21 (3.37)

which approaches N y nobs , 1
1−



ψ  as t → ∞ for any fixed µ(0)

as long as λ < 1. If the starting value µ (0) is not fixed but

drawn from a probability distribution, then we can also
investigate the unconditional distribution of µ(t). In particular,

if µ(0) is drawn from the correct posterior N y nobs , 1
1−



ψ  then

(3.37) implies that µ(t) will be normal with mean

E E E

E y y

y

t t

obs
t

obs

obs

µ µ µ

λ µ

( ) ( ) ( )

( )







= 











= + −











=

|
0

0
(3.38)

and variance
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
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and stationarity is achieved immediately.
We can also perform data augmentation in this example

when the variance ψ is unknown. Under the diffuse prior

π(µ,ψ) ∝  ψ-1 the complete-data posterior is

µ ψ ψ

ψ χ

| , ~ ,

| ~

Y N y n

Y n S n

−

−
−







−( )

1

2
1

21     
(3.40)

where S2 is the sample variance of y1, y2,...,yn, and the
observed-data posterior is

µ ψ ψ

ψ χ

| , ~ ,

| ~

Y N y n

Y n S

obs obs

obs obs n

−

−
−







−( )

1

1
2

1
21
1

     
(3.41)

where Sobs
2  is the sample variance of y1, y2,...,yn1. The I-step

of data augmentation simulates Ymis
t+( )1

 by drawing

y Y Ni
t t t

obs
t t+( ) ( ) ( ) ( ) ( )





1
| , , ~ ,µ ψ µ ψ

independently for i = n1+1,...,n, and the P-step simulates µ(t+1)

and ψ(t+1) from (3.40) with Ymis
t( )+1  substituted for Ymis.

In this two-parameter problem, writing down the marginal
distribution of θ(t) = (µ (t),ψ(t)) at any step t is no longer a

simple matter. We can, however, demonstrate empirically that
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the marginal distribution of θ(t) approaches the observed-data

posterior (3.41) in numerical examples. The algorithm was
applied to the univariate sample of size n1 = 10 in Table 3.1
(a), arbitrarily taking n0 = 3 and starting values ψ(0) = 70.

Simulated marginal densities of µ(t) and ψ(t) for t = 1,2,3 are

displayed in Figure 3.2. Based on the marginals, it appears that
convergence to the observed-data posterior is quite rapid. The
densities in Figure 3.2 were simulated by m = 500 parallel
chains of data augmentation, each starting from µ(t)  and ψ(t).

The chains were run independently; no mixing as in (3.32)
was used. For plotting purposes, however, the marginal
densities were estimated by the Rao-Blackwell method, averaging

Figure 3.2. Simulated marginal densities of µ(t)
 and ψ(t)

 for t=1,2,3,

with dotted lines showing the exact observed-data posteriors.
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formulas for the complete-data marginal posteriors over the
500 iterates of Ymis. This and other techniques for extracting
meaningful summaries from Markov chain Monte Carlo runs
will be discussed in Chapter 4.

Example 2: Incomplete binary data. Let Y =(y1,y2,...,yn)
represent the outcomes of n independent Bernoulli trials where
yi = 1 with probability θ and yi = 0 with probability 1 - θ for i

= 1, 2,..., n. The beta prior distribution

π( ) ∝ −( )− −
θ θ θα β1 1

1

for α  > 0, β > 0, denoted by θ ~ Beta (α, β), leads to the

complete-data posterior

θ α β| ~ , .Y Beta y n yi
n

i i
n

i+ + −



= =∑∑ 1 1

For simplicity let us use the limiting form of this prior as α →
0 and β → 0, so that the posterior becomes θ|Y ~ Beta (a,b)

where a yi
n

i= =∑ 1  and b = n−a; this posterior is proper as

long as Y contains at least one success and one failure. Now
suppose that the first n1 elements of Y are observed and the
remaining n0 = n−n1 elements are missing. The observed-data

posterior becomes θ|Yobs ~ Beta (a1, b1) where a yi
n

i1 1
1= =∑

and b1 = n1 − a1, which is proper provided that 1 ≤ a1 ≤ n1 − 1.

Applying data augmentation to this example, the I-step fills

in the missing trial outcomes by letting yi
t+( )1

=1 with

probability θ(t) and 0 otherwise for i = n1+1,...,n. The P-step

then samples

θ
t

obs mis
t t t

Y Y Beta a b
+( ) +( ) +( ) +( )





1 1 1 1
| , ~ , ,
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where

a a a a y

b b b b n a

t t

i n
n

i
t

t t t

+( ) +( )
=

+( )

+( ) +( ) +( )
= + = + +

= + = + −

∑1
1 0

1
1

1

1
1 0

1
1 0 0

1

1

1

.
If data augmentation works properly, then the marginal
distribution of θ(t) as t →  ∞ should approach Beta (a1, b1)

which has mean a1/n1. Also, for large t, the distribution of any
imputed trial should be Bernoulli with marginal probability of
success

E y E a ni
t t( ) / ,+ ( )



 = 





=1
1 1θ

where conditioning on Yo b s  is assumed and has been
suppressed in the notation. We can algebraically verify that

E yi
t( )





 does in fact approach a1/n1 as t → ∞, because

E y Y E Y

a a n

a n a n a n

i
t

mis
t t

mis
t

t

t

+( ) ( ) ( ) ( )

( )

( )







=






= +






= − −






1

1 0

1 1 0 0 1 1

| |

/

/ / /

θ

λ

where λ = n0/n. Similarly,

E y Y a n a n a ni
t

mis
t+( ) ( ) ( )( ) = − −( )1 1

1 1 0
1

0 1 1| / / /λ

which implies that

E y a n a ni
t t+( ) ( ) ( )





= − −





1 0
1 1

0
1 1| / / .θ λ µ
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Clearly, (3.42) approaches a1/n1 from any starting value µ(o) as

long as λ < 1. If µ(o) happens to be equal to a1/n1, or is drawn

from a probability distribution with mean a1/n1, then
convergence is immediate. This example was first used by Li
(1988).

3.4.4 The Metropolis-Hastings algorithm

An older method of Markov chain Monte Carlo is the
algorithm of Metropolis et al. (1953) and its generalization by
Hastings (1970). The Metropolis-Hastings algorithm will not
be needed in the remainder of this book; we briefly mention it,
however, because of its usefulness in extending the basic
algorithms of Chapters 5-9 to more complicated modeling
situations.

In the Hastings version, a Markov chain {Z(t):t=0,1,2,...}
with stationary distribution P(Z)=f(Z) is constructed as
follows. Given Z(t), a candidate value Z̃  is drawn from a
transition distribution g(Z|Z(t)). Then the ratio

R
g Z Z

g Z Z

f Z

f Z

t
t

t t
( )

˜

|

˜
.+

( )

( ) ( )=
( )

( )
( )

( )
1

is calculated. It R(t+1) is greater-than 1, we accept the value of
the candidate variable and set Z (t+1)= Z̃ . If R(t+1) < 1, we
randomly accept the value of Z̃  as our next iterate Z(t+1) with
probability R(t+1), and otherwise keep the current value,
Z(t+1)=Z(t). If the transition distribution g allows the process to
eventually reach any state in the support of Z, then Z(t) → Z in

distribution as t → ∞.

Metropolis-Hastings is useful when a transition distribution
g can be found that (a) is easy to simulate, and (b) leads to
acceptance ratios (3.43) that are easy to calculate. Because the
target density f enters into the algorithm only through the
acceptance ratio, we need only to be able to evaluate f up to a
constant of proportionality. This makes Metropolis-Hastings
attractive for simulation of Bayesian posterior distributions,
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for which the densities are typically known only up to a
normalizing constant.

From a standpoint of efficiency, it is advantageous for the
acceptance ratios to be close to one over the region where f(Z)
is appreciable, which occurs when g(Z|Z(t)) is a good
approximation to f(Z). When g (Z|Z(t))=f(Z), then the
acceptance ratio is always one and convergence is immediate.
In practical applications, it is wise to choose a g that is
somewhat more diffuse (i.e. having heavier tails) than f;
otherwise, there may be little opportunity for a candidate value
Z̃  to fall in some regions of the sample space where f(Z) is
appreciable, and convergence to the target distribution may be
too slow for practical use. If g is too diffuse, however, than
many of the candidate values will fall outside the range where
f(Z) is appreciable, in which case the rejection rate will be
very high and convergence will again be slow.

3.4.5 Generalizations and hybrid algorithms

As noted by several authors (Gelman, 1992; Smith and
Roberts, 1993; Middleton, 1993; Tierney, 1994), both the
Gibbs sampler and the Metropolis-Hastings algorithm may be
generalized in a variety of ways. Consider the Gibbs sampler
for a random vector Z=(Z1,Z2,...,ZJ). In one iteration of
ordinary Gibbs, we sample from the full conditionals

Z P Z Z Z Zj
t

j
t

j
t

J
t+( ) +( )

−
+( ) ( )( )1

1
1

1
1~ | , ..., , ..., (3.44)

for j=1,2,...,J. In practice, however, it is not necessary to

generate Z j
t+( )1  directly from (3.44), but only from the

transition distribution of a Markov chain that has (3.44) as its
stationary distribution. In other words, if a Markov chain
Monte Carlo scheme can be found that would eventually
converge to the local distribution (3.44), we need only to
perform one or more cycles of this local algorithm instead of
(3.44), and the stationary distribution of the Gibbs sampler
will be preserved. In specific examples, it sometimes happens
that one (or more) of the full conditional distributions is
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difficult to simulate directly, but another Gibbs sampler or
Metropolis-Hastings algorithm can be found that converges to
the desired conditional. By replacing the difficult conditional
with one or more iterations of this sampling scheme, we obtain
a hybrid algorithm that still converges to the proper target.

Another potential use of these generalized algorithms is in
data augmentation with an inconvenient prior. Suppose that a
prior distribution π*(θ) exists that leads to a tractable

complete-data posterior P*(θ|Yobs,Ymis), but the prior that we

would like to use for inference is π(θ) which leads to a

posterior P(θ|Yobs,Ymis) that is intractable. In this situation, we

can replace the P-step under π(θ) with one or more steps of a

Metropolis-Hastings algorithm that draws a candidate value θ̃
from P*(θ|Yobs,Ymis). The acceptance ratio becomes

R
P Y Y

P Y Y

P Y Y

P Y Y

t
t

obs mis

obs mis

obs mis

t
obs mis

t t

+( )

( ) ( )

=
( )
( )

( )
( )

=
( ) ( )

( ) ( )

1
* | ,

* ˜ | ,

* ˜ | ,

* | ,

˜ / * ˜

/ *
,

( )

( )

θ

θ

θ

θ

π θ π θ

π θ π θ

(3.45)

which does not depend on Yobs, or Ymis. When Metropolis-
Hastings is used within data augmentation in this manner, the
result is a hybrid algorithm with stationary distribution equal
to the correct observed-data posterior under the desired prior.
Note that (3.45) requires the evaluation of π and π* only up to

a constant of proportionality, so the acceptance ratios are
typically easy to calculate.

3.5 Properties of Markov chain Monte Carlo

3.5.1 The meaning of convergence

Below we discuss some basic properties of Markov chain
Monte Carlo, with special emphasis on the data augmentation
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scheme of (3.33)-(3.34). Unlike optimization methods like
EM, which are deterministic and converge to a point in the
parameter space, Markov chain Monte Carlo algorithms are
stochastic and converge to probability distributions. Yet
certain important similarities exist between the convergence
behavior of EM and data augmentation.

Assuming the conditions needed for convergence are
satisfied, the output of data augmentation is a sequence

θ t
mis

tY t( ) ( )( ) ={ }, : , , , ...0 1 2  with stationary distribution P(θ,

Yobs,Ymis) For the sequence to have converged, it is sufficient
for the distribution of θ(t) to have converged to P (θ|Yobs),

because θ(t)~P(θ|Yobs) implies that θ t s
mis

t sY+( ) +( )( ),  ~ P(θ,

Yobs|Ymis) for all s > 0. Equivalently, it is sufficient for the

distribution of Ymis
t( )  to have converged to P(Ymis|Yobs). Also,

convergence by t iterations means that θ(s) and Ymis
s( )  are

independent of θ(s+t) and Ymis
s t+( ) . In applications it is typically

more convenient to monitor convergence through the behavior
of successive values of θ than successive values of Ymis

because the latter is usually of higher dimension. Except in
trivial examples like those in Section 3.4.3 for which data
augmentation is not needed, summaries of P(θ|Yobs) are not

available in closed form, making it difficult to know precisely
when convergence has occurred. Techniques for assessing
convergence are described in Chapter 4. For now we will
discuss only in broad terms some issues surrounding
convergence.

3.5.2 Examples of nonconvergence

Nonexistence of a stationary distribution

As mentioned above, convergence of a Gibbs sampler requires
that the full conditionals (3.31) are the conditionals of a
genuine joint probability distribution. It is possible to

©1997 CRC Press LLC



 

construct simple examples in which a set of proper conditional
distributions does not define a proper joint distribution
(Casella and George, 1992). For data augmentation, Bayes s
Theorem guarantees a proper limiting distribution as long as
the prior π(θ) is proper. In many real data applications of

Bayesian analysis, however, it is convenient to use so-called
noninformative priors that are actually improper but lead to
proper posteriors when Bayes s formula is applied. Even when
an improper π is known to yield a proper posterior in the case

of complete data, it may not necessarily do so when some data
are missing.

For a very simple example, let Y = (y1,y2) represent two
independent observations from N(µ,ψ) with µ and ψ both

unknown. Under the standard noninformative prior π(µ,ψ) ∝
ψ-1, the posterior distribution is given by (3.40) with

n y y y= = +( )2 21 2, /  and S y y y y2
1

2
2

2= −( ) + −( ) . Now

suppose that only y1=Yobs is observed and y2=Ymis is missing.
Applying Bayes ' s formula, the observed-data posterior
becomes

P Y L Y

y

obs obsµ ψ µ ψ π µ ψ

ψ
µ

ψ

, | , | ,

exp ,

( ) ∝ ( ) ( )

∝ −
−( )











−3 2 1

2

2

which is not a proper probability distribution because the
integral

ψ
µ

ψ
µ ψ π ψ ψ−

−∞

∞∞ ∞ −
−∫∫ ∫−

−( )










= ( )3 2

0
1

2

0

1 2
2

2
2exp

y
d d d

does not exist. Yet, one could naively apply data augmentation
to this example under the improper prior. The I-step would be

y Nt t t
2

1+( ) ( ) ( )( )~ , ,µ ψ (3.46)
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and the P-step would be

ψ χt t t
y y S+( ) +( ) +( ) −( )1
1 2

1 2 1
1

2| , ~ (3.47)

µ ψ ψt t t t ty y N y+( ) + +( ) +( ) +( )( )1 1
1 2

1 1 1 2| , ~ , / ,( )

where

y y y

S y y y y

t t

t t t t

( ) ( )

( ) ( ) ( ) ( )

= +( )
( ) = −( ) + −( )

1 2

2
1

2
2

2

2/

.

Notice that even though the joint posterior does not exist, both
the I-step and the P-step are defined at every iteration. One
could naively alternate between (3.46) and (3.47) indefinitely
without any clue that the algorithm is not converging.

The fundamental reason why data augmentation fails here is
that the mean and variance cannot be jointly estimated on the
basis of a single observation y1. The observed data provide no
information on one aspect of θ = (µ ,ψ), namely ψ, so that

unless a proper prior distribution is applied to ψ there is no

basis for inference. Although there is no compelling reason to
use data augmentation in this trivial example, it is not difficult
to construct more realistic multivariate problems where both
the I- and P-steps of data augmentation are defined but the
stationary distribution does not exist. These would be similar
to the examples of Section 3.3.1 where the ML estimate of θ is

not unique because the likelihood is maximized over a ridge.
Whenever the likelihood has a ridge, certain aspects of the
parameter are inestimable, and unless a proper prior is applied
to those aspects of θ the posterior will not be proper. Sparse

datasets with few observations or high rates of missingness
may be prone to these problems. If we suspect that data
augmentation may not be converging to a proper posterior, we

©1997 CRC Press LLC



 

can switch to a proper prior, thereby guaranteeing that the
posterior will be proper as well.

Boundary values and absorbing states

Another basic requirement for the convergence of a Markov
chain Monte Carlo algorithm is that the support of the target
distribution must be connected  in the sense that it must be
possible to eventually reach any state from any other state.
There must be no periodic states and no absorbing states, i.e.
regions where the algorithm could become trapped with zero
probability of escape. In the stochastic processes literature,
this property is known as ergodicity.

Consider again the normal sample Y = (y1,y2) where y1 is
observed and y2 is missing, but now let us suppose that the
population mean µ is known, and without loss of generality

take µ = 0. Suppose that we apply an improper prior

distribution to the variance, π(ψ) ∝  ψ-(v+2)/2 where v is a fixed

constant. Given Y = (y1,y2), the complete-data posterior is

P Y
y y

vψ ψ
ψ

ψ| exp /( ) ∝ −
+( )











− − +( )1 1

2
2
2

2 2

2

or ψ|Y ~ y y v1
2

2
2

2
2+( ) +

−χ , which is proper provided that v > −2.

Given only Yobs = y1, the observed-data posterior is

P Y
y

obs
vψ ψ

ψ
ψ| exp /( ) ∝ −












− − +( )1 2 1

2
2 2

2
(3.48)

or ψ|Yobs ~ y v1
2

1
2χ +

− , which is proper for any v >− 1 If data

augmentation were applied to this example, the I-step would
be

y y Nt t t
2

1
1 0( ) | , ~ , ,+ ( ) ( )( )ψ ψ

and the P-step would be
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ψ χt t t
vy y y y+( ) +( ) +( )

+
−+ ( )





1
1 2

1
1
2

2
1 2

2
2| ~ .

The algorithm would proceed normally except in the unlikely
event that y1 = 0 happened to become zero at some iteration. If

that were to occur, we would obtain y2
t( ) = 0 and ψ(t) for every

iteration thereafter. In other words, ψ  = 0 would be an

absorbing state.
Even if y1 happened to be zero, absorption would be

unlikely because unless we start on the boundary (ψ(0) = 0)

the event ψ(t)=0 occurs in theory with probability zero.

Depending on the computer and random variate generator
used, there could be a small chance of falling within machine
precision of the boundary, especially if the starting value ψ(0)

is very close to zero. The presence of an absorbing state is not
the only difficulty in this example, because the observed-data
posterior (3.48) is not proper for y1 = 0. In Chapter 8, however,
we will see that in some real categorical-data problems
absorption onto a boundary becomes a distinct possibility even
when the posterior is technically proper, and we will need to
handle such situations with care.

3.5.3 Rates of convergence

Assuming that a Markov chain Monte Carlo algorithm does
converge to a proper stationary distribution, it is important to
consider how quickly this convergence occurs. Convergence
rates are typically defined in terms of a distance measure
between the marginal distribution of the iterates at any given
time and the target distribution. Some interesting theoretical
results on convergence rates and further references are given
by Schervish and Carlin (1992); Smith and Roberts (1993);
Tierney (1994); and Liu, Wong and Kong (1995). This work,
although reassuring, does not easily translate into practical
guidelines for knowing when convergence has occurred in
specific examples. Ongoing research regarding convergence
behavior will undoubtedly lead to greater understanding in the

©1997 CRC Press LLC



 

future; for now, however, we can informally state a few
general principles that apply to incomplete-data problems.

Convergence and missing information

Consider simple data augmentation in which we alternately
perform an I-step

Y P Y Ymis
t

mis obs
t+( ) ( )( )1 ~ | ,θ

and a P-step

θ θt
obs mis

tP Y Y+( ) +( )( )1 1~ | , .

Intuitively, the rate of convergence should depend on how
much information about the parameter is contained in missing
data relative to the observed data and the prior. The complete-
data posterior may be written

P Y Y P Y P Y Yobs mis obs mis obsθ θ θ| , | | , .( ) ∝ ( ) ( ) (3.49)

In the extreme case where Ymis provides no information about
θ beyond that already contained in Yobs, Ymis and θ would be

conditionally independent given Yobs the last term in (3.49)
would then be constant with respect to θ, and convergence to

the target distribution would be immediate. More generally, if
P(Ymis|Yobs,θ) as a function of θ is relatively flat over the

region of high posterior density (which is typically equivalent
to the missing information, as defined in Section 3.3.2, being
near zero), then each P-step will be nearly a draw from
P(θ|Yobs) and the algorithm will converge rapidly. On the other

hand, if the missing information is a large portion of the total
information, then θ will depend heavily on Ymis at each P-step,

which will in turn depend on the value of θ used in the

previous I-step; successive iterates of θ will tend to be highly

correlated and convergence will be slow. Just as with EM, the
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rate of convergence of data augmentation and the fractions of
missing information are fundamentally related.

This relationship between missing information and rate of
convergence is difficult to formalize in a general way, but it
can be easily demonstrated in simple examples. Consider
again the univariate normal data Y = (y1, y2,...,yn) with known
variance ψ and unknown mean µ. In Example 1 of Section

3 .4 .3  we investigated data augmentation under the
noninformative prior π(µ) ∝  c (a constant), where the first n1

elements of Y are observed and the remaining n0 = n − n1 are

missing. We found that the stationary distribution of µ is

µ|Yobs ~ N y nobs , 1
1−( )ψ  and the marginal distribution of µ(t) is

µ µ λ µ ψ λt
obs obs

t
obs

tY N y y n( ) ( ) ( ) −+ −( ) −( )



| , ~ ,0 0

1
1 21  (3.50)

where λ = n0/n is the fraction of missing information. Clearly,

the algorithm will approach stationarity rapidly for λ near zero

and slowly for λ near one. This example can easily be

generalized to an informative prior µ ~ N(µ0,τ), in which case

we would obtain an expression like (3.50) but with the
following changes: yobs  and n1

1− ψ  would be replaced by the
new observed-data posterior mean and variance, respectively,
and λ  would be replaced by the new fraction of missing

information

λ ψ
ψ τ

* ,=
+

−

− −
n

n
0

1

1 1

where the prior information τ--1 now appears in the

denominator as a part of the total information.
When the mean and variance are both unknown, the joint

distribution of µ(t) and ψ(t) is intractable, but we can still

demonstrate empirically that the rate of convergence depends
on n0/n. Using the n1 = 10 observations in Table 3.1 (a) and
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the noninformative prior π(µ,ψ) ∝  ψ−1, we performed data

augmentation under various choices of n0. Independent sample
paths for (µ(t),ψ(t)) beginning from four different starting

positions are displayed in Figure 3.3, first for n0 = 10 and
again for n0=90, with ψ shown on a log scale. The starting

values were all chosen to be in the tails of the observed-data
posterior, so that the iterates would exhibit an initial trend as
they wander into the region of high posterior density. For n0 =
10 the sample paths become heavily intertwined by t = 8,
suggesting that for most practical purposes the algorithm has
probably converged by eight or ten iterations. For n0 = 90,
however, the sample paths have still not crossed one another
by t = 25; the algorithm takes smaller steps and the successive
iterates are-more highly correlated.

Starting values and starting distributions

In the univariate normal example with known mean, (3.50)
reveals that convergence behavior depends not only on the
fraction of missing information but also on the choice of a
starting value. If we happened to take µ(0) = yobs , then the

distribution of µ(t) would have the correct mean (i.e. the same

mean as the stationary distribution) for every t. Even though
the variance of µ(t) is always less than the stationary variance,

choosing a starting value near the center of the observed-data
posterior makes the first moment more nearly correct.
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Figure 3.3. Iterations of data augmentation form various
starting values for univariate normal data with n0=10 and
n0=90.

It is also evident from (3.50) that the variance of µ(t) does

not depend on the starting value µ(0) as long as µ(0) is fixed. If

we do not use a fixed µ(0)  but draw it from a probability

distribution, however, then we can alter the second moment of
µ(t)  as well as the first moment. Suppose that µ(0)  is drawn at

random from a probability distribution with variance κ. Then

(3.39) implies that the unconditional variance of µ(t) is

V nt t tµ ψ λ λ κ( ) −( ) = −( ) +1
1 2 21 ,
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which is equal to the stationary variance n1
1− ψ ; if κ ψ= −n1

1 ;

if κ ψ> −n1
1  then V ntµ ψ( ) −( ) > 1

1  as well. For inferential

purposes, it is often wise to draw starting values of parameters
at random from a probability distribution that is overdispersed
relative to (i.e. having variance at least as great as) the target
distribution, so that the variance after a finite number of
iterations is at least as large as the stationary variance and
resulting inferences are conservative (Gelman and Rubin,
1992a). It is also wise to use a starting distribution that is
centered at or near the mean of the target distribution, so that
the first moment at any iteration will be approximately correct.
In Chapter 4 we discuss how one might obtain starting
distributions in realistic problems where moments of the
stationary distribution are unknown. If a single, fixed starting
value is desired, then a point near the center of P(θ|Yobs), e.g.

an ML estimate or posterior mode obtained from EM, may be
a wise choice.

Difficulties with slow convergence

When Markov chain Monte Carlo converges very slowly in an
incomplete-data problem, it is typically for the same reason
that EM converges slowly: the fractions of missing
information for one or more components of θ are very high.

Previous comments about slow convergence of EM apply here
as well; it should be taken as a warning that inferences about
certain aspects of θ depend heavily on the missing-data model

P(Ymis|Yobs,θ). Slow convergence of Markov chain Monte

Carlo algorithms can be notoriously difficult to detect (e.g.
Gelman and Rubin, 1992b), but when EM is slow it is usually
painfully obvious. Consequently, it is good practice to apply
EM in addition to Markov chain Monte Carlo, even if merely
as a device for diagnosing slow convergence.

Slow convergence of Markov chain Monte Carlo may also
be the result of an observed-data posterior that is oddly
shaped. If the posterior is poorly connected, e.g. if it has
multiple modes that are widely separated by regions of low
density, then simulation routines may get stuck in certain
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regions of the parameter space. Using EM in conjunction with
simulation often helps to reveal unusual features of the
likelihood or posterior that may be less apparent if only one or
the other is applied.
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CHAPTER 4

Inference By Data Augmentation

4.1 Introduction

In a narrow sense, one may define the problem of inference in
relation to θ, the unknown parameter of a probability model.

The statistician may desire a point estimate for one or more
components or functions of θ, summarizing the uncertainty

with a confidence interval or confidence region. One may
want to test whether θ is equal to some null value or lies in

some subset of the natural parameter space, summarizing the
evidence with a p-value. With incomplete data, such quantities
can be obtained from the observed-data likelihood or
posterior, although in practice special computational
techniques may be needed.

In a broader sense, however, the problem of inference often
goes beyond making statements about a single parameter θ. A

data analyst will typically want to apply a variety of
exploratory and modeling techniques to a dataset, such as
graphical displays, linear regression, factor analysis and so on,
to investigate various interesting features of the data. When
the data are incomplete, the analyst’s task often becomes
considerably more difficult. Carrying out procedures that are
ordinarily straightforward, such as fitting a satisfactory
regression model, may not be straightforward when some data
are missing. Analysts need sensible routine methods for
analyzing incomplete data, while recognizing and assessing
the role of missing-data uncertainty at each step of the
analysis.
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This chapter addresses inference both in the narrow and
broad sense, attacking both through techniques of simulation.
Simulation may be used either to make simple inferences
about θ or to perform multipurpose data analyses. To

accomplish the former, we simulate random values of θ from

its observed-data posterior distribution. To accomplish the
latter, we generate plausible versions of the unknown Ymis.
These complementary techniques will be called, respectively,
parameter simulation and multiple imputation.

In parameter simulation, one creates random but not
necessarily independent draws of θ from P (θ/Yobs) The sample

moments of these draws provide estimates of the posterior
moments, and the empirical distribution, perhaps smoothed in
some fashion, provides estimates of the marginal distributions
of individual components or functions of θ. Depending on

which features of the posterior distribution are of interest, one
may need to generate a large sample to obtain accurate
inferences; hundreds or perhaps even thousands of draws of θ
may be necessary.

In multiple imputation (Rubin, 1987), one creates m
plausible sets of missing values by drawing repeatedly from
P(Ymis|Yobs) This results in m  simulated complete datasets
which are analyzed by complete-data methods. The results of
the m, complete-data analyses are then formally combined to
produce a single overall inference. Exploratory data analyses
(e.g. graphical displays) may also be performed on each of the
m, completed datasets, providing an informal but valuable
assessment of how interesting features of the data are affected
by missing-data uncertainty. When the fractions of missing
information are moderate, as is often the case, only a few
imputations (e.g. m = 3 or m  = 5) are usually adequate to
provide inferences that are nearly efficient and practically
valid.

Data augmentation and related Markov chain Monte Carlo
algorithms enable us to perform either parameter simulation,
multiple imputation or both; the same algorithm may be used
to draw θ from P (θ/Yobs) and to draw Ymis from P (Ymis|Yobs).

Parameter simulation and multiple imputation, to be described
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in Sections 4.2 and 4.3 respectively, can be viewed merely as
two different ways of extracting information from the same
Markov chain. Methods for monitoring the convergence of
Markov chain Monte Carlo algorithms are discussed in
Section 4.4, and Section 4.5 contains practical advice on
applying these methods to real data problems.

4.2 Parameter simulation

4.2.1 Dependent samples

A natural way to answer inferential questions concerning
particular components or functions of θ is to directly examine

and summarize simulated values of θ. Suppose that we run a

single series of data augmentation or a related algorithm long
enough to achieve approximate stationarity; that is, we choose
a t large enough so that θ(t) is essentially a draw from P

(θ/Yobs).This initial phase, sometimes called the burn-in

period, is helpful to rid the series of dependence on the
starting value or starting distribution. Suppose that we discard
the values of θ from the burn-in period and continue for

another m  iterations, calling the resulting values
θ(1),θ(2),...,θ(m).These can be regarded as a genuine sample

from the observed-data posterior, because stationarity implies
that θ(t) is marginally distributed according to P (θ/Yobs) for

every t. However, the members of this sample will, in most
cases, be dependent upon one another; values of θ that are

close to one other in the sequence will tend to be more alike
than values that are far apart. Successive values of θ may be

highly positively correlated, particularly when convergence is
slow.

For many readers, the notion of a dependent sample will be
somewhat unfamiliar. Suppose for a moment that we are
interested in a particular scalar component or function of the
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parameter, denoted by ξ=ξ(θ). If the sample values are

independent, then the sample average

ξ ξ= ( )
=
∑1

1
m

t
t

m

, (4.1)

where ξ (t)= ξ(θ(t),t = 1,2, ,m , is the obvious Monte Carlo

estimate of the posterior means

E Y P Y dobs obsξ ξ ξ ξ| | ;( ) = ( )∫ ⁄

the sample variance

1
1

2
1

m
t

t

m

= ( ) −( )
=
∑ ξ ξ (4.2)

is the obvious estimate of the posterior variance

V Y Y d E Yobs obs obsξ ξ ξ ξ ξ| | | ;( ) = ( ) − ( )∫ 2 2Ρ

and so on. When the sample values are dependent, however, it
may not be immediately obvious whether the same types of
summaries (averages, etc.) are appropriate. In one important
sense, they are. A law of large numbers for Markov chain
Monte Carlo (Tierney, 1994) states that under quite general
conditions, if Z(1), Z(2),..., Z(m) is a realization of a Markov
chain Monte Carlo run with target distribution f, then

1

1
m

g E g Z
t

m
t

f
=

( )∑ ( ) → ( )[ ]Ζ (4.3)

(almost surely) for any real-valued function g(Z) as m →  ∞,
provided that Ef [g(Z)], the expectation of g (Z ) under the
target distribution, exists.
By (4.3) it follows that the sample moments of a dependent
sample are consistent estimates of the population moments. A
histogram of the sample values will come to resemble the
population density for large m. Virtually any summary that is
appropriate for an independent random sample is appropriate
for a dependent one.

Although the consistency of most empirical summaries is
maintained under dependence, however, other familiar
properties may be lost. For example, the variance of the
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sample average (4.1) is not m-1 times the variance of a single

ξ(t),  but also involves the covariances among

ξ(1),ξ(2),...,ξ (m). If successive iterates are highly positively

correlated, then the covariance terms become large and
ξ becomes substantially less precise than an average from an
independent sample of the same size. Moreover, under
dependence (4.2) is not in general an unbiased estimate of
V(ξ|Yobs); if successive iterates are positively correlated then

(4.2) has a downward bias for any finite m , and the usual
justification for using (m − 1) in the denominator rather than m
no longer applies.

Perhaps the most serious drawback of dependence is that
assessing the error of a Monte Carlo estimator is no longer a
simple matter. Estimating the error variance internally from a
single dependent sample can be difficult. An alternative
strategy is to employ replication: rather than performing the
simulation once, perform it independently k  times, and
examine the variation among the k replicate values of the
estimator. Multiple runs also provide a method for diagnosing
lack of convergence of the Markov chain itself (see Section
4.4). In most cases, practitioners would not be interested in
Monte Carlo error if they could be assured that it was small
enough that their important numerical estimates and
conclusions were not in jeopardy. Obtaining accurate
measures of Monte Carlo error, therefore, may be a matter of
secondary importance when the error is known to be small,
and even crude estimates may suffice. On the other hand, if
the error is more substantial, then it needs to be assessed more
carefully and perhaps even be formally incorporated into p-
values and interval estimates.

Subsampling a chain

One way to finesse the issue of dependence in Markov chain
Monte Carlo is to subsample the chain: rather than
s u m m a r i z i n g )  a  p o s t e r i o r  b y
θ(1),θ(2), ...,θ(m), use θ(k),θ(2k), ...,θ(mk) where k is chosen large

enough to make the sample values approximately independent.
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Aside from the problem of how to choose k , subsampling
obviously requires a greater number of iterations to produce a
final sample of the same size. Although the resulting
independent sample will tend to give more efficient estimates
than a dependent sample, this gain in efficiency will not
compensate for the k-fold increase in computation. Moreover,
if we run the algorithm for km iterations then we might as well
summarize the results using all km iterates, because the
average of all km iterates is more precise than the average of
every kth iterate (Geyer, 1992; MacEachern and Berliner,
1994). Aside from issues of data storage, if the goal is to
obtain direct summaries of a posterior distribution then
subsampling the chain is generally not advantageous.

Subsampling and issues of Monte Carlo error will be taken
up again in Section 4.4; for now we discuss various ways to
extract inferentially meaningful summaries from a single,
dependent parameter sample.

4.2.2 Summarizing a dependent sample

Posterior moments

Suppose that we are interested in a particular scalar
component or function of the unknown parameter, denoted
generically by ξ=ξ(θ) To the Bayesian, a useful point estimate

of ξ is the posterior mean E(ξ.|Yobs). From a decision-theoretic

standpoint, the posterior mean is the optimal estimate under
squared-error loss (e.g. DeGroot, 1970). Even when no
explicit loss function is available, the posterior mean is still
often regarded as the most natural single-number summary.
Another useful quantity is the posterior variance V(ξ|Yobs),

which measures uncertainty about the unknown ξ. If θ(1),θ(2)

. . . ,θ(m) are values from P(θ|Yobs) produced by a Markov chain

Monte Carlo method, then consistent estimates of the posterior
mean and variance of ξ are given by
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ξ

 = ξ(
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 −

=
∑1

1

1 (4.4)

and

(4.5)

respectively, where ξ(t)=ξ(θ(t)). Higher moments, if desired,

may be estimated in a similar fashion.

Posterior distributions and densities

If θ(1),θ(2),...,θ(m), are a sample from P(θ|Yobs), then it follows

that ξ(1),ξ(2),...,ξ(m) are a sample from P(ξ|Yobs), the observed-

data marginal distribution of ξ  By (4.3), the posterior

cumulative distribution function

P Y P Y dobs obsξ α ξ ξ
α

≤( ) = ( )
−∞∫| | (4.6)

can be consistently estimated for any a by the proportion of
sample values ξ(1),ξ(2),...,ξ(m) that fall at or below a. Applying

this estimate for every a gives the empirical distribution
function,

(4.7)

where I(⋅) is an indicator function equal to one if the argument

is true and zero otherwise. The empirical density associated
with (4.7) is the discrete probability function that assigns mass
1/m to each observed value ξ(t),t=1,2, . . , m..

In most cases the true posterior distribution of ξ=ξ(θ) is

continuous, which suggests that we can improve the empirical
density by smoothing it in some fashion. A histogram
partitions the range of sample values ξ(1),ξ(2),...,ξ(m) into a
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small number of discrete intervals, typically of equal width,
and spreads the probability mass of each ξ(t) uniformly over

the interval into which it falls. Another important type of
density estimator is the class of kernel estimators, which have
the form

The kernel K(α,ξ) is some non-negative function centered at ξ
with the property

K daα ξ, .( ) =
−∞

∞

∫ 1

The choice of kernel, which is always somewhat arbitrary,
affects the shape of f

^  and its degree of smoothness; popular

choices are rectangular, triangular and Gaussian kernels with
width determined by the number and range of sample values.
For more information on kernel estimators see Silverman
(1986) or Devroye (1987).

Quantiles

The p th quantile of a random variable with cumulative
distribution function F is usually defined as the smallest x for
which F(x)≥p. Substituting the empirical distribution function

F̂  into this definition gives the following method for
estimating the quantiles of ξ  based on a sample ξ (1) ,ξ(2)

. . . , ξ(m). First, order the sample from smallest to largest; let ξ*
(t),t=1,2, ,m denote the order statistics,

ξ*(1)≤ ξ*(2)≤…≤ξ*(m)

If mp happens to be an integer, then the pth quantile is

estimated by ξ∗ (mp); otherwise, it is estimated by ξ ∗ ([mp]+1)

where [⋅]denotes the greatest integer function.

In the above method, the estimate of any quantile is
restricted to be one of the observed order statistics. A more
common practice is to interpolate between the order statistics.
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Suppose we consider ξ(i) to be an estimate of the pth quantile;

there is no universally agreed upon value for p, but common
choices include p=i/(m+1) and p =(i−1)/(m−1). Using the

former, the estimated pth quantile is the ith order statistic
when i = p(m + 1) happens to be an integer. When i = p(m + 1)
is not an integer, we find i1 = [p(m + 1)] and i2 = i1 + 1 and use
the estimate

ˆ ,* *F p c ci i− ( ) ( )( ) = −( ) +1 1 1 2ξ ξ (4.8)
where c  = p (m + 1) -i1. Taking p = 0.5, this interpolation
method gives the familiar form of a sample median: the
middle value if m is odd and the average of the two middle
values if m, is even.

Interval estimates

A 100 (1−α)% Bayesian posterior region is defined to be any

set with posterior probability content at least 1-α. That is, A is

a 100(1−α)% posterior region for ξ=ξ(θ) if
P A Yobsξ α∈( ) ≥ − ⋅| 1

Unlike a frequentist confidence region, which has the property
that the region will cover ξ with specified long-run frequency

over repeated samples, the Bayesian region makes a
probability statement about the parameter ξ given the current

sample. Given the posterior distribution for a scalar ξ , there

are various methods for constructing a Bayesian interval
estimate. In the highest posterior density (HPD) method, the
interval is chosen so that every value within the interval has
posterior density at least as high as every value outside of it
(e.g. Box and Tiao, 1992). The HPD method yields the
shortest possible interval for ξ , but it is not invariant under

nonlinear transformations of the parameter. Another simple
technique is the equal-tailed method, in which the endpoints
are chosen so that the posterior probability of falling above the
upper endpoint and the probability of falling below the lower
endpoint are both equal to α /2. For example, a 95% equal-

tailed interval runs from the 2.5th percentile to the 97.5th
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percentile of the posterior distribution. Equal-tailed Bayesian
posterior intervals can be directly estimated from a sample

ξ(1),ξ(2),...,ξ  (m) by using (4.8). Estimating an HPD interval is

more complicated, requiring both a smooth estimate of the
posterior density of ξ  and its associated cumulative

distribution function.
With large datasets and under suitable regularity conditions,

the posterior distribution of a parameter ξ tends in many cases

to be approximately normally distributed (e.g. Cox and
Hinkley, 1974). Under normality the HPD and equal-tailed
intervals coincide, and

Ε ξ ξα| | ,/Y z V Yobs obs( ) ± ( )−1 2 (4.9)

where zp=Φ−1(p) denotes the p th quantile of the standard

normal distribution, is a 100(1−α)% posterior interval for ξ.

Just as evidence about a parameter in the frequentist case is
often summarized by an MLE and an asymptotic Variance,
Bayesian inferences can also be summarized by a posterior
mean and posterior variance, and for large samples and
relatively diffuse priors the two answers will tend to be very
close. Unlike likelihood-based asymptotic methods, however,
Bayesian posterior simulation allows us to readily check the
normal approximation, and form alternative interval estimates
without recourse to a normality assumption, by examining the
simulated density and posterior quantiles directly.

Hypothesis tests

Suppose that we are interested in examining the plausibility of
the hypothesis ξ  = ξ0 for some specific value ξ0, versus the

alternative that ξ>ξ0 or ξ<ξ0.. In the classical framework of

hypothesis testing, one defines a test statistic that measures
departures from the null hypothesis ξ  = ξ0. The evidence

against the null is typically measured by a p-value, the
probability of observing a test statistic as extreme or more
extreme than the one actually observed, calculated under the
assumption that the null hypothesis is true. A small p-value
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indicates either that a rare event must have occurred, or that
the null hypothesis must be false.

In the Bayesian framework, the continuity of the posterior
distribution for ξ  makes ξ  = ξ0 an event of zero posterior

probability. The probability of a one-sided alternative event ξ
> ξ0 or ξ  < ξ0,, however, is nonzero and is a direct measure of

the plausibility of that alternative. The area under the posterior
density Ρ(ξ|Υobs) to the left or to the right of ξ0 may be thought

of as a Bayesian p-value; a very small tail area on either side
suggests that ξ0 is poorly supported and implausible given the

observed data. A two-sided Bayesian tail area may be defined
as the α  for which a 100(1−α)% Bayesian posterior interval

just barely covers ξ ο. With Markov chain Monte Carlo,

estimates of these tail areas are directly available from the
empirical distribution function of the simulated values (4.7).
In large samples, where Bayesian posterior intervals tend to
closely agree with their frequentist counterparts, Bayesian p-
values will also tend to resemble frequentist p-values.

Beyond scalar quantities

Until this point our discussion has been limited to inference
about a single scalar summary of θ . In multiparameter

problems (e.g. linear regression modeling), it is common to
summarize the results of an analysis by presenting point and
interval estimates for a number of scalar quantities (e.g.
regression coefficients). It is important to remember, of
course, that individual point and interval estimates do not
immediately translate into joint inferences, because the
quantities of interest are often correlated.

Some of the methods above for summarizing a dependent
sample generalize readily to higher dimensions, but others do
not. For example, suppose that

ξ=(ξ1(θ),ξ2(θ),...,ξd(θ))Τ

is a d-dimensional function of θ. The posterior means,

variances and covariances for ξ  may be estimated by the
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obvious multivariate extensions of (4.4)-(4.5). Obtaining a
100(1−α)% Bayesian posterior region, however, is more

problematic. The HPD method does extend to d ≥ 2

dimensions, but estimating an HPD region using a sample-
based estimate of the joint density would be difficult at best.
Under the simplifying assumption that the posterior is
multivariate normal, however, an assumption that may be
reasonable if the data sample is large and the parameters are
examined on an appropriate scale), the HPD method can be
implemented rather easily. Denoting the observed-data

posterior mean vector and covariance matrix of ξ by ξ̂  and V,

respectively, it follows from well-known properties of the
multivariate normal distribution that

ξ ξ ξ ξ χ−( ) −( )−ˆ ˆ | ~ ,

Τ
V Yobs d

1 2 (4.10)

and a 100(1−α)% posterior region is the set of all vectors ξ ο
f or which

ξ ξ ξ ξ χ αo o dV−( ) −( ) ≤−
−

ˆ ˆ
,,

Τ 1
1

2

where χd p,
2  denotes the pth quantile of the pth distribution.

This region is a d-dimensional ellipsoid centered at ξ̂ . The

Bayesian p-value for testing ξ = ξο is the choice of a for which

the ellipsoid just barely covers ξο,

P Vd o oχ ξ ξ ξ ξ2 1≥ −( ) −( )





−ˆ ˆ .
Τ

Substituting simulation-based estimates of ξ̂  and V into these
expressions yields simulated posterior regions and p-values.
The assumption of multivariate normality may be checked by
applying standard multivariate diagnostics to the simulated
values of ξ, and, if necessary, transformations may be applied

to the individual components of ξ  to make normality more

plausible.
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4.2.3 Rao-Blackwellized estimates

Under certain conditions, it is possible to greatly improve the
precision of Monte Carlo estimates by Rao-Blackwellization
(Gelfand and Smith, 1990; Liu, Wong and Kong, 1994). The
name of this method is derived from the well-known Rao-
Blackwell theorem of mathematical statistics, which states that
if S is an unbiased estimate of a scalar parameter and T is a
sufficient statistic, then S* = E(S|T) is also unbiased and has a
smaller variance than S (unless S is already a function of T, in
which case S* = S and the two variances are equal).

Suppose that we are interested in estimating the posterior
mean of ξ  = ξ(θ). Recall that the output of a data

augmentation algorithm is a sequence

Υ Υ Υmis mis mis
t t1 1 2 2( ) ( ) ( ) ( ) ( ), , , , ..., , , ....( )θ θ θ

If this sequence is preceded by a sufficiently long burn-in

period, then Υmis
t( ) and θ(t) are distributed according to

P(Ymis|Yobs) and Ρ(θ Υobs),, respectively for all t. The direct

estimate

ξ ξ= ( )

=
∑1

1
m

t

t

m

will be unbiased for E Yobsξ |( )But notice that if an expression

for the complete-data posterior mean E(ξ Υobs,Υmis) is

available in closed form, then we can get another estimate by
averaging over the draws of Ymis,

ξ ξ= ( ) ⋅( )

=
∑1

1
m

E Y Yobs mis
t

t

m

| , (4.11)

The Rao-Blackwellized estimate ξ  is unbiased because

∫ ( ) ( ) = ( )E Y Y P Y Y dY E Yobs mis mis obs mis obsξ ξ| , | |

Moreover, it is at least as efficient as the direct estimate ξ ,
because by the key idea of the Rao-Blackwell theorem,

V E Y Y Y V Yt
obs mis

t
obs

t
obsξ ξ( ) ( ) ( )( )





≤ ( )| , | | .
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When the complete-data posterior mean Ε(ξ|Υobs,Υmis) is easy

to compute, it pays to use the Rao-Blackwellized estimate
rather than the direct estimate.

Rao-Blackwellized estimates may also be available for
quantities other than the posterior mean. For example, because
the posterior density of ξ may be written

P Y P Y Y P Y Y dYobs obs mis mis obs misξ ξ| | , | ,( ) = ∫ ( ) ( )
a Rao-Blackwellized density estimate is

1

1
m

P Y Y
t

m

obs mis
t

=

( )∑ ( )ξ | , , (4.12)

a mixture of the complete-data densities over the simulated
values of Ymis. It can be shown that (4.12) is superior to direct

estimates based on ξ(1),ξ(2), , ξ(m), including kernel estimates

(Gelfand and Smith, 1990). Rao-Blackwellized density
estimates tend to have a smooth appearance even for small m.
Mixtures of complete-data densities were also used by Tanner
and Wong (1987) as an essential part of their data
augmentation algorithm.
The key idea of Rao-Blackwellization is to make full use of
the functional form of complete-data posterior summaries and
rely on simulation to solve only the missing-data aspect of the
problem. Notice that when there is no missing information
about ξ , the complete-data and observed-data posteriors

coincide, i.e.
P Y Y P Yobs mis obsξ ξ| , |( ) = ( ) ⋅

When this happens, Rao-Blackwellized estimates of the
posterior moments, posterior density, etc. of ξ  do not depend

at all on the sample values Υ Υ Υmis mis mis
m1 2( ) ( ) ( ), , ..., ,  and Monte

Carlo error is entirely eliminated. Direct estimates based on

ξ(1) ,ξ (2) , , ξ(m) , however, would still contain random error

for finite m even with no missing information. The relative
efficiency of the two estimates is closely related to the fraction
of missing information for ξ. This relationship is illustrated by

the following simple example.
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Example: the efficiency of Rao-BlackwellizationRecall

 Example 1 of Section 3.4.3 in which Y = (y1, y2,..., yn) is an iid
sample from N(µ,ψ), the first n1 elements of Y are observed

and the remaining no = n - n1 elements are missing. When ψ is

known, the prior π(µ)∞ c (a constant) leads to the observed-

data posterior µ ψ| ~  ,  ,Υobs obsN y n1
1−( )  . . . ,where yobs  is the

mean of the observed data. Let µ(1) ,µ(2) , . . . ,µ(m)  be a sample

of successive values of µ from a run of data augmentation

following a burn-in period. Assuming the burn-in is
sufficiently long, the marginal distribution of each member of
the sample is the stationary distribution,

µ ψt y nobs( ) ( )−~ ,Ν 1
1 (4.13)

for t = 1, 2,..., m, where conditioning on Yobs is implicit and
has been suppressed in the notation. Using (3.37), we can also

find the correlation structure of the dependent sample µ(1),

µ(2), . . . , µ(m). The lag-k auto-covariance is

Cov

Cov y y

t t k t t k t

t t t k t

t
obs

k t
obs

µ µ µ µ µ

µ µ µ µ

µ λ µ

( ) +( ) ( ) +( ) ( )

( ) ( ) +( ) ( )

( ) ( )

( ) = ( )





+ ( ) ( )





= + + −( )





, , |

| , |

,

Ε

Ε Ε

Cov

Cov

0

== ( )
=

( )

−

λ µ

λ ψ

k t

k

V

n1
1 ,

where λ=no/n is the fraction of missing information. It follows

that the joint distribution of µ(1),µ(2),...,µ(m) is multivariate

normal with all means equal to y obs, and covariance matrix n1
—1ψΛ,, where
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∆ =























−( )
( ) −( )

− −

1
1

1

1

2

1

2 2

1 2

λ λ λ
λ λ λ
λ λ λ

λ λ λ

L

L

L

M M M M

L

m

m

m

m m m

(4.14)

The direct estimate of the posterior mean Ε(µ Υobs) is

µ µ= ( )

=
∑1

1
m

t

t

m

,

which has variance

V
n m

Tµ ψ( ) =
1

2 1 1Λ , (4.15)

where 1=(1,1, ,1 )Τ.

Let us now investigate the precision of the Rao-
Blackwellized estimate. Recall that the P-step of data

augmentation draws µ(t) from a normal distribution with mean

E Y Y n n y n y

y y

obs mis
t

obs mis
t

obs mis
t

µ

λ λ

| , ( ) − ( )

( )
( ) = +( )

= −( ) +

1
1 0

1

and variance V(µ Υobs,Υ(t)
mis)=n

-1ψ, where

y
n

ymis
t

o
i

i n

n
t( )

= +

=
( )∑1

1 1
is the average of the n0 responses imputed at the previous I-
step. The Rao-Blackwellized estimate of Ε(µ|Υobs) is therefore

µ µ

λ λ

= ( )
= −( ) +











=

( )

( )

=

∑

∑

1

1 1
1

1

m
E Y Y

y
m

y

t

m

obs mis
t

obs mis
t

t

m

| ,

To find the variance of µ , we need to know the covariance

structure of the sequence y y ymis mis mis
m1 2( ) ( ) ( )

, , ..., . From (3.36) it
follows that
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y nmis
t t t+( ) ( ) ( ) −( )1

0
1| ~ , ,µ µ ψΝ (4.16)

where conditioning on Yobs is to be understood. Together,

(4.16) and (4.13) imply that V y n nmis
t( ) − −( ) → +( )1

1
0

1 µ .as

t→∞. To derive the lag-k auto-covariance, notice that

Cov , Cov , |

Cov | , |

Cov ,

y y E y y y

E y y E y y

y E y

mis
t

mis
t k

mis
t

mis
t k

mis
t

mis
t

mis
t

mis
t k

mis
t

mis
t

mi

( ) +( ) ( ) +( ) ( )

( ) ( ) +( ) ( )

( )

( ) = ( )





+ ( ) ( )





= ss
t k

mis
ty+( ) ( )( )





| .

By repeated application of the conditional expectation rule
E(U) = E[E(U|V) ], one can show that

E y y y ymis
t k

mis
t k

obs
k

mis
t+( ) ( ) ( )( ) = −( ) +| ,1 λ λ

and thus

Cov y y V y

n n

mis
t

mis
t k k

mis
t

k
o

,
( ) +( ) ( )

− −
( ) = ( )

= +( )
λ

λ ψ1
1 1

After a sufficient burn-in period, the covariance matrix for the

sample y y ymis mis mis
m1 2( ) ( ) ( ), , ...,  is thus (n1

-1+no
-1) ψΛwhere Λ  is

the patterned matrix shown in (4.14), and the variance of the
Rao-Blackwellized estimate is

V
m

n n Tµ̃ λ ψ( ) = +( )− −
2

2 1
1

0
1 1 1Λ (4.17)

Comparing (4.17) with (4.15), we see that the relative
efficiency of µ

~  to µ
−  is

V

V
n

n n

µ
µ λ

λ

( ) =
+( )

=

−

− −

−

˜

,

1
1

2
1

1
0

1

1

the inverse of the fraction of missing information. The
advantage of the Rao-Blackwellized estimate over the direct
estimate is greatest when the fraction of missing information is
small, and diminishes for λ near 1. With 10% missing

information, Rao-Blackwellizing the estimate without
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changing the number of iterations increases precision by a
factor of 10. In other words, Rao-Blackwellization allows us
to achieve the same precision as with the direct estimate while
using only λ  times as many iterations.

Now consider density estimation in the two-parameter case
where µ and ψ are both unknown. Under the diffuse prior

π(µ,ψ)∝ ψ-1, the complete-data posterior (3.40) implies that

the marginal density for ψ  is that of a scaled inverse-χ2

distribution,

Ρ Υ Υψ κ ψ
ψ

| , exp
/

obs mis
n n S( ) = − − −( )











− +( )1 1 2 21

2
,

where the normalizing constant is

k
n

n S

n

= −



 −( )












−( )
Γ 1

2
2

1 2

1 2/

The marginal distribution for µ can be shown to be

µ | , ~ / ,Υ Υobs mis ny S n t+ ( ) −1

for which the density is

P Y Y
n y

n S
obs mis

n

n n S
n

n

µ
π

µ
| ,

/

( ) =
( )

( )
+

−( )
−( )











− −( )

−
Γ

Γ

2

1
2

1

2

2

2

2
1

1

(Section 5.2.2). In this problem, of course, the observed-data
marginal posterior densities are also available in closed form;
we merely replace n, y  and S2 in the complete-data marginals

by n 1, yobs  and S
2

obs, respectively. If we simulate the
observed-data posterior using data augmentation, however, we
can also estimate the observed-data marginal posterior
densities, either directly from the iterates of µ and ψ or by

Rao-Blackwellization, and compare the estimates with the
known true density functions.

To illustrate this, a single run of data augmentation was
performed for the univariate sample of size n1 = 10 shown in
Table 3.1 (a), assuming that an additional n0 = 3 observations
were missing. Beginning with arbitrary starting values for µ

©1997 CRC Press LLC



 

and ψ, the chain was run for m = 500 iterations following an

initial burn-in period of 100 iterations. The true observed-data
marginal densities for µ and ψ are displayed in Figure 4.1,

along with three simulation-based estimates: histograms of the
iterates of µ and ψ, kernel estimates based on the same and

Rao-Blackwellized estimates obtained by averaging the
expressions for the complete-data marginal densities over the
iterates of Ymis. The kernel estimates are based on Gaussian
kernels for µ and ψ with standard deviations of 1 and 10,

respectively. In this problem, for which the fraction of missing
information is 3/13=0.23, the Rao-Blackwellized estimates are
nearly indistinguishable from the true densities. The
histograms and kernel estimates, however, show a greater
amount of random error.

A l th o u g h  th es e  u n iv ar iat e ex a m p le s  a r e  s i m p li s ti c,  w e  c an 
ex p e ct  th is  ty p e  o f  r es u lt  t o  h o l d  tr u e in  g e n e r al : Ra o - 
Bl ac k w ell iz ati o n  c an  g r eat ly  i n cr ea s e th e ef f ic ien cy  o f 
s i m u la tio n - b as ed  e s ti m a tes , p a r ti cu lar ly  w h en  f r ac ti o n s  o f 
m i s s in g  i n f o r m at io n  a r e  s m al l.  A l th o u g h  a Ra o - 
Bl ac k w ell iz ed  es ti m at e m ay  r eq u ir e s o m e ad d it io n al  a n a ly t ic 
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Figure 4.1. Histograms of m = 500 consecutive iterates of µ and ψ with true

marginal densities (solid lines), kernel density estimates (dotted lines) and
Rao-Blackwellized density estimates (dashed lines)

 work to find a closed-form expression for the complete-data
posterior summary, the extra effort is often worthwhile.

4.3 Multiple imputation

Like parameter simulation, multiple imputation is a Monte
Carlo approach to the analysis of incomplete data. Described
by Rubin (1987) in the context of nonresponse in sample
surveys, the technique is quite general and can readily be used
in many nonsurvey applications as well. Multiple imputation
shares the same underlying philosophy as EM and data
augmentation: solving an incomplete-data problem by
repeatedly solving the complete-data version. In multiple
imputation, the unknown missing data Ymis, are replaced by
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simulated values Υ Υ Υmis mis mis
m1 2( ) ( ) ( ), , ..., . Each of the m completed

datasets is analyzed by standard complete-data methods. The
variability among the results of the m  analyses provides a
measure of the uncertainty due to missing data, which, when
combined with measures of ordinary sample variation, lead to
a single inferential statement about the parameters of interest.

4.3.1 Bayesianly proper multiple imputations

If multiple imputation is to yield valid inferences, the
simulated values of Ymis must possess certain properties.
Multiple imputations drawn from a distribution possessing
these properties are said to be proper. Rubin (1987) gives a
technical definition for proper multiple imputations; his
definition is tied to the frequentist properties of estimators
over repeated realizations of a posited response mechanism.
For the most part, a thorough understanding of Rubin’s
definition is not crucial for the purposes of this book, for the
following two reasons. First, our statistical procedures are
derived primarily from perspectives of likelihood-based or
Bayesian inference; we are assuming that valid inferential
statements can, be obtained through summaries of a likelihood
function or posterior distribution arising from a parametric
model. Second, because of our ignorability assumption, we
will never need to specify a nonresponse mechanism in our
analyses. Indeed, with the complicated patterns of missingness
often encountered in multivariate datasets,’ it may be quite
difficult to specify any realistic mechanism for the
nonresponse, ignorable or otherwise.

Rubin’s definition is important for discussing the statistical
validity of multiple imputation from frequentist and design-
based perspectives. For now, however, let us consider a
different concept of what it means for multiple imputations to
be proper, which is more suited to the purposes of this book.
We will say that multiple imputations are Bayesianly proper if
they are independent realizations of P(Ymis|Yobs), the posterior
predictive distribution of the missing data under some
complete-data model and prior. Notice that P(Ymis|Yobs) may be
written as
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P Y Y P Y Y P Y dmis obs mis obs obs| | , | ,( ) = ( ) ( )∫ θ θ θ

the conditional predictive distribution of Ymis, given θ
averaged over the observed-data posterior of θ. Bayesianly

proper multiple imputations thus reflect uncertainty about Ymis

given the parameters of the complete-data model, as well as
uncertainty about the unknown model parameters. The fact
that P(Ymis|Yobs) does not rely on the observed response pattern
R  (Section 2.3) indicates that the resulting multiple
imputations are appropriate under an assumption of
ignorability.

We will discuss Rubin’s definition at the end of this chapter.
Except for that brief digression, however, the concept of
proper imputations used in the remainder of this book will be
that of Bayesianly proper imputations. For brevity, we will
usually omit the term Bayesian and refer to the imputations
simply as proper; the reader should understand that our usage
of the term is not the same as Rubin’s.

Proper multiple imputations and data augmentation

It is convenient to create multiple imputations using data
augmentation and related algorithms, because the simulated
values of Ymis, created by these algorithms have P(Ymis|Yobs) as
their stationary distribution. Because proper multiple
imputations must be independent, however, we will not in
general be able to use successive iterates of Ymis because they
tend to be correlated. Rather, we will have to subsample the
chain, e.g. take every kth iterate, where k is chosen large
enough so that the dependence will be negligible.
Alternatively, we can create proper imputations by simulating
m independent chains of length k and retaining the final values
of Ymis from each chain, where k is large enough to ensure that
the imputations are essentially independent of the starting
values or starting distribution. Although this means that
creating m  imputations requires km iterations, the
computational burden will not necessarily be severe, because
only a small number of imputations are usually required, in
typical applications, we can obtain good results with m  as
small as 3-5.
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Why only a few imputations are needed

For the reader who is unfamiliar with multiple imputation, the
claim that m = 3 is often adequate may be very surprising; in
other applications of Monte Carlo, hundreds or thousands of
draws are often needed to achieve an acceptable level of
accuracy. In multiple imputation, however, a very small value
of m will usually suffice. There are two fundamental reasons
for this.

First, like Rao-Blackwellization, multiple imputation relies
on simulation to solve only the missing-data aspect of the
problem. As with any simulation method, one could
effectively eliminate Monte Carlo error by choosing m to be
very large, but with multiple imputation the resulting gain in
efficiency would typically be unimportant because the Monte
Carlo error is a relatively small portion of the overall
inferential uncertainty. If the fraction of missing information
about a scalar estimand is λ, the relative efficiency (on the

variance scale) of a point estimate based on m imputations to
one based on an infinite number of imputations is
approximately (1+λ/m)-1 (Rubin, 1987, p. 114). When λ = 0.2,

for example, an estimate based on m = 3 imputations will tend
to have a standard error only 1 0 2 3+ . / =1.033 times as large

as the estimate with m = ∞. With λ = 0.5, an estimate based on

m = 5 imputations will tend to have a standard error only
1 0 5 5+ . / =1.049 times as large. In most applications, the

additional resources that would be required to create and store
more than a few imputations would not be well spent.

The second reason why we can often obtain valid
inferences with a very small m is that the rules for combining
the m  complete-data analyses explicitly account for Monte
Carlo error. A multiple-imputation interval estimate makes
provisions for the fact that both the point and variance
estimates contain a predictable amount of simulation error due
to the finiteness of m , and the width of the interval is
accordingly adjusted to maintain the appropriate probability of
coverage.
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4.3.2 Inference for a scalar quantity

In Section 4.2 we assumed that the scalar quantity to be
estimated was an explicit function of the parameters of the
complete-data model, denoting it by ξ = ξ(θ). Switching now

to a notation more consistent with that of Rubin (1987), we
denote a generic scalar estimand by Q. In multiple-imputation
inference, Q may be an explicit function of the parameters of
the imputation model, the complete-data model under which
the multiple versions of Ymis were created. When this is the
case, multiple-imputation estimates of Q are simply Rao-
Blackwellized estimates, and the rules for inference given
below can be interpreted as Rao-Blackwellized methods that
make special provisions for Monte Carlo error incurred by
using a small m.

In many other cases, however, Q will not be a parameter of
the imputation model. In sample surveys, Q may be a function
(a mean, a proportion, a ratio of means, etc.) of data from a
finite population. In classical sample-survey methods (e.g.
Cochran, 1977), the population data are not modeled but
regarded as fixed, and inferences are based purely on the
randomization used to draw the sample. Some theoretical
justification for using proper multiple imputations from a
parametric model in finite-population survey inference is
given by Rubin (1987). In other non-survey applications, Q is
often a function of parameters of a model tailored to the
specific goals of the analysis. This model, which we call the
analyst’s model, may be somewhat different from the
imputation model. When the imputation model and analyst’s
model differ, questions naturally arise about the validity of the
inference; these questions will be addressed at the end of this
chapter.

Complete-data estimators

To use multiple imputation, we must have a rule for inference
about Q in the complete-data case. Let Q̂  be the complete-
data point estimate for Q, the estimate that we would use if no
data were missing. Let U be the variance estimate associated
with Q̂ , so that U  is the complete-data standard error.
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Because Q̂  and U are both functions of Υ=(Υobs,Υmis), we will

sometimes write them as ˆ ,Q obs misΥ Υ( )  and U(Υobs,Υmis)
respectively. Multiple-imputation inference assumes (a) that
Q̂  and U are first-order approximations to a posterior mean
and variance of Q,

ˆ , | , ,Q Y Y E Q Y Yobs mis obs mis( ) ≈ ( ) (4.18)

U Y Y V Q Y Yobs mis obs mis, | , ,( ) ≈ ( ) (4.19)

under a reasonable complete-data model and prior; and (b) that
the complete-data problem is sufficiently regular and the
sample size sufficiently large for the asymptotic normal
approximation

U Q Q N− −( ) ( )1 2 0 1/ ˆ ~ , (4.20)

to work well. The approximation (4.20) can be justified either
from a frequentist or a Bayesian perspective. To the
frequentist, it is a statement about the repeated-sampling
properties of Q̂  and U for a fixed value of Q; to the Bayesian,
it is a statement about the posterior distribution of Q with Y
(and hence Q̂  and U) held fixed.

Many, but not all, commonly used estimators can be
regaxded as approximate posterior means, and their variance
estimates as approximate posterior variances. MLEs and their
asymptotic variances, derived from the curvature of the
observed or expected loglikelihood at the mode, typically
satisfy (4.18)-(4.20) (Cox and Hinkley, 1974). Estimators that
are clearly inefficient, e.g. a sample mean based on only half
of the sample, are definitely ruled out, as they do not use all
the available information in Y. Certain classes of
nonparametric procedures (e.g. methods based only on ranks)
should also be ruled out, as they tend to sacrifice some
efficiency to avoid specification of a full parametric model.
With multiple imputation, just as with complete data, it is
good practice to perform the analysis on a scale for which the
asymptotic normal approximation is likely to work well; for
example, with a correlation coefficient, it is advisable to apply
Fisher’s transformation (3.14).
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Rule for combining complete-data inferences

With m imputations, we can calculate m different versions of
Q̂  and U. Let

ˆ ˆ ,Q Q Y Yt
obs mis

t( ) ( )= ( )
and

U Ut
obs mis

t( ) ( )= ( )Υ Υ,

be the point and variance estimates using the tth set of imputed
data, t = 1,2,...,m. Rubin (1987, Chap. 3) gives the following
rule for combining them. The multiple-imputation point
estimate for Q  is simply the average of the complete-data
point estimates,

ˆ ˆ .Q
m

Q t

t

m

= ( )

=
∑1

1

(4.21)

The variance estimate associated with Q  has two
components. The within-imputation variance is the average of
the complete-data variance estimates,

U
m

U t

t

m

= ( )

=
∑1

1

(4.22)

The between-imputation variance is the variance of the
complete data point estimates, in

B
m

Q Qt

t

m

=
−

−( )( )

=
∑1

1

2

1

ˆ . (4.23)

The total variance is defined as

Τ Β= + +( )−U m1 1 , (4.24)

and inferences are based on the approximation
Τ− −( )1 2/ ~ ,Q Q tv (4.25)

where the degrees of freedom are given by

v m
U

m B
= −( ) +

+( )












−1 1

1 1

2

. (4.26)

Thus a 100(1−α)% interval estimate for Q is
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Q t Tv± −, / ,1 2α (4.27)

and a p-value for testing the null hypothesis Q=Q  against a
two-sided alternative is

2 1 2P t T Q Qv ≥ − ′( )− / | |

or, equivalently,

P F T Q Qv1
1 2

, ≥ − ′( )





− (4.28)

Missing information

Notice that the degrees of freedom (4.26) depend not only on
m, but also on the ratio

r
m B

U
=

+( )−1 1

. (4.29)

Rubin (1987) calls r the relative increase in variance due to
non-response, because U  represents the estimated total
variance when there is no missing information about Q (i.e.
when B = 0). When m, is large and/or r is small, the degrees of
freedom will be large and (4.25) will be approximately
normal.

If we define information as minus one times the average
second derivative of the log-posterior density of Q , the
information in the approximate posterior (4.25) is (ν+1)(ν+3)-

1Τ -1. With no missing information, the posterior would

become normal with mean Q̂  and variance U , for which the

information is U −1. It follows that
ˆ

/

λ = +( ) +( )( )
= + +( )

+

− − −U v v T U

r v
r

1 1 11 3

2 3

1

(4.30)

is an estimate of the fraction of missing information about Q.

In applications, calculation of r and λ̂  is highly
recommended, as they are interesting and useful diagnostics
for assessing how the missing data contribute to inferential
uncertainty about Q.
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Heuristic justification

An imprecise but intuitive justification for this procedure is
the following. Let us assume that the observed-data posterior
for Q is approximately normal, so that if the observed-data
posterior moments could be calculated we would use the
interval

E Q Y z V Q Yobs obs| | ./( ) ± ( )−1 2α (4.31)

Because E(Q|Yobs) and V (Q|Yobs) are not readily available,
however, we use simulation-based estimates of them provided
by the multiple imputations. Notice that by (4.18) and (4.19)
we can write

Ε Υ Ε ΥQ Uobs obs| |( ) ≈ ( ) (4.32)

and

V Q Y E U Y V Q Yobs obs obs| | ˆ | ,( ) ≈ ( ) + ( ) (4.33)

where the moments on the right-hand sides of (4.32) and
(4.33) are calculated over the distribution P(Ymis|Yobs) from
which the multiple imputations are drawn. By the law of large

numbers, Q , U  and B approach E Q Y E U Yobs obs
ˆ | , | ,( ) ( )  and

V Q Yobs
ˆ | ,( )  respectively, as m→∞ . Thus, with an infinite

number of imputations,

Q z U B± +−1 2α / (4.34)

would be identical to (4.31). Because m is typically small,
however, we need to make two adjustments to (4.34). First,
the interval must be widened to reflect the fact that Q  is

randomly different from E Q Yobs
ˆ | .( ) .With proper

imputations, B/m is an unbiased estimate of the variance of
Q , so to account for the error in Q  we must increase the
estimate of the total variance by this amount. Second, because
the estimated variance components U  and B  are also
estimated with error, we need to widen (4.34) further by
replacing the normal quantile with one from a t distribution.
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Further justification

Rubin (1987) derives the procedure more formally by
Bayesian arguments, showing that (4.25) is an approximate
observed-data posterior distribution for Q  based on the

reduced information in  ˆ , ˆ , ..., ˆQ Q Q m1 2( ) ( ) ( )  a n d

U U U m1 2( ) ( ) ( ), , ...,  rather than on the infinite number of
imputations that one would ideally have. The expression
(4.26) for the degrees of freedom v  are obtained by
approximately matching the first two moments of the reduced-
information posterior to those of a t distribution.

Despite the Bayesian derivation, evaluations have shown
that this method leads to inferences that are well calibrated
from a frequentist standpoint. Rubin and Schenker (1986)
report that multiple-imputation interval estimates tend to have
at least the nominal coverage (i.e. a 95% interval covers the
true parameter at least 95% of the time) in a variety of
scenarios even for m as small as 2. When the actual coverage
falls below the nominal coverage, it tends to be either because
(a) the fraction of missing information is unusually large, or
(b) the complete-data normal approximation (4.20) works
poorly. In the former case, we can obtain better results by
choosing a larger m. In the latter case, the poor results should
be regarded as a inherent shortcoming of the asymptotic
approximation for complete data rather than as a failure of the
multiple imputation methodology. In many cases, the quality
of the complete-data normal approximation can be improved
by a suitable re-parameterization.

In addition to simulation studies, further theoretical
justification for this method is provided by Schenker and
Welsh (1988), who established frequentist consistency of
multiple-imputation inferences for linear regression analysis
with an incomplete response variable. The result was later
extended by Brownstone (1991) to incomplete predictors.
Additional references supporting the use of (4.25) are given by
Rubin (1996).
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4.3.3 Inference for multidimensional estimands

Several extensions of the above method have been developed
for estimands that are multidimensional. Suppose now that Q
1is a k x 1 vector. Rather than finding confidence regions for
Q, which are often difficult to interpret (especially when k is
large), we will focus on finding a p-value for testing the
hypothesis that Q equals a particular value of interest Q0. In
practice, this typically arises because one is interested in
comparing two models for the data, M0 and M1, where M1 is
more general than M0 and reduces to M0 when Q = Q0. We
now discuss three alternative rules for calculating a p-value
from multiply-imputed data.

Combining point estimates and covariance matrices

Let Q̂  be a complete-data point estimate of Q, and U  an

asymptotic covariance matrix associated with Q̂ . The
following method assumes that, with complete data, the
distribution of ( Q̂ - Q) is sufficiently close to N(0, U) that an
accurate p-value may be obtained from the multivariate Wald
statistic and a chisquare reference distribution,

Ρ
Τ

χκ
2 1≥ −( ) −( )





−ˆ ˆQ Q U Q Qo o  (4.35)

With large samples, (4.35) is a valid p-value both in the
frequentist and the Bayesian sense.

With incomplete data we cannot calculate (4.35) and need a
new test statistic that is a function only of Yobs. As in the scalar
case, with m  imputations we calculate m estimates
ˆ , ˆ , ..., ˆQ Q Q m1 2( ) ( ) ( )  and m  covariance matrices

U U U m1 2( ) ( ) ( ), , ..., . The multivariate analogues of (4.2l)-
(4.24) are
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Using the natural multivariate extension of (4.28), one might
suppose that

P F Q Q T Q Q kk o
T

o, /υ ≥ −( ) −( )





−1

would be an appropriate p-value, where v depends on the
precision with which T estimates the observed-data posterior
variance of Q,

V Q Y E U Y V Q Yobs obs obs| | ˆ | .( ) ≈ ( ) + ( )
It turns out, however, that finding an adequate reference
distribution for the statistic

Q Q T Q Q k
T−( ) −( )−

0
1

0 /

is not a simple matter. The main problem is that for small m,
the between-imputation covariance matrix B is a very noisy

estimate of V Q Yobs
ˆ | ,( ) , and does not even have full rank if m

≤ k.

One way out of this difficulty is to make the simplifying
assumption that the population between- and within-
imputation covariance matrices are proportional to one
another,

V Q Y E U Yobs obs
ˆ | | ,( ) ∝ ( )

which is equivalent to assuming that the fractions of missing
information for all components of Q are equal. Under this
assumption, a more stable estimate of total variance is
T̃ r U= −( )1 1
where
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r m tr BU k1
1 11= +( ) ( )− − / (4.36)

is the average relative increase in variance due to nonresponse
across the components of Q. Using T̃  rather than T, the test
statistic becomes

D Q Q T Q Q k
T

1 0
1

0= −( ) −( )−˜ / , (4.37)

and a p-value for testing Q = Q0 is

p F Dk v= ≥( )Ρ , .
1 1

The best approximation to date for the degrees of freedom v1

is given by Li, Raghunathan and Rubin (1991),

υ1
1

1
1

2
4 4 1 1 2= + −( ) + −( )[ ]− −t t r , (4.38)

where t = k(m - 1). This procedure requires t > 4; when t ≤ 4,

we may use an alternative expression given by Rubin (1987),

υ1
1

1
1 2

1 1 2= +( ) +( )− −t k r /

Although (4.37) and 4.38) are derived under the strong
assumption that the fractions of missing information for all
components of Q  are equal, Li, Raghunathan and Rubin
(1991) report encouraging results even when this assumption
is violated. In a simulation study, they examined the
performance of this procedure using values of m between 2
and 10 and average fractions of missing information up to 0.5,
in problems with up to k = 35 parameters. At worst the
procedure tends to be somewhat conservative (overstating the
p-values), and there is a small loss of power relative to the
ideal case with m=∞. These simulations support the use of this

procedure in many situations of practical interest. It is
important to note, however, that the simulations assume the
appropriateness of (4.35), the chisquare approximation for the
complete-data Wald statistic. For the procedure to work well
in practice, we need a large sample and an appropriate scale
for Q to ensure validity of the usual complete-data asymptotic
approximations.
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Combining p-values

Calculation of the statistic D, and its associated degrees of
freedom requires access to the point estimates and covariance
matrices from the m complete-data analyses. Software
packages for common procedures, e.g. linear or logistic
regression, typically allow the user to examine and save the
covariance matrices for further analysis. When k is large,
however, this procedure may be somewhat cumbersome,
particularly when a large number of tests are to be performed.
One might ask whether it is possible to obtain a valid
inference using only the m  complete-data p-values, or,
equivalently, the m, complete-data Wald statistics

d Q Q U Q QW
t t T t t( ) ( ) ( ) − ( )= −( ) ( ) −( )0

1

0 , (4.39)

t = 1, 2,...,m. Such a procedure is described by Li et al. (1991),
who propose the statistic

D
d m m

r
W

k
r

2

1 1
2

2

1 1

1
= − +( ) −( )

+

− − ,
(4.40)

where

d
m

dW W
t

t

m

= ( )

=
∑1

1
is the average of the Wald statistics, and

r m
m

d dW
t

W
t

m

2
1

1

2

1
1

1
= +( ) −

−



















− ( )

=
∑

is (1 + m -1) times the sample variance of their square roots.
The quantity r2 is a clever estimate of r1, the average relative
crease in variance due to nonresponse, based only on the Wald
statistics. Notice that with no missing information, r2 = 0 and
(4.40) reduces to the average of the Wald statistics divided by
k. The combined p-value for testing Q = Q0 is

p P F Dk= ≥( ), ,υ2 2

where the degrees of freedom are

ν κ2
3

2
1 2

1 1= −( ) +( )− −/ .m m r (4.41)
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This procedure was developed partly using theoretical
arguments and partly through the results of simulation studies
for m = 3, so it should be expected to work best with m = 3
imputations. Li et al. (1991) examined the behavior of this
procedure in problems with up to k = 25 parameters, with m
ranging from 2 to.10 and the average fraction of missing

information λ  up to 0.5 both when the individual fractions of
missing information are equal and unequal. For a nominal 5%-

level test, the procedure tends to be conservative for λ  < 0.2
and anti-conservative for λ  > 0.2. In what we might expect to
be one of the worst cases (k = 25, m = 2 and λ

_  = 0.5) the

actual level of the 5% test is about 8%. Overall, the results
seem to be best with m = 3, which is not surprising because
the procedure was developed with m = 3 in mind. In
simulations D2 was not highly correlated with the more nearly
optimal statistic D1, so there appears to be a substantial loss in
power when using D2 rather than D1. Li et al. (1991) suggest
that this procedure be used only as a rough guide, and that the
analyst should interpret it as providing a range of p-values
between one half and twice the calculated value.

Combining likelihood-ratio test statistics

A third procedure for multivariate estimands, which may be
regarded as intermediate between the previous two, is
described by Meng and Rubin (1992b). Making use of the well
known fact that the Wald statistic is asymptotically equivalent
to that of the likelihood-ratio test, they propose a method for
combining the complete-data likelihood-ratio test statistics.
The resulting statistic, D3, is typically easier to compute than
D, although not quite as convenient as D2- It is, however,
asymptotically equivalent to D, for any m, so it should retain
the good performance of D, in a wide variety of scenarios.

Let ψ denote the vector of unknown parameters in the

analyst’s model, and Q=Q(ψ) a k-dimensional function of ψ
that is of interest; specifically, we wish to test the hypothesis
that Q  = Q0 for a given Q0. Let ι (ψ|Υobs,Υmisι) denote the

complete-data loglikelihood function, ψ̂  the MLE or
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maximizer of ι(ψ|Υobs,Υmis),  and ψ̂  the maximizer of

ι(ψ|Υobs,Υmis) subject to the constraint Q(ψ)=QΟ. In regular

problems, the complete-data likelihood ratio test statistic
d d Y Y

l Y Y l Y Y
L L obs mis

obs mis obs mis

= ( )
= ( ) − ( )[ ]

ˆ , ˆ | ,

ˆ | , ˆ | ,

ψ ψ
ψ ψ

0

02

 is asymptotically distributed as χ k
2  under the null hypothesis,

and k is asymptotically equivalent to the Wald statistic (4.35).
Let

d d Y YL
t

L
t t

obs mis
t( ) ( ) ( ) ( )= ( )ˆ , ˆ | ,ψ ψ0

be the likelihood-ratio test statistic from the tth imputed

dataset, t = 1, 2,...,m , where ψ̂ t( )  is the maximizer of

ι(ψ Υobs,Υ(τ)
mis) and ψ̂ t( )  is the maximizer of

l obs mis
tψ | ,Υ Υ( )( )  subject to Q(ψ)=Qo. Let

d
m

dL L
t

t

m

= ( )

=
∑1

1
be the average of these likelihood-ratio statistics, and

ψ ψ= ( )

=
∑1

1
m

t

t

m
ˆ (4.42)

ψ ψ0 0
1

1= ( )

=
∑m

t

t

m
ˆ (4.43)

the averages of the complete-data estimates of ψ  across

imputations. Finally, let

˜ , | ,d
m

d Y YL L
t

m

obs mis
t= ( )

=

( )∑1

1
0ψ ψ

be the average of the likelihood-ratio statistics evaluated at ψ0
and ψ  rather than at the imputation-specific parameter
estimates. The test statistic proposed by Meng and Rubin
(1992b) is
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D
d

k r
L

3
31

=
+( )
˜

, (4.44)

where

r
m

k m
d dL L3

1
1

= +
−( )

−( )˜ (4.45)

is an alternative estimate of the average relative increase due
to
non-response that is asymptotically equivalent to (4.36). The
p-value associated with D3 is

p P F Dv= ≥( )κ , 3 3 (4.46)

with degrees of freedom calculated in the same manner as for
D1,

v
t t r

t k r

t k m

otherwise3

1
3

1 2

1
3

1 2

4 4 1 1 2

1 1 2

1 4
=

+ −( ) + −( )[ ]
+( ) +( )









= − >− −

− − /

if ( )

In addition to the usual likelihood-ratio test statistics for
each imputed dataset, this procedure also requires evaluation
of the complete-data likelihood ratio at ψ ψ, 0( )  for each

dataset. Implementation of this procedure thus requires code
for evaluating the complete-data loglikelihood at user-
specified values of the parameter, something which is not
typically provided in standard statistical software. For many
commonly used models, however, the complete-data
loglikelihood is straightforward to derive and compute, and
with a little effort on the part of the analyst the procedure can
often be implemented without difficulty. Because this method
is asymptotically equivalent for any m to the one that uses D1,
the properties of the two methods should be very similar.

Notice that a Wald test depends on the particular choice of
scale for the unknown quantity Q, whereas a likelihood-ratio
test is invariant to changes in scale. For this reason, some
prefer the likelihood-ratio test in certain cases, believing it to
be somewhat more trustworthy than the Wald test when the
normality of ( Q̂ - Q ) is in doubt. The likelihood-ratio
procedure for multiply-imputed datasets described above may,
at first glance, appear to be scale-invariant, but it is not; in
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particular, the averaging of the parameter estimates (4.42)-(4-
43) will lead to somewhat different results under nonlinear
transformations of ψ. The derivation of this procedure does

assume the approximate complete-data normality of ˆ ,ψ ψ−( ) ,

so for best results the parameter estimates should probably be
averaged on a scale for which the normality assumption is
reasonable. Care must be taken, however, to ensure that the
averages of parameter estimates lie within the parameter
space, which will not necessarily happen if the averaging is
done on an arbitrary scale. The sensitivity of this procedure to
alternative parameterizations is not entirely clear and is
worthy of further investigation.

4.4 Assessing convergence

In the last two sections, we examined techniques for extracting
inferentially meaningful quantities from the output of Markov
chain Monte Carlo. Responsible use of these methods requires
some formal or informal assessment of the simulation
algorithm’s convergence properties; we need to know whether
the algorithm has run ’long enough’ for the results to be
reliable. The meaning of convergence, and the diagnostic tools
for assessing it, will vary according to the method of inference
being used. In parameter simulation, we must choose a
number of iterations to ensure that the resulting summaries
(sample moments, quantiles, etc.) are sufficiently close to the
posterior quantities they estimate; in this case, we need to
assess convergence in the sense given by the law of large
numbers (4.3). With multiple imputation, however, the goal is
to simulate approximately independent draws from
P(Ymis|Yobs); in that case, we need to assess convergence of the
distribution of the iterates to their stationary distribution.
Because these two concepts of convergence are quite different,
the relevant diagnostic tools for assessing them are necessarily
different. Convergence to stationarity, the weaker of the two
concepts, is discussed in Sections 4.4.1-4.4.3; convergence of
estimated posterior summaries is discussed in Section 4.4.4.
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4.4.1 Monitoring convergence in a single chain

We now address the question, ’How long do I have to run my
algorithm before it converges to the stationary distribution?’.
The answer, of course, is that it depends. The rate of
convergence depends on the fractions of missing information
(Section 3.5.3) which vary from application to application.
Even within a single application, the number of iterations
required to achieve approximate stationarity depends on the
starting value or starting distribution. For example,
convergence will be faster from a starting value near the
center of the observed-data posterior than from a starting value
in the tails. In practice, it is helpful to know roughly how large

a value k is needed for θ(t+k) to be essentially independent of

θ(τ) for any θ(t) within the range of appreciable posterior

density. If such a value were known, then a burn-in period of
length k would be sufficient to achieve stationarity provided
that the starting value was not highly unusual with respect to
P(θ|Υobs). Moreover, after the burn-in period, every kth iterate

of Υmis could then be taken as an independent draw from

P(θ|Υobs)., and every kth iterate of Ymis could be used for

proper multiple imputation.
Various methods for approximating k have appeared in the

literature. The most accessible of these involve output
analysis, examining the iterates of θ  from one or more

simulation runs. When θ is multidimensional, we can monitor

the behavior of various components or scalar functions of θ.

The marginal distributions of the components will often
converge at different rates, however, and convergence by the
kth iteration for every component or function that we examine
does not necessarily imply that the joint posterior has
converged; there is always a possibility that the distribution of
some unknown function has not yet converged. Several
methods have been proposed for choosing a value of k
pertinent to the convergence of the entire joint distribution
(Ritter and Tanner, 1992; Roberts, 1992; Liu and Liu, 1993),
but these can be difficult to implement in practice. In typical
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missing-data scenarios-addressed by this book, fractions of
missing information are moderate and data augmentation
algorithms tend to converge quickly. Pathological behavior
such as slow convergence or nonexistence of a stationary
distribution usually means that the model is too complicated
(i.e. has too many parameters) to be supported by the observed
data, and the problem should probably be reformulated. For
our purposes, the most sensible diagnostics are those that can
be implemented quickly and easily, providing an informal but
reliable assessment of whether the situation is normal or
pathological. Convergence diagnostics have been and will
probably continue to be the subject of vigorous research
efforts, and improved methods may be available soon. Further
discussion and references on convergence are given by Smith
and Roberts (1993); Tanner (1993); and Gilks, Richardson and
Spiegelhalter (1996).

Time-series plots and autocorrelation

For an individual component or function ξ=ξ(θ), plotting the

iterates of ξ from a single run can be a quick and easy way to

assess convergence for that component. Recall Example 1 of
Section 3.4.3 in which the first n1 values of a univariate
normal sample are observed and the remaining n0 = n - n1 are
missing, and consider data augmentation for the two-
parameter case in which θ µ ψ= ( ),  is unknown. Using the n1

= 10 data values in Table 3.1 (a), we performed runs of data
augmentation for two different cases: n0 = 3, corresponding to
23% missing information, and n0 = 90, corresponding to 90%
missing information. In each case, we used the starting value

µ ψ0 0 30 70( ) ( )( ) = ( ), ,  and ran a single chain. Time-series plots

of ψ and ψ over the first 100 iterations are shown in Figure

4.2. The variance ψ is plotted on a log scale, for which the

posterior distribution is more nearly symmetric.

Because µ(Ο) = 30 is located in the distant tails of the

observed data posterior (see Figure 4.1), Figure 4.2 (a) and (c)
show initial trends as µ wanders back into the region of high
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posterior density. H a d  th e s ta r ti n g  v alu e b ee n  lo cat ed  n e ar  t h e
ce n t er  o f  t h e d i s t r ib u t io n  ( e. g . at  an  o b s er v ed - d a ta  M LE o r 
p o s t er io r  m o d e )  th is  tr en d  w o u ld  n o t h av e b ee n  ev i d e n t .
O n ce  t h e  p a r a m et e r s  ar e  i n  t h e  r eg i o n  o f  a p p r e c i a b le 
d e n s i t y ,  s e r i a l c o r r el a t i o n  p r o v id e s  e v i d e n c e a b o u t h o w  f a s t 
t h e a l g o r i t h m  co n v e r g e s .  F o r  2 3 %  m i s s i n g  i n f o r m a t i o n , 

Figure 4.2. First 100 parameter iterates from single runs of data

augmentation: (a) µ and (b) log ψ with no = 3, corresponding to 23% missing

information; (c) µ and (d) log ψ with no 90, corresponding to 90% missing

information.

(a) and (b) reveal no discernible trends; the plots resemble
horizontal bands, indicating a low ratio of signal to noise. For
90% missing information, however, (c) and (d) reveal
important trends lasting for 25 iterations or more, indicating
that successive iterates are highly correlated. The plots in (a)
and (b) are typical of situations in which the fractions of
missing information are low to moderate, for which data
augmentation is known to converge rather quickly. Long-term
trends and high serial correlation, as in (c) and (d), are typical
when the fractions of missing information are high and data
augmentation converges slowly.
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To investigate relationships among successive iterates, we

could examine scatterplots of µ(t) versus µ(t+k) and ψ(t) versus

ψ(t+k) for various choices of k . A more concise way to

represent these relationships, however, is through the
autocorrelation function (ACF). The lag-k autocorrelation for

a stationary series { ξ(t) :=1,2, ,m}  is defined to be

ρ
ξ ξ

ξ
k

t t k

tV
=

( )
( )
( ) +( )

( )

Cov ,
. (4.47)

Notice that by stationarity V Vt t kξ ξ( ) +( )( ) = ( ).. A sample estimate

Figure 4.3. Sample ACFs for the series in Figure 4.2 (a)-(d) estimated from
iterations 11 to 100, with dashes indicating approximate 0.05-level critical
values for testing ρk = ρk+1= ρk+2= = 0.

of Pk is given by

r

t t k
t

m k

t
t

mκ
ξ ξ ξ ξ

ξ ξ
=

−( ) −( )
−( )

( ) +( )
=

−

( )
=

∑
∑

1
2

1

, (4.48)
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where ξ  is the mean of the series (e.g. Box and Jenkins,
1976). A plot of rk versus k for relevant values of k, known as
a sample ACF plot or correlogram, provides a useful summary
of linear serial dependence. Sample ACFs for the four series in
Figure 4.2 are shown in Figure 4.3. To prevent the estimates
from being unduly influenced by initial trends due to the
implausible starting value, the first 10 values from each series
were omitted from the calculation of the sample ACFs.
Because the four series in Figure 4.2 are actually two bivariate
series, we could also have estimated cross-correlation

functions to assess the relationships between µ(t) and ψ(t+k)

and between µ(t+k) and ψ(t) but for brevity these are omitted.

Variability of the sample autocorrelation

The sample ACFs in Figure 4.3 (a) and (b) show that serial
dependence in the first series (n0 = 3) dies out very quickly;
the estimated correlations are below 0.2 even at lag 1. The
second series, represented by (c) and (d), however, exhibits a
high degree of serial dependence, and the correlations are still
large beyond lag 10. Notice that in (c) and (d), as k increases
rk drops below zero. In general, one would not expect
negative autocorrelations; the negative estimates are
fluctuations due to the small sample size. Sample ACFs can be
quite noisy, especially when the true serial correlation is high,
and adjacent autocorrelation estimates are themselves highly
correlated. For this reason, it is helpful to calculate estimates
of variability associated with a sample ACF. For a stationary
normal process that dies out after lag k’ (i.e. ρk=0 for all k >k′)
the variance of rk for k >k′ is approximately

V r
m t

t

k

κ ρ( ) ≈ +










=

′

∑1
1 2 2

1

, (4.49)

where m is the sample size or length of the series (Bartlett,
1946). Moreover, when ρk=0 the distribution of r k is

approximately normal (Anderson, 1942). Therefore, an
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approximate a-level test of the null hypothesis of no
correlation at lag k or beyond,

ρk=ρk +1=ρk+2=…=0, (4.50)

versus the alternative hypothesis ρk≠0, rejects the null if

r z
m

rk t
t

k

≥ +




















−

=

−

∑1 2
2

1

1
1 2

1
1 2α /

/

Critical values for 0.05-level tests of (4.50) for each k are
shown in Figure 4.3 as dashed lines. In (a) and (b), none of the
correlations for lag I or beyond are significantly different from
zero. In (c) and (d), the correlations do not differ significantly
from zero beyond lag 6, but the large standard errors indicate
that the estimates are very noisy. To accurately estimate the
true correlation structure for (c) and (d), we obviously need a
much larger sample size. Figure 4.4 shows sample ACFs
based on simulation runs of length m = 10 000, for which the
standard errors are negligibly small. From these plots, it is
apparent that the autocorrelations are effectively zero by lag 3
for (a) and (b), and by lag 40 for (c) and (d).

A s  d e m o n s t r a t e d  b y  t h i s  e x a m p l e ,  l o n g - t e r m  t r e n d s  o r 
d r i f t s  i n  s c a l a r  s u m m a r i e s  o f  θ  i n d i c a t e  s l o w 

c o n v e r g e n c e  t o  s t a t i o n a r i t y ,  w h e r e a s  t h e  a b s e n c e  o f  s u c h 
t r e n d s  s u g g e s t s  r a p i d  c o n v e r g e n c e .  T i m e - s e r i e s  p l o t s 
m a y  a l s o  h e l p  d i a g n o s e  p a t h o l o g i c a l  s i t u a t i o n s  i n  w h i c h 
t h e  a l g o r i t h m  d o e s  n o t  c o n v e r g e  a t  a l l  b e c a u s e  t h e 
p o s t e r i o r 
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Figure 4.4. Sample autocorrelation functions for the series in Figure 4.2 (a)-
(d) estimated from 10 000 iterations, with dashes indicating approximate

0.05-level critical values for testing ρk=ρk+1=ρk+2=…=0.

distribution does not exist. Recall the example of Section 3.5.2
in which a single value y1 from N (µ,ψ) is observed but a

second value y2 is missing, and we apply the improper prior

π(µ,ψ)∝ ψ−1. The I- and P-steps of data augmentation (3.46)-

(3.47) are well defined, but the observed-data posterior is not
proper because y1 alone provides no information about ψ.

Figure 4.5 shows time-series plots from a single run of data
a u g m e n t a t i o n  f o r  t h i s  e x a m p l e  w i t h

y1
0 00 1 1= = =( ) ( ), and .µ ψ  In the first 100 iterations, the

range of the observed values of log ψ exceeds 35, which

means that ψ  itself varies over more than 15 orders of

magnitude. With more iterations, ψ continues to drift unless

the program halts due to numeric overflow or underflow.
Whenever ψ wanders close to zero, µ is constrained to be very

close to y1 = 0, but when ψ is large µ can become large in

either the positive or negative direction. Such highly erratic
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behavior in time-series plots suggests that one or more
components of θ are nearly or entirely inestimable from Yobs.

Warnings about time series and autocorrelation

Tim e- ser ies p lo ts  an d autocor r elation  are easy  to  u nd ers tan d an d
imp lemen t, b u t th ey  ar e n ot f oo lpr oo f . Su pp o se th at f or  all the

Figure 4.5. First 100 iterates of (a) _ and (b) log ψ from a single run of data

augmentation with a nonexistent posterior.

scalar summaries of θ we examine, the autocorrelations have

effectively died out after lag k. Should we conclude that the
algorithm effectively converges to stationarity after k steps?
The answer is no, for several reasons. First, zero correlation is
not precisely the same as independence, and nonlinear
associations may exist beyond lag k . In practice this is
probably not a major concern, particularly when the
components or functions of θ have been scaled to approximate

normality. More importantly, the possibility always exists that
the algorithm has not converged with respect to some
component or function of θ that we have not examined. For

this reason, it is always wise to monitor scalar functions that
are suspected to converge slowly, i.e. functions for which the
fractions of missing information are thought to be high.
Practical suggestions for finding such functions are given in
Section 4.4.3.

A final reason why time-series plots and sample ACFs can
mislead is that the observed-data posterior distribution may be
oddly shaped, and the algorithm may have inadequate
opportunity to visit certain regions of the parameter space for
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reasonable choices of m. For example, if the posterior is
multimodal and the modes are separated by regions of low
density, an algorithm could ’get stuck’ near one of the modes
for a large number of iterations. If we had the misfortune of
starting near a local mode that was far from the others, we
could be misled into thinking that the algorithm had converged
when, in fact, it had never left the vicinity of the local mode.
Multiple modes and oddly-shaped posteriors are typically
associated with datasets that are sparse, i.e. having a small
sample size, high rates of missingness, and a large number of
parameters to be estimated. In many cases these difficulties
can be detected a priori by thoughtful examination of the data
and missingness patterns. Multiple modes and high fractions
of missing information can also be detected by the behavior of
EM (Section 3.3), or by repeated simulation runs from a
variety of starting values.

4.4.2 Monitoring convergence with parallel chains

Another group of methods for diagnosing convergence to
stationarity involves running multiple independent chains
from a common starting value or starting distribution (Tanner
and Wong, 1987; Gelfand et al., 1990; Gelman and Rubin,
1992a). Suppose that we choose R starting values of ⁄ from a
distribution ⁄ If we simulate a single chain of length m  from
each starting value, then the iterates of θ form an array,

θ θ θ θ
θ θ θ θ

θ θ θ θ

1 0 11 1 2 1

2 0 2 1 2 2 2

0 1 2

: : : :

: : : :

: : : :

, , , ,

, , , ,

, , , ,

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

L

L

M

L

m

m

R R R R m

where value t from run r is denoted by θ r t:( ) . If f0 assigns all

its mass to a single point, then the starting values θ r o:( )  will
be identical; otherwise they may be different. Denote the
replicate values of θ at iteration t collectively by

θ θ∗( ) ( )= ={ }: : : , , ..., .t r t r R1 2
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If stationarity has been achieved by step t, then θ ∗( ):t  will be
an iid sample from the target distribution P (θ|Υobs)..

Examination of summaries of θ ∗( ):t  for t = 1, 2,... thus provide
evidence about how rapidly the process converges to
stationarity-from f0.

As with previous methods, one needs to decide which
summaries of the distribution of θ to monitor at each iteration.

Some obvious choices are sample moments, quantiles and
density estimates for scalar functions of θ. Note that even

when stationarity is achieved, these sample quantities could
vary considerably across iterations simply due to the finiteness
of R. Unless R is very large we may have difficulty in deciding

whether the discrepancy between summaries of θ ∗( ):t  and

θ ∗ +( ):t 1  is due to non-stationarity or ordinary sampling
fluctuation. It may be possible to reduce the sampling
fluctuation in the estimates by Rao-Blackwellization. Suppose
that rather than retaining the iterates of θ from the multiple

runs, we retain iterates of Ymis. Let

Υ Υmis
t

mis
r t r R∗( ) ( )= ={ }: : : , , ..., ,1 2

where Υmis
r t:( )  denotes the tth value of Ymis from simulation run

r. A comparison of Rao-Blackwellized moment or marginal

density estimates based on Υmis
t∗( ):  and Υmis

t∗ +( ): 1  suggests
whether convergence has been attained by iteration t. Use of
this technique in a univariate normal example is illustrated in
Figure 3.2.

Overdispersed starting values

Multiple-chain methods help diagnose how many iterations
are required for convergence from a particular starting
distribution. This is somewhat different from our working
notion of convergence given at the beginning of Section 4.4.1,

however, which requires a k large enough so that θ t k:( )  is

essentially independent of θ t( )  for any θ t( )  within the region
of appreciable posterior density. To check convergence in the
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latter sense, one would need to try a variety of starting values
over the region where Ρ(θ Υobs) is appreciable. In general, one

would expect to achieve stationarity more rapidly from a
starting value near the center of the posterior (e.g. an MLE or
posterior mode) than from a starting value in the tails. For this
reason, Gelman and Rubin (1992a) recommend multiple runs
from starting values that are overdispersed relative to (i.e.
exhibiting greater variability than) the target distribution
Ρ(θ Υobs), because this will result in a conservative estimate

of the number of iterations needed to achieve stationarity.
Moreover, it will greatly reduce our chance of being misled if
the posterior is so oddly shaped that single runs tend to get
stuck in small regions.

Obtaining starting values that are overdispersed relative to
the target distribution Ρ(θ Υobs), may not be a simple matter,

because in applications Ρ(θ Υobs),is the intractable distribution

that the algorithm is intended to simulate. Gelman and Rubin
(1992a) recommend drawing starting values from a
multivariate t-distribution with tails heavier than the normal
(e.g. a multivariate t with few degrees of freedom) centered at
the posterior mode, with covariances determined by the
second derivative matrix of the log-posterior at the mode. If
multiple modes are found, they recommend using a mixture of
multivariate distributions centered at each mode. In practice
this method would be tedious to implement for many of the
problems in this book, because the observed-data
loglikelihoods are often complicated and difficult to
differentiate. Numerical estimates of a second-derivative
matrix can be obtained with the SEM algorithm (Section
3.3.4), but when the dimension of θ  is high this can be

computationally prohibitive as well. If the prior distribution
being applied to θ is proper, then the prior may serve as a

handy source of starting values, particularly if it is easy to
simulate. When the prior is improper, however, this will not be
possible.

One simple method for obtaining an overdispersed starting
distribution that may work well in a variety of problems is
bootstrap resampling (Efron and Tibshirani, 1993). Suppose
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that the observed multivariate data matrix Yobs has n  rows
corresponding to n sample units, some of which have missing

values on one or more variables. Let ˆ ˆθ θ= ( )Υobs  denote the

MLE or posterior mode of θ, which can be found, for

example, via the EM algorithm. Suppose that we construct a
new observed data matrix Yobs

∗ , by drawing a simple random
sample of n* rows from Yobs with replacement, and calculate
ˆ* ˆ *θ θ= ( )Υobs , e.g. by applying the EM algorithm to Yobs. If we

take n* = n, then θ̂ ∗  will be an approximate draw from the

sampling distribution of θ̂  and in well-behaved problems for
which the observed-data posterior is approximately normal,

the distribution of θ̂ ∗  will not be far from the observed-data
posterior. If we use a value of n* considerably smaller than n,

say n/2, then θ̂ ∗  may tend to be overdispersed relative to
Ρ(θ Υobs).. Approximating the posterior distribution of a

parameter by the sampling distribution of its MLE is not, in
general, a practice to be recommended for purposes of
inference (e.g. Hill, 1987). For the mere purpose of finding
starting values for a Markov chain Monte Carlo algorithm,
however, a high degree of accuracy is not required, and
bootstrap resampling with n* < n may be perfectly adequate.

4.4.3 Choosing scalar functions of the parameter

The methods we have discussed for diagnosing stationarity
pertain to individual components or scalar functions of θ.

When the dimension of θ is very high, it may not be feasible

to monitor convergence for every component of θ, much less

all the functions of θ, that seem relevant. If the goal of the

analysis is to draw inference about one particular function
ξ=ξ(θ), then we may not need to worry about convergence in

the global sense; convergence with respect to the marginal
distribution of ξ may be good enough. I n  t h e  an al y s i s  o f  r e al 

d a ta s e ts , h o w e v er  ( an d  p ar tic u l ar l y  w h en  w e  ar e tr y in g  to 
cr ea te  m u lt ip l e im p u t at io n s  f o r  a  v ar i et y  o f  f u tu r e an aly s e s ) 
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it  m ay  b e  d if f ic u l t t o  p r e - s p e cif y  all  o f  th e  f u n c ti o n s  o f  θ t h a t

ar e r e lev an t, an d  ach ie v in g  s t at io n ar it y  w it h  r es p e ct to  t h e
en ti r e  jo in t d is tr ib u ti o n  o f  θ b ec o m es  m o r e im p o r ta n t .

Figure 4.6. Incomplete multivariate dataset with four variables.

In high-dimensional situations, we should pay particular
Attention to components or functions of θ  for which

convergence is likely to be slow. Because convergence rates
are closely related to missing information, it makes sense to
focus on aspects of θ for which the fractions of missing

information are high. Often some of these functions of θ can

be identified a priori by examining the observed data and
missingness patterns. For example, an incomplete multivariate
dataset with four variables is depicted in Figure 4.6, with
shaded areas indicating missing data. Because Y1 is fully
observed and Y2 is nearly so, we expect the parameters
governing the joint distribution of Y1 and Y2 to converge
rapidly. The parameters governing the marginal distribution of
Y4, however, will probably converge more slowly, as will the
parameters describing the relationships of Y4 to the other
variables (e.g. correlations and partial correlations). A high
rate of missing observations for a variable does not
automatically translate into high rates of missingness for its
marginal parameters, because the variable may be highly
correlated with other variables that are more fully observed. In
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practice, however, rates of missing observations are usually
suggestive of rates of missing information.

Worst linear function of the parameter

If we could find a scalar function of θ that is ’worst’ in the

sense that its marginal distribution converges, most slowly,
then convergence with respect to this function would
strengthen the evidence for global convergence. Locating such
a function would be difficult, and in general that function
would depend on the starting value or starting distribution. If
we restrict attention to linear functions, however, functions of
the form υ θΤ  for some constant vector v, then a plausible
choice for v can often be found from the convergence behavior
of EM. Recall that in the vicinity of the mode the iterations of
EM are approximately linear, with rate governed by the largest
eigenvalue of the asymptotic rate matrix (Section 3.3.2).
Suppose that we rotate the axes of the parameter space to form
a new orthogonal coordinate system whose first axis is v1, the
eigenvector of the rate matrix corresponding to this largest
eigenvalue. The first coordinate of a point θ in this new

system would then be proportional to the inner product of v1

with θ.

From a standpoint of convergence, it makes sense to regard
υ θ1

Τ  as the worst linear function of θ, because among all

linear functions its asymptotic rate of missing information is
the highest. Moreover, use of this function is attractive from a
computational standpoint because a numerical estimate of v, is
readily obtained from the trajectory of EM, It follows from

(3.23) that near the mode, θ θt( ) − ˆ  is approximately
proportional to v1. Therefore, an estimate of v, can be obtained
simply by taking the difference between the convergent value
6 and any of the final iterates of EM, e.g. the estimate of θ one

step prior to convergence. The suggested worst linear function
of θ is then

ξ θ ν θ θ( ) = −( )ˆ ˆ ,1
Τ  (4.51)
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where v1 is the numerical estimate of v1. Although it is not

necessary to subtract θ̂  from θ in (4.51), it seems useful to do

so because the sign of ξ(θ) then indicates whether we are

positioned to the left or to the right of the mode with respect to
v̂1. We can interpret ξ (θ) as a weighted sum of the

components of θ , where the weights are equal to the

perturbations from the mode in the final iterations of EM. Any
components with no missing information will drop out of this
sum, because for them EM converges immediately.

Some limited experience with (4.51) in real-data problems
suggests that this function is among the slowest to approach
stationarity when the observed-data posterior is nearly normal.
When the posterior is very non-normal, however (e.g. if it has
multiple modes) then other functions may converge more
slowly. With some oddlyshaped posteriors, we have found
functions other than (4.51) for which the ACFs take twice as
many iterations to die out than for (4.51). We should be
careful, therefore, not to attach undue significance to apparent
stationarity for this function, particularly when some
parameters are very poorly estimated. In problems for which
the posterior is nearly normal, however, monitoring this
function can be very helpful.

Observed-data loglikelihood

Another useful scalar function of θ to monitor is the observed-

data loglikelihood function l obsθ | Υ( ) or, for easier

interpretation, the likelihood-ratio statistic

d l lL obs obsθ θ θ( ) = ( ) − ( )[ ]2 ˆ | | ,Υ Υ

where θ̂  is the MLE or posterior mode. For large samples, the
observed-data posterior distribution of this function tends to
be approximately χ2  with degrees of freedom equal to the

dimension of θ. If a single chain is started at the mode, and

after a number of iterations the value of this function has not
yet risen above the dimension of θ, then there is powerful

evidence that stationarity has not yet been achieved. Unless
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evaluation of the observed-data loglikelihood is
computationally burdensome, monitoring the behavior of this
statistic is also highly recommended.

4.4.4 Convergence of posterior summaries

Thus far we have discussed methods for diagnosing
convergence of the distribution of the iterates of θ. to Ρ(θ|Υobs)
This is the type of convergence necessary for generating
proper multiple imputations of Ymis. If the goal is to make
direct inferences about functions of θ, however, we need to

assess convergence in a different sense; we need to ensure that
our Monte Carlo estimates of summaries of the posterior
distribution (moments, quantiles, densities, etc.) are
sufficiently close to the targets they estimate. More generally,
we need methods for measuring the Monte Carlo error in these
summaries, and perhaps even adjusting interval estimates and
p-values to account for the error.

Methods based on a single chain

Let θ θ θ1 2( ) ( ) ( ), , ..., M  denote the output from a single
simulation run of length M , possibly after discarding the
iterates from an initial burn-in period, and let

ξ ξ= ( )

=
∑1

1
M

t

t

M

denote the sample average of ξ(t) =ξ(θ(t)) for a scalar function

ξ.. Notice that many of the single-run estimators described in

Section 4.2, e.g. marginal moments, cumulative distribution
and density estimates, can be written in this form. Rao-
Blackwellized estimates can also be written in this form if we
let Ymis play the role of θ.. Estimating the variance of ξ  from

the sequence ξ ξ ξ1 2( ) ( ) ( ), , ..., M  is not a trivial matter, because
members of the sequence are correlated; the sample variance

of ξ ξ ξ1 2( ) ( ) ( ), , ..., M  divided by M may grossly underestimate

V( ξ ).
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In most cases, a conservative upper bound for V( ξ ) can be
estimated by subsampling the chain. Suppose that we average
over every bth iterate,

ξ ξb
tb

t

m

m( )
( )

=

= ∑1

1

,

where m = M/b. If ξ ξ ξb b mb( ) ( ) ( ), , ...,2  are uncorrelated, which
can often be ascertained by inspection of the sample ACF,

then an unbiased estimate of V bξ( )( ) is m-1, times the sample

variance of ξ ξ ξb b mb( ) ( ) ( ), , ...,2 . This estimate is also a crude

upper bound for the variance of ξ ξ= ( )1 ,   because V bξ( )( )
generally exceeds V ξ( ).

More efficient techniques are available for obtaining

consistent estimates of V ξ( ) based on ξ ξ ξ1 2( ) ( ) ( ), , ..., M .

Methods involving autocovariance and spectral analysis are
described by Geweke (1992) and Geyer (1992), and an
overview is also given by Ripley (1987). Care must be taken
when applying these variance estimates based on a single
chain; although they are theoretically consistent, some of them
may grossly underestimate the actual variance in problems for
which convergence to stationarity is slow (Raftery and Lewis,
1992a).

Methods based on multiple chains

Simple and reliable estimates of Monte Carlo error can also be
obtained through the use of multiple chains (Gelman and
Rubin, 1992a). Suppose that we perform R replicate runs from
a common starting value or starting distribution, and, perhaps
after a burn-in period, obtain a sample of size m from each

run. Denote the tth value of θ from the rth run by θ r t:( ) . Let

ξ ξ θr t r t: :( ) ( )= ( )  be some scalar function,
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ξ ξr

t

m

m

r t( )

=

=
( )∑1

1

:

the sample average of ξ within the rth run, and

ξ ξ=
( )

==
∑∑1

11
Rm

r t

t

m

r

R
:

the pooled average from all runs. Then the between-run
variance

B
R

r

r

R

=
−

−( )( )

=
∑1

1

2

1

ξ ξ

unbiasedly estimates the variance of a single ξ r( ) , and B/R

estimates the variance of the pooled estimate ξ . These
variances being estimated are conditional upon the starting
value or starting distribution. If the starting distribution is
equal to P(θ Υobs), or if there is a burn-in period long enough

to guarantee stationarity, then B/R will also be an unbiased
estimate of the unconditional variance of ξ . If the burn-in
period is not long enough, then B /R  will tend to be
conservative (i.e. upwardly biased) if the starting values are
overdispersed relative to P(θ Υobs), otherwise it could be

biased downward. Unless one is relatively certain that
stationarity will be achieved by the end of the burn-in period,
it would be safer to start the chains from R different,
preferably overdispersed starting values than from a single
value.

Interval estimation for a scalar summary

Gelman and Rubin (1992a) propose that this estimate of
Monte Carlo error be formally incorporated into a Bayesian
interval estimate for the unknown ξ=ξ(θ). Let

W
R m

r t r

t

m

r

R

=
−( )

−( )( ) ( )

==
∑∑1

1

2

11

ξ ξ:
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be the average of the R within-run variances. Viewing the data
as a balanced one-way layout, the analysis of variance for the
random-effects model leads to

σ̂ 2 1= − +m
m

W B

as an estimate of the posterior variance V(ξ Υobs).Unlike the

moment estimator (4.5) based on a single run, σ̂ 2  is an
unbiased estimate of V(ξ Υobs), assuming the burn-in period

for each run is sufficient to ensure stationarity. Combining σ̂ 2

with the estimated Monte Carlo error associated with ξ  leads
to the estimated total variance

ˆ ˆ /T B R= +σ 2

and a 100(⁄)% posterior interval for ξ is

ξ υ α± −t T, /
ˆ ,

1 2
 (4.52)

where tv,p denotes the pth quantile of the t distribution with v
degrees of freedom. The assumption underlying (4.52) is that
the posterior distribution of ξ  is normal, and the use of a t

distribution accounts for the fact that the components of
variance are estimated rather than known. Gelman and Rubin
(1992a) provide an expression for v based on an estimated
variance of T̂ , using a method similar to that of Satterthwaite
(1946). When m  is large enough so that the within-run

estimates ξ r( ) are very close, v is large and tυ α, /1 2−  becomes

essentially a normal quantile.
The use of (4.52) for inference has limitations, most notably

the assumption of normality of the posterior distribution for ξ.

When m is large and the distribution of the iterates appears to
be non-normal, it may be more reasonable to combine the runs
and base an interval estimate on quantiles of the pooled
sample of Rm observations. Whether or not one formally
incorporates estimates of Monte Carlo error into the inference,
however, the use of multiple runs and evaluation of the
between-run variance can be very useful. Note also that
multiple runs can be used to estimate the Monte Carlo
variance of an estimator that does not have the form of a
sample average, e.g. a sample quantile, for which a variance
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estimate based on a single run would be difficult to derive.
Whenever a simulation run is replicated R times, there will
automatically be R  - 1 degrees of freedom available for
estimating the variance of any statistic calculated from a single
run, regardless of its functional form.

4.5 Practical guidelines

Sections 4.2-4.4 may leave the uninitiated reader with a
bewildering array of choices and questions regarding almost
every aspect of analyzing an incomplete dataset: whether to
use parameter simulation or multiple imputation, which
convergence diagnostics to monitor, and how to carry out the
simulation in an efficient manner while avoiding potential
pitfalls. We conclude this chapter with some suggestions on
how to choose between methods and implement them in real-
data problems.

4.5.1 Choosing a method of inference

In many incomplete-data problems, it will be possible to
conduct inference either by (a) calculating appropriate
summaries of the iterates of θ or by (b) generating multiple

imputations of Ymis and combining the results of repeated
complete-data analyses. A third set of techniques, briefly
discussed in Chapter 3, is based on direct evaluation of the
observed-data likelihood function, 6.9’. likelihood-ratio tests
(Section 3.2.4). For a single, well defined inferential question,
likelihood methods are in principle the most efficient because
they do not involve simulation at all. They do require,
however (as does multiple imputation), a sample sufficiently
large for the usual asymptotic approximations to work well.
Moreover, likelihood methods can be somewhat less versatile
than Simulation in that special computational algorithms may
be needed to answer specific questions. Likelihood methods
can readily yield a p-value for testing nested hypotheses, when
maxima can be found under both the null and alternative
hypotheses. In some problems, however, finding the
maximum under one or both hypotheses may require a
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specially designed EM algorithm. Obtaining interval estimates
can also be difficult, requiring analytic or numerical
differentiation of the loglikelihood. A likelihood-based p-
value, when available, is a useful benchmark against which to
compare the results of a simulation-based method, and in
large-sample problems it may be regarded as the best answer.
When the likelihood answer is less reliable or difficult to
obtain, however, we will need to depend on parameter
simulation or multiple imputation. Below are some important
considerations in choosing among the simulation-based
methods.

Nature of the inferential question. Is there a well defined
parameter or group of parameters of interest, or is the analysis
more exploratory in nature? In the latter case, multiple
imputation may be best; one good set of, say, m  = 5
imputations may suffice for a variety of analyses, whereas
parameter simulation could require hundreds or thousands of
draws per analysis. Care must be taken, however, to ensure
that the model used to create the imputations is general
enough to encompass all of the analyses being contemplated
(Section 4.5.4). Particularly when the dataset is large and
simulation runs are expensive, multiple imputation may be the
most practical approach, because generating and storing, say,
five versions of Ymis, will tend to be cheaper than generating
and storing a thousand or more iterates of a high-dimensional
θ. On the other hand, if interest truly does focus on a single

parameter or small group of parameters, then parameter
simulation may be quite reasonable, especially in smaller
problems for which the simulations run quickly and the
relevant summaries of θ are easily stored.

Asymptotic considerations. In multiple imputation, the rules
for combining complete-data inferences all assume that the
sample is large enough for the usual asymptotic
approximations to hold. For smaller samples, when the
asymptotic methods break down, simulation-based summaries
of the posterior distribution of θ may be preferable, provided

that one keeps in mind their Bayesian interpretation and
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dependence upon a prior.

Rates of missing information. When fractions of missing
information are low, methods that average over simulated
values of Ymis (i.e. Rao-Blackwellized and multiple-imputation
estimates) can be much more efficient than methods that
average over simulated values of θ With low rates of missing

information, multiple-imputation estimates based on, say, m =
5 imputations may be nearly as precise as averages over
hundreds of draws of θ . With high rates of missing

information, however, a larger number of imputations may be
necessary.

Robustness. With parameter simulation, the form of the
parametric complete-data model often plays a crucial role in
the inference. If the model’s assumptions are seriously
violated, then the observed-data likelihood or posterior may be
a poor summary of the data’s evidence about θ; indeed, if the

modeling assumptions do not hold, then the interpretation of θ
itself may be questionable. In multiple-imputation inferences,
however, the impact of the complete-data model may be less
crucial; rather than being applied to the complete data, the
model is used only to predict the missing part. Imputations
created under a false model may not have a disastrous effect
on the final inference, provided that the analyses of the
imputed datasets are carried out under more plausible
assumptions; this is particularly true when the amounts of
missing data are not large. For this reason, in many realistic
scenarios multiple imputation may tend to be more robust to
departures from the data model than parameter simulation.

4.5.2 Implementing a parameter-simulation experiment

Exploration. The best way to avoid pitfalls is to gain some
basic understanding of the problem at the outset. How much
information is missing? Do the observed-data likelihood and
posterior seem well behaved, or are they oddly shaped with
multiple modes, ridges, or suprema on the boundary?
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Sometimes these questions can be nearly answered through
previous experience with similar datasets, and through prior
examination of the observed data and patterns of missingness.
The EM algorithm can also be an excellent diagnostic tool.
Running EM from a variety of starting values and evaluating
the loglikelihood function or log-posterior density at the
stationary points can reveal multiple modes, ridges and
boundary suprema. The iterations of EM give quick estimates
of the largest rates of missing information and the worst linear
functions of θ. If the highest rates of missing information are

extremely high, say 90% or more, we should expect a data
augmentation algorithm to converge very slowly. If the rates
are high, say 50 - 80%, convergence may not be too difficult
to attain, but we should remember that inferences about
certain aspects of θ may rely heavily upon unverifiable

assumptions about the missingness mechanism (see Section
3.3.4). V the likelihood and posterior seem well behaved and
rates of missing information are moderate, say 40% or less, we
may expect the simulations to proceed without much
difficulty.

Preliminary runs. Preliminary simulation runs are necessary to
give us an idea of how many iterations are needed to achieve
stationarity. In these runs, important functions of θ should be

saved and plotted. Unfortunately, the single-chain diagnostic
methods of Section 4.4.1 tend to work best when they are
actually needed the least, when algorithms converge reliably
and rapidly from any reasonable starting value. Performing a
variety of exploratory runs from different starting values,
preferably overdispersed relative to P(θ Υobs) is highly

recommended to avoid the pitfalls associated with oddly
shaped posteriors. Time-series plots that overlay the output of
multiple runs on the same set of axes are useful; they help us
to identify pathological situations in which the algorithm
appears to ’converge’ quickly from each starting value, but the
convergence is illusory because the iterates from the different
runs do not overlap.
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Single versus multiple chains. Whether the simulation should
be carried out using a single chain or multiple chains has been
the subject of lively debate in the Markov chain Monte Carlo
literature (Gelman and Rubin, 1992a; Geyer, 1992; Raftery
and Lewis, 1992b; Smith and Roberts, 1993). Given that Rm
iterations are to be performed, is it better to use a single run of
length Rm, or R parallel runs of length m? If the cost of the
two methods is the same, then the single-chain method may be
somewhat more precise for estimating a single quantity such
as posterior mean, because fewer burn-in iterations will be
discarded. On the other hand, the cost of the two methods may
not be the same; multiple chains might be convenient and
perhaps even less expensive if multiple computers or parallel
processing are available. If we are confident that the algorithm
converges reliably and in a reasonable amount of time from a
particular starting value (e.g. a mode), then running a single
chain from this starting value is not a bad strategy. Such
confidence, however, can probably be gained only through
multiple runs from a variety of starting values at the
preliminary stage. Moreover, the use of multiple chains is
arguably the simplest and most reliable way to assess the
Monte Carlo error of an estimate.

The importance of reproducibility. When analyzing data by
simulation, one must recognize that a simulation is an
experiment  and should be conducted according to well
accepted practices of scientific inquiry. Before considering a
result to be reliable, we should have confidence that another
knowledgeable analyst, carrying out an independent analysis
with the same data and the same model, would be led to
essentially the same conclusions. Short of finding another
analyst to reproduce the results, the best way to gain such
confidence is through replication. Before completely trusting
the results from a single run, we should, if at all possible, try
to verify them by repeating the experiment with a new random
number generator seed and a new starting value of θ.
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If the immediate goal of the simulation is to create proper
multiple imputations of Ymis then the comments above
regarding exploration of the observed-data likelihood or
posterior, preliminary runs and convergence diagnostics still
apply. If the imputations are to be used in a wide variety of
analyses, we should strive for global convergence to the joint
posterior distribution of θ, rather than convergence of the

marginal distributions of scalar functions of θ, because we

may not know which functions of θ will be the subject of

future analyses. In preliminary runs, we should pay close
attention to those functions for which the rates of missing
information are high. In judging how many iterations are
needed to achieve approximate global stationarity, we should
choose a number k large enough that the ACFs of the worst
functions of θ are effectively zero by lag k, and perhaps even

double or triple that number, if possible, to provide an extra
margin of safety.

Once we have decided on the number of iterations k needed
for stationarity, we can proceed to generate the m, multiple
imputations. One way to do this is to run a single chain for mk
iterations, taking every kth iterate of Ymis. With a single chain,
there is a danger in choosing a value of k that is too small; the
multiple imputations could be correlated and understate the
missing-data uncertainty. This danger can be avoided by
running m parallel chains of length k from overdispersed
starting values, and taking the final value of Ymis from each
chain. If the starting values are truly overdispersed, then
choosing k  too small will overstate the missing-data
uncertainty and cause inferences to be conservative. If
overdispersed starting values are difficult to obtain, then
running a single chain of length mk, or m parallel chains of
length k emanating from a common starting value (e.g. a
mode), are acceptable provided that we are relatively certain
that the choice of k is large enough.

4.5.4 Choosing an imputation model

Inference by multiple imputation proceeds in two distinct
phases: first, the missing data are filled in m times; second, the
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m versions of the complete data are analyzed and the results
are combined into a single inferential statement. These two
phases may be carried out on different occasions and even by
different persons. This temporal separation of the phases is
one of the most important advantages of multiple-imputation
inference, because the missing-data aspects of the problem are
confined entirely to the first phase; after imputation, no special
incomplete-data techniques are needed to complete the second
phase. Consequently, one good set of m, imputations can
effectively solve the missing-data problems for a large number
of future analyses. Multiple imputation is especially attractive
for large datasets (e.g. public-use files from censuses or
sample surveys) that will be analyzed in a variety of ways by a
variety of people, many of whom may not have the technical
knowledge or resources needed to analyze the incomplete
version of the data. Multiple imputations can be created by a
person or organization having special expertise in missing-
data techniques; in many cases, the imputer will have detailed
knowledge or even additional data that cannot be made
available to the analysts but which may be relevant to the
prediction of Ymis (Rubin, 1987).

Because the imputation and analysis phases are distinct, it is
natural to ask whether multiple imputation leads to valid
inferences when the imputer’s model and the analyst’s model
differ. The rules for combining complete-data inferences were
derived under some implicit assumptions of agreement
between the two models. For example, the validity of (4.32)-
(4.33) requires that the imputation and analysis phases
condition on the same set of observed data Yobs. If the imputed
datasets are distributed to a variety of users, however, it is
possible or even likely that inconsistencies will arise between
the imputer’s and analyst’s models. The validity of inultiple-
imputation inferences when the imputer’s and analyst’s models
differ has been the subject of recent controversy (Fay, 1992;
Kott, 1992; Meng, 1995; Rubin, 1996). A basic understanding
of the implications of discrepant models is important, even for
the imputer who produces imputations solely for personal use,
because discrepancies are common and can impact the
multiple-imputation inferences either positively or negatively.
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We now discuss in broad terms some types of discrepancies
and their potential impact on multiple-imputation inferences.

When the analyst assumes more than the imputer

One possible inconsistency is that the analyst’s and imputer’s
models differ, but that the analyst’s model can be regarded as a
special case of the imputer’s. For example, suppose that a
dataset contains three variables, Y1, Y2 and Y3, that only Y3 has
missing values and that proper multiple imputations are
simulated under a linear regression of Y3 on Y1 and Y2,

Y Y Y3 0 1 1 2 2= + + +β β β ε,  (4.53)

where the error ε is normally distributed. Furthermore,

suppose that the analyst subsequently models Υ3 as a linear

regression given only Y1, omitting Y2 from the model, The
analyst’s model is then a special case of the imputer’s with
β2=0.

The practical implication of the discrepancy depends on
whether the analyst’s extra assumption is true. Note that β2=0
being true does not invalidate the imputer’s model at all; (4.53)
still applies. Therefore, inferences derived from multiple
imputation will be valid, although probably somewhat
conservative, because the imputations will reflect an extra
degree of uncertainty due to the fact that the imputer’s
procedure estimates β2 rather than setting it to zero. For

example, predictions for future observations of Y3 at specified
values of Y1 will be unbiased, but interval estimates will be
somewhat wider than they would have been if the imputer had
assumed β2=0.

On the other hand, suppose that in reality β2 is not zero. The

predictions of Y3 given by the analyst’s model will then be
biased. This bias, however, will be the fault of the analyst
rather than the imputer. In this case there is nothing wrong
with the imputed datasets, and an analysis under an
appropriate model will lead to appropriate conclusions. Biases
and inappropriate conclusions that arise because an analyst
uses an inappropriate model should not be regarded as a
shortcoming of the imputation method, just as inappropriate
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analyses of a complete dataset are not the fault of the data
collector.

When the imputer assumes more than the analyst

Another type of inconsistency arises when the analyst’s model
is more general than the imputer’s; that is, the imputer applies
assumptions to the complete data that the analyst does not.
Once again, the practical implications of this inconsistency
will depend on whether the extra assumptions are true, so we
consider the two possibilities in turn.

The case where the imputer’s additional assumptions are
true has investigated by Fay (1992), Meng (1995) and Rubin
(1996) and Fay (1992) shows by example that when m = ∝ ,

the total variance T for a scalar estimand Q given by (4.24)
may be larger than the variance of Q  over repeated
realizations of the sampling and imputation procedure. This
does not, however, invalidate the method for combining
complete-data inferences ’about Q described in Section 4.3.2.
In fact, as demonstrated by Meng (1995) and Rubin (1996),
the point estimate Q  is more efficient than an observed-data
estimate derived purely from the analyst’s model, because it
incorporates the imputer’s superior knowledge about the state
of nature, a property that Rubin (1996) calls superefficiency.
Moreover, the multiple-imputation interval estimate (4.27) has
an average width that is shorter than a confidence interval
derived purely from the observed data and the analyst’s model,
even though it is conservative, having frequency coverage
greater than the nominal 100(1-α )%. Meng (1995)

demonstrates that under fairly general conditions, the addition
of true prior information to an imputation model can only
increase the efficiency of Q  while, at the same time, decrease
the width and increase the coverage of the multiple-imputation
interval estimate. Thus there is no real sense in which an
imputer’s superior knowledge can invalidate the inference; on
the contrary, additional information can only help.
Reversing the three-variable example used above, suppose that
the imputer creates imputations for Y3 under the reduced
model
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Y Y3 0 1 1= + +β β ε, (4.54)
which we assume to be true, but the analyst fits the more
general model (4.53). Under ignorability, the analyst can
obtain valid inferences without imputation by basing the
regression analysis only on those units for which Y3 is
observed. Alternatively, he or she can also perform a multiple-
imputation analysis using the imputations created under
(4.54). If the imputation model is true, the latter approach will
be superior to the former, because it will provide point and
interval estimates for β2 that are more tightly concentrated

around the true value of zero; the extra information conveyed
in the imputations results in a more efficient procedure than
one based on the observed data alone.

Now consider the situation where the imputer assumes
more than the analyst, but the additional assumptions are false.
Clearly, in this case multiple-imputation inferences can be
erroneous. In the regression example, imputations created
under the mistaken assumption that β2=0 will bias the analyst’s

estimates of β2 toward zero. Multiple imputations created

under an erroneous model can lead to erroneous conclusions,
just as a faulty model for complete data can lead to faulty
conclusions when no data are missing.

Sometimes the nature of the analysis and the pattern of
missing values force the imputer to make certain assumptions
that the analyst apparently does not need to make. For
example, consider a regression analysis with predictor
variables that are partially missing. In order to impute the
missing values, the imputer must posit a joint distribution for
all variables in the dataset, including the predictors. The
analyst, however, makes no distributional assumptions about
the predictors in the completed datasets, and specifies only the
conditional distribution of the response given the predictors.
At first glance, it appears that a discrepancy exists between the
imputer’s and analyst’s models, with the imputer’s model being
the more restrictive of the two. This discrepancy is illusory,
however, because if the analyst had been given only Yobs then
he or she could not proceed to make an efficient inference
without imposing some kind of similar distributional
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assumptions on the predictors. In situations of this type, the
additional assumptions used by the imputer should not be
viewed in a negative light, because the same kind of
restrictions would have to be imposed by an analyst who did
not have access to the imputed values.

4.5.5 Further comments on imputation modeling

From the above discussion, we see that the major danger of
inconsistency between the imputer’s and analyst’s models
arises when the imputer makes poorly grounded assumptions
but the analyst does not. For this reason, it is important that
the imputation model does not impose restrictions on
unknown parameters that will later be the subject of the
analyst’s inquiry. For example, if the analyst is going to
investigate the correlation between two variables Y1 and Y2,
then both variables need to be present in the multivariate
imputation model even if only one of them has missing values,
and the correlation between them should be left unspecified.
Design variables (see Section 2.6.2) should be included in the
imputation model if at all possible. To produce high-quality
imputations for a particular variable Y1, the imputation model
should include variables that are (a) potentially related to Y1,
and (b) potentially related to missingness of Y1. A general
guideline is that the imputer should use a model that is general
enough to preserve any associations among variables (two-,
three-, or even higher-way associations) that may be the target
of subsequent analyses.

Balanced against the theoretical advantages of a large,
general imputation model are practical limitations in
computing resources, or inherent limitations of the observed
data Yobs, which may prevent us from using an imputation
model as general as we would like. As the number of variables
and parameters grows, we may find that the ideal model may
be too large to implement in the available computing
environment. Moreover, we may find that the model has more
parameters than can be estimated from Yobs, particularly when
the prior distribution is diffuse; we may not be able to use the
model without an informative prior. When the imputer is
producing imputations purely for personal use, he or she may
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be able to tailor an imputation model for the intended
analyses. An organization that must impute a large public-use
data file, however, must try to anticipate the analyses of many
future data users and build the imputation model accordingly.
In some cases compromises will have to be made: the imputer
may have to sacrifice some of the imputation model’s
generality to stay within the constraints of what the computing
environment and the observed data can support. Construction
of imputation models that are appropriate for specific analyses
will be illustrated by the real-data examples of Chapters 5-9.
Further discussion of practical considerations in choosing an
imputation model for a large multipurpose database is given
by Schafer, Khare and Ezzati-Rice (1993).

Robustness

It is important to remember that failure of an imputation
model does not damage the integrity of the entire dataset, but
only the portion that is imputed. Unless large amounts of data
are imputed, biases introduced by an inappropriate imputation
method may not be disastrous because they can be mitigated
by the non-imputed data. In contrast, however, inferences by
methods that do not separate the imputation phase from the
analysis phase (e.g. methods of parameter simulation
described in Section 4.2) will suffer more greatly under model
failure, because the erroneous modeling assumptions will then
be applied to the entire dataset rather than just the missing
part. Once a missing-data problem is solved through
imputation, an analyst ’tends to have greater freedom to
investigate alternative models than would otherwise be
possible if he or she had access to the observed data alone.

Analyses not based on full parametric models

The basic methods of multiple-imputation inference (Section
4.3) were derived under the assumption that the complete-data
estimators Q̂  and U are first-order approximations to the
posterior mean and variance, respectively, of the estimand Q.
Some methods of statistical inference, however, are not
readily interpretable as approximate Bayesian procedures
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under any known parametric model. Examples of this include:
nonparametric methods such as those based on ranks or
permutation distributions; some of the classical design-based
estimators for complex sample surveys, and their associated
variance estimates calculated by methods such as the jackknife
and balanced repeated replication (Wolter, 1985); and
estimates and standard errors from generalized linear models
based on quasi-likelihood (McCullagh and Nelder, 1989). Is it
acceptable to use multiple imputation in the context of any of
these procedures? A partial answer is provided by Rubin
(1987, pp. 118-199), who states conditions under which a
multiple-imputation procedure will yield inferences with
frequentist validity without reference to any specific
parametric model. Multiple imputations that possess this
property are said to be proper.

Rubin’s definition of proper basically means that the
summary statistics Q , U  and B, defined in (4.21)-(4.23),
yield approximately valid inferences for the complete-data
statistics Q  and U over repeated realizations of the missing-
data mechanism. The three conditions necessary for
imputations to be proper are:

1. As the number of imputations becomes large, Q Q B−( )ˆ / .

should become approximately N(0, 1) over the distribution
of the response indicators R with Y held fixed.

2. As the number of imputations becomes large, U  should be
a consistent estimate of U, with R regarded as random and Y
regarded as fixed.

3. The true between-imputation variance (i.e. the variance of
Q  over an infinite number of multiple imputations) should
be stable over repeated samples of the complete data Y,
with variability of a lower order than that of Q̂ .

Rubin (1987) shows that if (a) the complete-data inference
based on Q̂  and U is valid over repeated samples, and (b) the
imputation method is proper, then the multiple imputation will
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yield inferences that are valid from a purely frequentist
standpoint.

Except in trivial cases (e.g. univariate data missing
completely at random), it can be extremely difficult to
determine whether a multiple-imputation method is proper
according to this definition. The most elaborate examples to
date are given by Binder and Sun (1996). These lend
important insights into the behavior of multiple imputation in
inferential settings that are nonparametric and non-Bayesian.
For the complicated multivariate situations described in this
book, however, we have little hope of analytically
demonstrating that Bayesian, model-based imputation
methods are proper. From a practical standpoint, knowing
whether an imputation method is technically proper for a
particular analysis is less important than knowing whether it
actually behaves well or poorly over repeated samples. The
latter question can be addressed through simulation studies
with realistic complete-data populations and realistic response
mechanisms. Examples of simulation studies will be given in
Sections 6.4 and 9.5.3.
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CHAPTER 5

Methods For Normal Data

5.1 Introduction

The most common probability model for continuous
multivariate data is the multivariate normal distribution. Many
standard methods for analyzing multivariate data, including
factor analysis, principal components and discriminant
analysis, are based upon an assumption of multivariate
normality. Moreover, the classical techniques of linear
regression and analysis of variance assume conditional
normality of the response variables given linear functions of
the predictors, which is the conditional distribution implied by
a multivariate normal model for all the variables. Because
statistical methods motivated by assumptions of normality are
in such widespread use, it is natural to seek general techniques
for inference from incomplete normal data.

Datasets encountered in the real world often deviate from
multivariate normality, but in many cases the normal model
will be useful even when the actual data are nonnormal. There
are several important reasons for this. First, one can often
make the normality assumption more tenable by applying
suitable transformations to one or more of the variables.
Second, if some variables in a dataset are clearly nonnormal
(e.g. discrete) but are completely observed, then the
multivariate normal model may still be used for inference
provided that (a) it is plausible to model the incomplete
variables as conditionally normal given a linear function of the
complete ones, and (b) the parameters of inferential interest
pertain only to this conditional distribution (Section 2.6.2).

Finally, even if some of the incompletely observed
variables are clearly nonnormal, it may still be reasonable to
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use the normal model as a convenient device for creating
multiple imputations. As pointed out in Section 4.5.4,
inference by multiple imputation may be robust to departures
from the imputation model if the amounts of missing
information are not large, because the imputation model is
effectively applied not to the entire dataset but only to its
missing part. For example, it may be quite reasonable to use
normal model to impute a variable that is ordinal (consisting
of  small number of ordered categories), provided that the
amount of missing data is not extensive and the marginal
distribution is not too far from being unimodal and symmetric.
When using the normal model to impute categorical data,
however, the continuous imputes should be rounded off to the
nearest category to preserve the distributional properties as
fully as possible and to make them intelligible to the analyst.
We have found that the normal model, when used in this
fashion, can be an effective tool for imputing ordinal and even
binary data in instances where constructing a more elaborate
categorical-data model would be impractical (Schafer, Khare
and Ezzati-Rice, 1993).

5.2 Relevant properties of the complete-data model

5.2.1 Basic notation

We begin by establishing some notational conventions that
will be used throughout the chapter. The dataset, as depicted
in Figure 2.1, is assumed to be a matrix of n rows and p
columns, with rows corresponding to observational units and
columns corresponding to variables. Denote the complete data
by Y = (Yobs, Ymis), where Yobs and Ymis, are the observed and
missing portions of the matrix, respectively. Let yij denote an
individual element of Y, i = 1.2,...,n, j = 1,2,...,p. The ith row
of Y, expressed as a column vector (all vectors will be
regarded as column vectors), is

yi = (yi1, yi2,...,yip)
T.

We assume that y1, y2,...,yn are independent realizations of a
random vector, denoted symbolically as (Y1, Y2,...,Yp)

T which
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has a multivariate normal distribution with mean vector µ and

covariance matrix Σ;; that is,

y y y iidNn1 2, , ..., | ~ , ,θ µ Σ( )
where θ=(µ,Σ) is the unknown parameter. Throughout the

chapter, we assume no prior restrictions on θ other than the

positive definiteness of Σ(Σ>0); that is, we allow θ  to lie

anywhere within its natural parameter space. Because the
density of a single row is

P y y yi i
T

i| exp ,θ π µ µ( ) = − −( ) −( )}{− −2
1
2

2
1 1Σ Σ

the complete-data likelihood is, discarding a proportionality
constant,

L yi yin

i
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Maximum-likelihood estimates

By expanding the exponent in (5.1) and using the fact that
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it follows that the complete-data loglikelihood can be written
as
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are the complete-data sufficient statistics, and 1 = (1, 1,..., 1)T.
Note that T1 is the vector of column sums,
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and T2 is the matrix of columnwise sums of squares and
crossproducts,

T
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Because the multivariate normal is a regular exponential
family and the loglikelihood is linear in the elements of T1 and
T2, we can maximize the likelihood by equating the realized
values of T1 and T2 with their expectations, E(T1) = nµ and

E(T2) = n(Σ+µµΤ). This leads immediately to the well known

result that the MLEs for µ and Σ are the sample mean vector

y n yi
i

n

= −

=
∑1

1

, (5.5)

and the sample covariance matrix
S n Y Y yy

n y y y y

T T

i
i
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i
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−
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=
∑

1

1

1

,
(5.6)

respectively. Note that S is a biased estimate of Σ, and in

practice it is more common to use the unbiased version n (n−
1)-1 S. Further details on estimation and frequents inference
for the multivariate normal model can be found in standard
texts on multivariate analysis (e.g. Anderson, 1984).

5.2.2 Bayesian inference under a conjugate prior

The simplest way to conduct Bayesian inference in the
complete-data case is to apply a parametric family or class of
prior distributions that is conjugate to the likelihood function
(5.1). A conjugate class has the property that any prior π(θ) in
the class leads to a posterior P(θ Υ)∝ π(θ)L(θ Υ) that is also

in the class. When both µ and Σ are unknown, the most natural
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conjugate class for the multivariate normal data model is the
normal inverted-Wishart family.

The inverted-Wishart distribution

If X is an m x p data matrix whose rows are iid N(0,Λ),, then

the matrix of sums of squares and cross-products A = XTX is
said to have a Wishart distribution, and we write

A~W(m,Λ). (5.7)

The parameters m and Λ  are often called the degrees of

freedom and scale, respectively. The dimension of A (p × p) is
not explicitly reflected in the notation (5.7) because it is
conveyed by the dimension of Λ.

The Wishart distribution arises in frequents theory as the
sampling distribution of S. For our purposes it will be more
convenient to work with the inverted-Wishart distribution. If
A~W(m,Λ) then B = A-1 is said to be inverted-Wishart, and we

write
B W m~ , .− ( )1 Λ

Omitting normalizing constants, the inverted-Wishart density
for m ≥ p can be shown to be

P B m B
m p

tr B| , expΛ Λ( ) ∝ − + +



 − 








− −1
2

1
2

1 1 (5.8)

over the region where B  > 0. For m < p, the matrix A  is
singular and B  = A -1 does not exist. Notice that (5.8) is a
proper density function for any choice of m ≥ p and Λ > 0; we

need not restrict ourselves to integer values of m. The mean of
the inverted-Wishart distribution is

E B m
m p

| , .Λ Λ( ) =
− −

−1
1

1 (5.9)

provided that m ≥  p + 2. In the special case of p = 1, the

inverted-Wishart reduces to a scaled inverted-chisquare,
c mχ ,

−2 , with c=Λ-1. These and other well-known properties of

the Wishart and inverted-Wishart distributions are discussed in
many texts on multivariate analysis; an excellent reference is
Muirhead (1982).
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For our purposes, it will also be useful to know that the
mode of the inverted-Wishart density is

mode | ,B m
m p

Λ Λ( ) =
+ +

⋅−1
1

1 (5.10)

Demonstrating this fact involves maximizing the logarithm of
(5.8), an exercise which is nearly identical to deriving the ML
estimates for the multivariate normal distribution by
maximizing the loglikelihood (5.2). We omit details of this
calculation, but for a thorough demonstration in the case of the
loglikelihood the interested reader may refer to Mardia, Kent
and Bibby (1979, pp. 103-105).

The normal inverted-Wishart prior and posterior

Returning to the problem of Bayesian inference for θ=(µ,Σ)
under a multivariate normal model, let us apply the following
prior distribution. Suppose that, given Σ, µ,  is assumed to be

conditionally multivariate normal,

µ µ| ~ , ,Σ ΣN T0
1−( ) (5.11)

where the hyperparameters µo
p∈ℜ  and T>0 are fixed and

known. Moreover, suppose that Σ is inverted-Wishart,

Σ Λ~ ,W m− ( )1 (5.12)

for fixed hyperparameters m ≥ p and Λ > 0. The prior density

for θ is then

π θ

µ µ µ µτ

( ) ∝ −{ }
× − −( ) −( ){ }

−( ) − −

−

+ +

Σ Λ Σ

Σ

m p

T

2
2 1

2
1 1

2 0
1

0

exp tr

exp
(5.13)

Following some matrix algebra, the complete-data likelihood
function (5.1) can be rewritten as

L Y S

y y

n n

n T

θ

µ µ

| exp tr

exp

( ) ∝ −{ }
× − −( ) −( ){ }

− −

−

Σ Σ

Σ

2
2

1

2
1

(5.14)

Multiplying this likelihood by (5.13) and performing some
algebraic manipulation, it follows that Ρ(θ|Υ) has the same
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form as (5.13) but with new values for (τ;m,µ0,Λ) that is, the

complete-data posterior is normal inverted-Wishart,

µ µ τ| , ~ , ,Σ ΣY N ′ ′( )( )−
0

1 (5.15)

Σ Υ Λ| ~ , ,W m− ′ ′( )1 (5.16)

where the updated hyperparameters are
′ = +
′ = +

′ =
+





 +

+






τ τ

µ
τ

τ
τ

µο

n

m m n
n

n
y

n

,

,

,0

and

′ = + +
+





 −( ) −( )





−
−

Λ Λ 1
0 0

1

nS
n

n
y y Tτ

τ
µ µ .

In the special case of p = 1, the posterior becomes

µ µ τ| , ~ , ,Σ ΣY N ′ ′( )( )−
0

1

Σ | ~ ,Y c m′ ′
−χ 2

where

′ = + −( ) +
+





 −( )

=
∑c c y y

n
n

yi
i

n
2

1
0

2τ
τ

µ

and c = Λ−1 is the prior scale for Σ.

Existence of the prior distribution requires τ > 0, m ≥ p and

Λ  > 0. Notice, however, that we may apply the updating

formulas and still obtain acceptable values of τ′, m′, and Λ′  for

certain τ  ≤ 0 and m < p. Under ordinary circumstances it

would not make sense to use a negative value for τ,, because

µ′0 would then become a weighted average of y  and µ0 with

negative weight for µ0. Taking τ = 0, however, may be quite

sensible when little or no prior information about p is
available, because it results in a posterior distribution for µ
centered about y . Moreover, in some cases a choice of m < p
may be attractive as well: see Section 5.2.3 below.
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Inferences about the mean vector

By integrating the normal inverted-Wishart density function
(5.13) over Σ , one can show that the marginal prior

distribution of µ implied by (5.11)-(5.12) is a multivariate t

distribution centered at µ0 with v = m − p + 1 degrees of freedom.

The mean of this distribution is µ0 provided that v > 1, and the

covariance matrix is v −( )− − −2 1 1 1τ Λ  provided that v  > 2.
Other properties of this multivariate t distribution are
discussed in many texts on multivariate analysis; a good
reference is Press (1982). In particular, the marginal prior
distribution of any scalar component or linear function of the
components of µ is univariate t. Suppose that ξ = αΤµ, where a

is a constant vector of length p. The marginal prior distribution
of ξ implied by (5.11)-(5.12) is then (ξ−ξ0)/σ∼ τv, where v=m−
p+1,ξ0 = αΤµ0, and

σ α α
τ

=
−Τ∆ 1

v
.

The marginal prior density is

P
v

v

oξ
πυσ

ξ ξ
υσ

υ

( ) =
( )

( )
+

−( )











+ − +( )
Γ

Γ

1
2

2
2

2

2

1 2

1

/

(5.17)

where Γ (⋅) denotes the gamma function. After observing Y we

can obtain P(ξ |Υ), the marginal posterior distribution of ξ ,

simply by replacing the hyperparameters (τ,m,µο,Λ) in the

above expressions with their updated values (τ′,m′,µ  ′0,Λ′).

Inferences about the covariance matrix

In many problems the parameters of interest are functions of
µ, and Σ  is best regarded as a nuisance parameter. On

occasion, however, an estimate of Σ  is needed. From a

Bayesian standpoint there is no universally accepted `best’
estimate of Σ. The optimal estimate depends on the choice of a
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loss function, and in practice it tends to be difficult or
impossible to choose among the various loss functions.
Bayesian estimation of a covariance matrix raises some
interesting theoretical problems that have yet to be resolved
(Dempster, 1969a). If the current state of knowledge about Σ
is described by Σ~W-1(m,Λ), then competing estimates include

the mean (5.9) and the mode (5.10). To complicate matters
further, suppose that the mean µ and the covariance matrix Σ
are both of interest, and the current state of knowledge about
θ = (µ,Σ) is represented by the normal inverted-Wishart

distribution

µ µ τ| ~ , ,Σ ΣN 0
1−( )

Σ Λ~ , .W m− ( )1

By a calculation that is essentially equivalent to maximizing
the multivariate-normal loglikelihood function, one can then
show that the joint mode is achieved at µ = µ0 and

Σ Λ=
+ +

−1
2

1

m p
.

Note that maximizing the joint density for µ and Σ  is not

equivalent to maximizing the marginal densities for µ and Σ
separately.

When a Bayesian estimate of Σ is needed, we will adopt the

following rule-of-thumb: if the current state of knowledge
about Σ is described by Σ~W -1(m,Λ) irrespective of µ, then

estimate Σ by m-1Λ-1. This represents a compromise between

the mean (5.9) and the marginal mode (5.10).

5.2.3 Choosing the prior hyperparameters

A noninformative prior

When no strong prior information is available about θ, it is

customary to apply Bayes’s theorem with the improper prior

π θ( ) ∝ −( )+

Σ
p 1

2 (5.18)
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which is the limiting form of the normal inverted-Wishart
density (5.11)-(5.12) as τ→0, m→−1 and Λ−1→0. Notice that

µ does not appear on the right-hand side of (5.18); the prior

`distribution’ of µ is assumed to be uniform over the p -

dimensional real space. Under this improper prior, the
complete-data posterior becomes

µ | , ~ , .Σ ΣY N y n−( )1 (5.19)

Σ | ~ , .Y W n nS− −− ( )( )1 11 (5.20)

A non-Bayesian justification for the use of this prior is that the
posterior distribution of the pivotal quantity

T n y S yT2 11= −( ) −( ) −( )−µ µ
becomes (n−1)p(n−p)−1F p,n−p,  the  same as  i t s  sampling
distribution conditionally upon θ (DeGroot, 1970). The

ellipsoidal (1−α) 100% HPD region for µ under this prior is

identical to the classical (1-α)100% confidence region for µ
from sampling theory, and for inferences about µ the Bayesian

and frequents answers coincide. The improper prior (5.18)
also arises by applying the Jeffreys invariance principle to µ
and Σ (Box and Tiao, 1992).

If our primary interest is not in µ  but in Σ, then the

frequents justification for using (5.18) as a noninformative
prior is not as strong because of the ambiguities involved in
estimation of Σ. Notice, however, that if we use our rule-of-

thumb that a reasonable estimate for Σ~W-1(m,Λ),is m -1Λ-1,

then (5.20) leads to the point estimate (n-1)-1nS. This is the

estimate of Σ that is most widely used in practice, because it is

unbiased for fixed θ  over repetitions of the sampling

procedure. For these reasons, we will accept (5.18) as a
reasonable prior distribution when prior information about θ is

scanty.
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Informative priors

When an informative prior distribution is needed, it is often
possible to choose reasonable values for the hyperparameters
by appealing to the device of imaginary results. Suppose that
we regard the improper prior (5.18) as representing a state of
complete ignorance about θ. After observing a sample of n

observations with mean y  and covariance matrix S, the new
state of knowledge is represented by (5.19)-(5.20). By this
logic, we can interpret the hyperparameters in (5.1l)-(5.12) as
a summary of the information provided by an imaginary set of
data: µ0 represents our best guess as to what µ might be (the

imaginary y ); τ represents the number of imaginary prior

observations on which the guess µ0 is based; m-1Λ-1 represents

our best guess as to what Σ might be (the imaginary S); and

m = τ−1 represents the number of imaginary prior degrees of

freedom on which the guess m-1 Λ-1 is based.

A ridge prior

It sometimes happens that the sample covariance matrix S is
singular or nearly so, either because the data are sparse (e.g. n
is not substantially larger than p), or because such strong
relationships exist among the variables that certain linear
combinations of the columns of Y  exhibit little or no
variability. When this happens, it may be difficult to obtain
sensible inferences about µ unless we introduce some prior

information about Σ . The following is a suggestion for

choosing a prior distribution to stabilize the inference when
little is known a priori about µ or Σ.

Suppose that we adopt the limiting form of the normal
inverted-Wishart prior (5.13) as τ→0 for some m and Λ. The

posterior becomes

µ | , ~ , ,Σ ΣY N y n−( )1 (5.21)

Σ Λ| ~ , ,Y W m n nS− − −
+ +[ ]





1 1 1
(5.22)
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which is proper provided that m + n ≥ p and (Λ−1+nS) > 0.

Notice that this posterior is very similar to the posterior
distribution (5.19)-(5.20) obtained under the standard
noninformative prior, except that the covariance matrix Σ has

been ’smoothed’ toward a matrix proportional to Λ−1. If we

take m = ∈  for some ∈  > 0 and Λ−1 =∈ S* for some covariance

matrix S*, then our rule-of-thumb estimate of Σ is

1 1

m n
nS

n
S

n
n

S
+

+( ) = ∈
+ ∈





 ∗ +

+ ∈






−Λ ,

a weighted average of S and S* with weights determined by
the relative sizes of n and ∈ .

When S is singular or nearly so, it makes sense to choose
S* to move the weighted average of the two matrices away
from the boundary of the parameter space. One effective way
to do this is to set the diagonal elements of S* equal to those
of S and the off-diagonal elements equal to zero,

S* = Diag S. (5.23)
The resulting `prior’, which is not really a prior in the Bayesian
sense because it is partly determined by the data, has the
practical effect of allowing the means and variances to be
estimated from the data alone, but smooths the correlation
matrix slightly toward the identity. The degree of smoothing is
determined by the relative sizes of ∈  and n, and ∈  can be

regarded as an imaginary number of prior degrees of freedom
added to the inference. Note that ∈  need not be an integer, and

in some cases even a small fractional value of ∈  may be

sufficient to overcome computational difficulties associated
with singular covariance matrices. Use of this prior is closely
related to the technique of ridge regression (e.g. Draper and
Smith, 1981), and can be regarded as a form of empirical
Bayes inference (e.g. Berger, 1985). This prior can be very
helpful for stabilizing inferences about µ when some aspects

of Σ are poorly estimated.
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5.2.4 Alternative parameterizations and sweep

Suppose that z is a p × 1 random vector distributed as N (µ, Σ),

which we partion as z z zΤ Τ Τ= ( )1 2,  .where z1 and z2 are

subvectors of lengths p1 and p2 = p - p1 respectively. It is well
known that the marginal distributions of z1 and z2 are N(µ1,Σ11)

and N(µ2,Σ22) where µΤ= µ µ1 2
Τ Τ,( )  and

Σ
Σ Σ
Σ Σ

=










11 12

21 22

are the partitions of µ and Σ corresponding to z z zΤ Τ Τ= ( )1 2, .

Moreover, the conditional distributions are also normal; in
particular, the distribution of z2 given z1 is normal with mean

Ε z z B z

B z
2 1 2 2 1 1 1

2 1 2 1 1

| .

. .

( ) = + −( )
= +

µ µ
α

and covariance matrix Σ22Æ1, where

α µ µ2 1 2 21 11
1

1

2 1 21 11
1

22 1 22 21 11
1

12

.

.

.

,

,

= −
= −
= −

−

−

−

Σ Σ
Β Σ Σ
Σ Σ Σ Σ Σ

(5.24)

are the vector of intercepts, matrix of slopes and matrix of
residual covariances, respectively, from the regression of z2 on
z1.

Because specifying the joint distribution of z1 and z2 is
equivalent to specifying the marginal distribution of z1 and the
conditional distribution of z2 given z1, we can characterize the
parameters of the distribution of z either by θ = (µ,Σ) or by

φ=(φ1,φ2), where φ1=(µ1,Σ11) and φ2=(α2.1,Β2.1,Σ22.1) It is easy to

show that the transformation φ=φ(θ) is one-to-one, with the

inverse transformation θ=φ−1(φ) given by
µ α µ2 2 1 2 1 1

12 11 2 1

22 22 1 2 1 11 2 1

= +
=
= +

. .

. ,

. . . .

B

B

B B

T

T
Σ Σ
Σ Σ Σ

(5.25)

Moreover, the parameters φ1 and φ2 are distinct in the sense

that the parameter space of φ is the Cartesian cross-product of
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the individual parameter spaces of φ1 and φ2; that is, any

choice of α2.1,Β2.1 and Σ22.1 > 0 will produce a valid θ = (µ,Σ)
with Σ > 0.

When a probability distribution is applied to θ=(µ,Σ) .it is

occasionally necessary to find the density function for φ. Let f

(θ) be the density of θ and g(φ) the density of φ=φ(θ) induced

by f. The relationship between g and f is

g f Jφ φ φ( ) = ( )( )− −1 1
,

where J is the Jacobian or first-derivative matrix of the
transformation from θ to φ, and ||J||means the absolute value of

the determinant of J. Notice that α21, Β2.1 and Σ22.1 are of the

same dimension as µ2, Σ21 and Σ22, respectively, so J can be

partitioned as

J

B B

= ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

∂µ
∂µ

∂µ
∂

∂µ
∂µ

∂µ
∂

∂µ
∂

∂
∂µ

∂
∂

∂
∂µ

∂
∂

∂
∂

∂α
∂µ

∂α
∂

∂α
∂µ

∂α
∂

∂α
∂

∂
∂µ

∂
∂

1

1

1

11

1

2

1

21

1

22

11

1

11

11

11

2

11

21

11

22

2 1

1

2 1

11

2 1

1

2 1

21

2 1

22

2 1

1

2 1

Σ Σ Σ
Σ Σ

Σ
Σ Σ

Σ
Σ
Σ

Σ Σ Σ

ΣΣ Σ Σ
Σ Σ

Σ
Σ Σ

Σ
Σ
Σ

11

2 1

2

2 1

21

2 1

22

22 1

1

22 1

11

22 1

2

22 1

21

22 1

22

∂
∂µ

∂
∂

∂
∂

∂
∂µ

∂
∂

∂
∂µ

∂
∂

∂
∂

B B B⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅



































,

where the submatrices along the diagonal are square. By
inspection of (5.24), we see that this matrix has the pattern

J

I

I

I

I

= × × ×
× ×
× ×























0 0 0 0

0 0 0 0

0

0 0 0

0 0

,

where I denotes an identity matrix, 0 denotes a zero matrix
and x denotes a matrix that is neither I nor 0. It is a well-
known property of determinants that
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A B

C
A C

0
= (5.26)

for square A  and C . Applying (5.26) repeatedly, the
determinant of J reduces to

J
B= ⋅∂

∂
2 1

21Σ
. (5.27)

With Σ11 held fixed, Β2.1=Σ21Σ−1
11 is a linear transformation of

Σ21.  It can be shown that the Jacobian of the linear

transformation from W (p × q) to Z = WB for nonsingular B (q
× q) is |Β|p (e.g. Mardia, Kent and Bibby, 1979, Table 2.4.1),

and thus

| | .J
p

=
−

Σ11
2

(5.28)

The sweep operator

The algorithms presented in this chapter will require repeated
use of the transformations (5.24) and (5.25). To simplify both
the notation and implementation of these algorithms, we will
rely heavily on a device known as the sweep operator. First
introduced by Beaton (1964), the sweep operator is commonly
used in linear model computations and stepwise regression.
Dempster (1969b) describes its relationship to methods of
successive orthogonalization, and Little and Rubin (1987)
demonstrate the usefulness of sweep in ML estimation for
multivariate missing-data problems. Further information and
references are given by Thisted (1988).

Suppose that G is a p  x p symmetric matrix with elements
gij. The sweep operator SWP[k] operates on G by replacing it
with another p x p symmetric matrix H,

H = SWP[k]G,
where the elements of H are given by

h g

h h g g j k

h h g g g g j k l k

kk kk

jk kj jk kk

jl lj jl jk kl kk

= −
= = ≠
= = − ≠ ≠

1 / ,

/ for ,

/ for and .

(5.29)

After application of (5.29), the matrix is said to have been
swept on position k. In a computer program, sweep can be
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carried out as follows: first, replace gkk with hkk = −1/gkk; next,
replace the remaining elements gjl=gjl in row and column k
with hjk = gjl-gjlhjk. and finally, replace the remaining elements
gjl = glj in the other rows and columns by hjl = gjl - gklhjk. This
method is efficient both in terms of computation time and
memory, because no storage locations other than the matrix
itself are necessary. Because both G and H are symmetric,
further savings can be achieved by computing and retaining
only the upper-triangular portion of the matrix.

Suppose that a p × p matrix G is partitioned as

G
G G

G G
=











11 12

21 22
,

where G11 is p1 × p1. After sweeping on positions 1, 2,..., p1,

the matrix becomes

SWP , ,...,1 2 1
11

1
11

1
12

21 11
1

22 21 11
1

12
p G

G G G

G G G G G G
[ ] = −

−













− −

− −

which is recognizable as a matrix version of (5.29). The
notation SWP[1,2,...,p1] indicates successive application of
(5.29),

SWP , ,..., SWP SWP SWP .1 2 2 11 1p G p G[ ] = [ ] [ ] [ ]L

Sweeps on multiple positions need not be carried out in any
particular order, because the sweep operator is commutative,

SWP SWP SWP SWP .k k G k k G2 1 1 2[ ] [ ] = [ ] [ ]
Sweeping a p ×  p  matrix G on positions 1, 2,..., p has the

effect of replacing G by −G−1. This inverse exists if and only if
none of the attempted sweeps involve division by zero. When
inverting a matrix with sweep, we can also readily obtain the
determinant. Let ϒk denote the kth diagonal element of the

matrix after it is swept on positions 1, 2,..., k − 1,
γ k kk

k G= −[ ]( )SWP , ,.., .1 2 1

Then

G
k

p

k=
=

∏
1

γ , (5.30)

where γ1 is taken to be g11, the first element of G. Thus the

determinant can be found by computing the product of the
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pivots (i.e. the diagonal elements of the matrix) as they appear
immediately before the matrix is swept on them (Dempster,
1969b).

It is also convenient to define a reverse-sweep operator that
returns a swept matrix to its original form. The reverse-sweep
operator, denoted by

H = RSW[k]G,
replaces the elements of G with

h g

h h g g j k

h h g g g g j k l k

kk kk

jk l jk kk

jl lj jl jk kl kk

= −
= = ≠
= = − ≠ ≠

1 / ,

/ for ,

/ for and .
κ (5.31)

Notice that reverse sweep is remarkably similar to sweep, with
the only difference being a minus sign in the calculation of hjk

= h kj. It is easy to verify that reverse sweep is indeed the
inverse of sweep,

RSW[k] SWP[k] G = G
and that reverse sweep is commutative,

RSW[k2] RSW[k1] G = RSW[k1] RSW[k2] G.

Computing alternative parameterizations

From a statistical viewpoint, the sweep operator is highly
useful for the following reason: when applied to the
parameters of the multivariate normal model, sweep converts a
variable from a response to a predictor. Suppose that z is a p ×
1 random vector distributed as N(µ,Σ), and we partition it as zΤ

= z zT T
1 2,( ) where z1 has length p 1. Let us arrange the

parameters θ = (µ,Σ) as a (p+1) × (p+1) matrix in the following

manner,

θ µ
µ

µ µ
µ
µ

= −











=
−















1
1 1 2

1 11 12

2 21 22

T
T T

Σ
Σ Σ
Σ Σ

(5.32)

The reason for placing -1 in the upper-left corner will be
explained shortly. To simplify book-keeping, we will allow
the row and column indices to run from 0 to p rather than from
1 to p + 1, so that the parameters pertaining to the jth variable
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will appear in row and column j. Suppose that we sweep this
θ-matrix on positions 1, 2,...,p1; the result will be, by the

matrix analogue of (5.29),

− − −
−

− −

















− − −

− − −

− − −

1 1 11
1

1 1 11
1

2 1 11
1

12

11
1

1 11
1

11
1

12

2 21 11
1

1 21 11
1

22 21 11
1

12

µ µ µ µ µ
µ

µ µ

Τ Τ Τ ΤΣ Σ Σ Σ
Σ Σ Σ Σ
Σ Σ Σ Σ Σ Σ Σ Σ

.

Comparing this to (5.24), we see that the last p - p1 rows and
columns contain α 2.1, Β2.1, and Σ22.1, the parameters of the

conditional distribution of z2 given z1,

SWP ,...1

1

1

1 11
1

1 1 11
1

2 1

11
1

1 11
1

2 1

2 1 2 1 22 1

p B

B

T T T

T[ ] =
− −

−

















− −
⋅

− −
⋅

⋅ ⋅ ⋅

θ
µ µ µ α

µ
α

Σ Σ
Σ Σ

Σ

Moreover, the upper-left (p1 + 1) × (p1 + 1) submatrix contains

in swept form the parameters of the marginal distribution of z1,

−








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

= [ ] − −
−


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
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
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1
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1
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Τ Τ Τ

Σ
Σ Σ
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RSW ,..., p

We have thus shown that φ=(µ1,Σ11,α2.1,Β2.1,Σ22.1), expressed in

matrix form as

φ
µ α

µ
α

=
−















⋅

⋅

⋅ ⋅ ⋅

1 1 2 1

1 11 2 1

2 1 2 1 22 1

T T

TB

B

Σ
Σ

. (5.33)

can be computed from the θ-matrix by first sweeping the full

matrix on positions 1, 2,..., pl, and then reverse sweeping the
upper-left (p1 + 1) × (p1 + 1) submatrix on the same positions.

The reason for placing -1 in the upper-left corner of the
θ matrix (5.32) is that this matrix can be considered to be

already swept on position 0. Notice that if we reverse-sweep θ
on position 0, we obtain

RSW 0
1 1[ ] −











=
+













µ
µ

µ
µ µµ

T T

TΣ Σ
. (5.34)

the parameters of the multivariate normal distribution
expressed in terms of the first two moments of z about the
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origin. This unswept version of θ is quite useful because it is

the natural representation for computing ML estimates.
Suppose that Y is an n × p  data matrix whose rows are
independent realizations of the random vector z. If we arrange
the sufficient statistics Τ1=ΥΤ1 and Τ2=ΥΤΥ into a (p + 1) × (p

+ 1) matrix

T Y Y
n T

T T
T

T
= [ ] [ ] =













1 1 1

1 2
, , , (5.35)

then the moment equations for ML estimation set (5.34) equal
to n−1T. Hence the ML estimate of θ may be computed from

the sufficient statistics by
ˆ SWP .θ θ= [ ] −n T1

Because ML estimates are invariant under transformations of
the parameter, the MLE for an alternative parameterization φ

can be obtained by sweeping θ̂  on the appropriate positions.

Figure 5.1. Matrix of missingness patterns associated with Y with 1 denoting
an observed variable and 0 denoting a missing variable.

5.3 The EM algorithm

When portions of the data matrix Y are missing, ML estimates
cannot in general be obtained in closed form; we must resort
to iterative computation. The EM algorithm for a multivariate
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normal data matrix with an arbitrary pattern of missing values
was described by Orchard and Woodbury (1972); Beale and
Little (1975); Dempster, Laird and Rubin (1977); and Little
and Rubin (1987). Because of its usefulness and its similarities
to the simulation algorithms that follow, we describe in detail
one possible implementation of EM for incomplete
multivariate normal data.

5.3.1 Preliminary manipulations

To simplify notation and facilitate computations, it is helpful
at the outset to group the rows of Y  by their missingness
patterns. A matrix of missingness patterns corresponding to Y
is shown in Figure 5.1. We will index the missingness patterns
by s = 1, 2,..., S, where S is the number of unique patterns
appearing in the data matrix. The trivial pattern with all
variables missing should be omitted from consideration. Rows
of Y  that are completely missing contribute nothing to the
observed-data likelihood and would only slow the
convergence of EM by increasing the fractions of missing
information (Section 3.3.2).

For book-keeping purposes it will be helpful to define the
following quantities. Let R  be an S  ×  p  matrix of binary

indicators with typical element rsj, where

r
Y s

Y ssj
j

j
=







1

0

if isobservedinpattern ,

if ismissinginpattern .

The matrix R is shown in Figure 5.1. For each missingness
pattern s, let Ο(s) and Μ (s) denote the subsets of the column

labels {1, 2,..., p} corresponding to variables that are observed
and missing, respectively,

O s     j r

M s j r

sj

sj

( ) = = }{
( ) = = }{

: ,

: .

1

0

Finally, let Ι(s) denote the subset of {1, 2,..., n} corresponding

to the rows of Y that exhibit pattern s. For example, suppose
that the data matrix has ten rows with no missing values, and
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after sorting these rows are labeled 1,..., 10; the first row of R
is then (1, 1,..., 1), and

O p

M

I

1 1 2

1

1 1 2 10

( ) = }{
( ) = ∅

( ) = }{

, , ..., ,

,

, , .. .

5.3.2 The E-step

Recall that in the E-step of EM, one calculates the expectation
of the complete-data sufficient statistics over P(Υmis|Υobs,θ) for

an assumed value of θ. These statistics are of the form Σiyij

and Σiyijyik, so to perform the E-step we need to find the

expectations of yij and yijyik over Ρ(Υmis|Υobs,θ).
Because the rows y1, y2,...,yn of Y are independent given θ,

we can write

P Y Y P y ymis obs
i

n

i mis i obs| , | , ,θ θ( ) = ( )
=

( ) ( )∏
1

where yi(obs) and yi(mis) denote the observed and missing
subvectors of yi, respectively. The distribution Ρ(yi(mis)|yi(obs) ,q)
is a multivariate normal linear regression of yi(mis) on yi(obs), and
the parameters of this regression can be calculated by
sweeping the θ−matrix on the positions corresponding to the

variables in yi(obs). If row i is in missingness pattern s, then the
parameters of Ρ(yi(mis) |yi(obs) ,θ) are contained in SWP[Ο(s)]θ
in the rows and columns labeled M(s) Let A denote the swept
parameter matrix

A O s= ( )[ ]SWP ,θ
and let ajk denote the (j, k)th element of A , j, k = 0, 1,..., p.
Using the results of Section 5.2.4, the reader may verify that
the first two moments of yi(mis) with respect to P(Ymis|Υobs,θ)
are given by
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E y Y a a y

y y Y a

ij obs oj kj ik
O s

ij ik obs jk

| , ,

Cov , | ,

θ

θ

κ
( ) = +

( ) =

∈ ( )
∑

for each i ∈ Ι(s)and j, k∈ M.(s) For any j∈ Ο(s), of course, the

moments are
E y Y y

y y Y

ij obs ij

ij ik obs

| , ,

Cov , | , ,

θ

θ

( ) =

( ) = 0

because yij is regarded as fixed. Applying the relation

E y y Y y y Y

E y Y E y Y
ij i obs ij ik obs

ij obs i obs

κ

κ

θ θ

θ θ

| , Cov , | ,

| , | ,

( ) = ( )
+ ( ) ( )

it follows that

E y Yij obs y j M s
y j O s

ij

ij| , * for ,
for ,θ( ) = 


 ∈ ( )

∈ ( )

and

E y y Y

y y j k O s

y y j M s k s

y y j k M s
ij i obs

ij ik

ij ik

jk ij ik

κ θ
α

| ,

for , ,

for , ,

for , ,

*( ) =
∈ ( )

∈ ( ) ∈ ( )
+ ∈ ( )







 ∗ ∗

Ο

where

y yij oj kj ik
k O s

∗

∈ ( )
= + ∑α α . (5.36)

The E-step consists of calculating and summing these
expected values of yij and yijyik over i for each j and k. The
output of an E-step can then be written as Ε(Τ|Υobs,θ) where T

is the matrix of complete-data sufficient statistics

T
n Y

Y Y Y

n y y y

y y y y y

y y y

y

T

T T

i i ip

i i i i ip

i i ip

ip

i

n

=












=























=
∑1

1

1 2

1
2

1 2 1

2
2

2

2

1

L

L

L

O M

.

The elements below the diagonal are not shown and may be
omitted from the calculations because they are redundant.

©1997 CRC Press LLC



 

Notice that the matrix Α=SWP[O(s)]θ needed for the E-step

depends on the missingness pattern s, and thus in practice the
elements of Ε(Τ|Υobs,θ) must be calculated by first summing

expected values of yij and yijyik for i∈ Ι(s), and then summing

across patterns s = 1, 2,..., S, with a new A-matrix being
calculated for each missingness pattern.

5.3.3 Implementation of the algorithm

Once Ε(Τ|Υobs,θ) has been found, carrying out the M-step is

relatively trivial. For a given value of T the complete-data

MLE is ˆ SWP ,θ = [ ] −0 1n T   and the M-step merely carries out

this same operation on Ε(Τ|Υobs,θ) rather than T . A single

iteration of EM can thus be written succinctly as

θ θt
obs

tn E T Y+( ) − ( )= [ ] ( )1 10SWP | , . (5.37)

In principle the EM algorithm for incomplete multivariate
normal data is completely defined by (5.37), but from a
practical standpoint we should still consider how to implement
the algorithm in an efficient manner. It is beneficial to keep
both processing time and memory usage down, but trade-offs
between the two are inevitable; one can always reduce
processing time at the expense of additional memory by
storing rather than recomputing quantities that must be used
repeatedly. The implementation suggested here stores rather
than recomputes the portions of Ε(Τ|Υobs,θ) that do not depend

on θ and thus remain the same for every E-step. This method

may not be optimal for any particular dataset, but it is not
difficult to program and seems to perform well in a wide
variety of situations.

Observed and missing parts of the sufficient statistics

We can express the matrix T  as the sum of matrices
corresponding to the individual missingness patterns. Let
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Τ

Σ Σ Σ
Σ Σ Σ

Σ Σs

n y y y

y y y y y

y y y

y

s i i ip

i i i i ip

i i ip

ip

( ) =























1 2

1
2

1 2 1

2
2

2

2

L

L

L

O M

,

where all sums are taken over i∈ I(s), and ns=∑i∈ I(s) is the

sample size in missingness pattern s; then

T T s
s

S

= ( )
=

∑
1

.

Each T(s) can be further partitioned into an observed part and
a missing part. Notice that the elements of T(s) in the rows and
columns labeled M(s) are functions of Ymis and perhaps Yobs

whereas the remaining elements of T(s) are functions of Yobs

only. Define a new matrix Tmis (s) which has the same
elements as T(s) in the rows and columns labeled M(s), but
with all other elements set to zero, and define Tobs(s) to be T(s)
−T mis(s). For example, consider a dataset with p = 3 variables,
and suppose that missingness pattern s has Y1 and Y3 observed
but Y2 missing; then

T s

n y y

y y y

y

T s

y

y y

y y y

obs

s i i

i i i

mis

i

i i

i i i

( ) =



















( ) =



















Σ Σ
Σ Σ

Σ

Σ
Σ
Σ Σ

1 3

1
2

1 3

13
2

2

1 2

2
2

2 3

0

0

0 0

0 0 0

0 0

0

,

,

where all sums are taken over i∈ I(s). Finally, define

T T s T T sobs obs
s

S

mis mis
s

S

= ( ) = ( )
= =

∑ ∑
1 1

and ,
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Figure 5.2. Single iteration of EM for incomplete multivariate normal data,
written in pseudocode

so that T = Tobs + Tmis. The E-step may then be written
E T Y T E T Y

T s E T s Y

obs obs mis obs

obs
s

S

mis obs
s

S
| , | ,

| , .

θ θ

θ

( ) = + ( )
= ( ) + ( )( )

= =
∑ ∑

1 1
The elements of Tobs can be calculated once at the outset of the
program and stored for all future iterations of EM.

An implementation in pseudocode

One possible implementation of an iteration of EM is shown
in Figure 5.2. It is written in pseudocode, a shorthand
language that can be understood by anyone with programming
experience and is easily converted into standard languages like
Fortran or C. In this pseudocode, the symbol `: =’ indicates the
operation of assignment; for example, `a : = b ’ means `set a
equal to b.’ This implementation requires two (p + 1) × (p + 1)
matrix workspaces: T, into which the expected sufficient
statistics are accumulated, and q, which holds the current

estimate of the parameter. For simplicity, the rows and
columns of these matrices are labeled from 0 to p rather than
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from 1 to p  + 1. In addition, a single vector of length p ,
denoted by c = (c1,...,cp), is needed as a temporary workspace
to hold the values of y ji

∗  given by (5.36). The iteration begins
by setting T equal to Tobs which we assume has already been
computed. The expectations of yij and yijyik that contribute to
Tmis are then calculated and added into T, one missingness
pattern at a time. In order to calculate these expectations
within a missingness pattern s, the θ-matrix must be put into

the required SWP[Ο(s)] condition; for this, we use the

convenient book-keeping device that a diagonal element θjj is

negative if and only if θ has been swept on position j. Finally,

after the expected sufficient statistics are fully accumulated
into T, the new parameter estimate is calculated and stored in
θ in preparation for the next iteration.

For efficiency, the code in Figure 5.2 does not calculate the
off-diagonal elements of T more than once. If θ and T are

stored as two-dimensional arrays, then only the upper-
triangular portions should be used, and Tjk or θjk should be

interpreted as the (j, k)th element if ≤ k or the (k, j)th element if

j > k. Memory requirements can be reduced by retaining only
the upper-triangular parts of T and 0 in packed storage. To
reduce the impact of rounding errors, T, θ, and c should be

stored in double precision. Rounding errors can also be
reduced by centering and scaling the columns of Y at the
outset; for example, we could transform the observed data in
each column of Y to have mean zero and unit variance before
running EM. If the data are centered and scaled, however, we
should remember that θ will be expressed on this transformed

scale, and for interpretability we may need to transform the
estimate of θ back to the original scale at the end of the

program.

Starting values

EM requires a starting value θ(0)=(µ(0),∑(0))for the first

iteration. Any starting value may be used provided that ∑(0) is
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positive definite, but in practice it helps to choose a value that
is likely to be close to the mode. Several choices for starting
values are described by Little and Rubin (1987). The mean
vector and covariance matrix calculated only from the
completely observed rows of Y may work well, provided that
there are at least p + 1 such rows. Another easy method is to
use the observed data from each variable to supply starting
values for the means and variances, and set the initial
correlations to zero; if the columns of Y have been centered
and scaled at the outset to have mean 0 and variance 1, then
this corresponds to taking µ(0)=(0,0,...,0)Τ and ∑(0)=Ι.

Unless the fractions of missing information for some
components of θ are very high, the choice of starting value is

usually not crucial; when the missing information is low to
moderate, the first few iterations of EM tend to bring θ to the

vicinity of the mode from any sensible starting value. When
writing a program for general use, it is helpful to give the user
the option of supplying a starting value, because restarting EM
from a variety of locations helps to diagnose unusual features
of the observed-data likelihood, such as ridges and multiple
modes.

Estimates on the boundary

It sometimes happens, particularly with sparse datasets, that
the observed-data likelihood function increases without limit
as θ approaches the boundary of the parameter space (i.e. as ∑
approaches a singular matrix). When this occurs, the EM
algorithm may behave in a variety of ways. In some problems,
the elements of θ stabilize and EM appears to converge to a

solution on the boundary. In other problems, the program halts
due to numeric overflow or attempted division by zero. In yet
other problems, the sweeps required for the E-step become
numerically unstable as the iterates approach the boundary,
and substantial rounding errors are introduced. We have found
that these rounding errors sometimes `deflect’ θ away from the

boundary, causing a sudden large drop in likelihood from one
iteration to the next. The iterates may approach the boundary
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for a number of steps, deflect away, approach again, and
deflect away again in a recurring fashion. If the elements of θ
do not appear to have converged after a large number of
iterations, then it is advisable to monitor both the
loglikelihood (Section 5.3.5) and some aspect of ∑ (e.g. the

determinant, or the ratio of the largest eigenvalue to the
smallest) to determine whether the iterates are approaching the
boundary.

When an ML estimate falls on the boundary, it is often
helpful to apply a ridge prior and use EM to find the posterior
mode as described below.

5.3.4 EM for posterior modes

This EM algorithm can be easily altered to compute a mode of
the observed-data posterior distribution rather than an MLE.
As discussed in Section 3.2.3, the E-step is no different; only
the M-step needs to be modified. The exact form of this
modification will depend on the prior distribution applied to θ.

Priors for incomplete data

At this point, it is worthwhile to consider what prior
distributions may be appropriate for an incomplete dataset.
Because a prior distribution by definition reflects one’s state of
knowledge about θ before any data are observed, the fact that

some data are missing should from a strictly Bayesian
viewpoint have no effect whatsoever on the choice of a prior.
To the Bayesian purist, any prior that is appropriate for
complete data will be equally appropriate for incomplete data.
Most statisticians would agree, however, that choosing a prior
distribution (including its analytic form) purely by
introspection can be difficult, and in practice most priors are
chosen at least partly for computational convenience. The
normal inverted-Wishart family of prior distributions,
described in Sections 5.2.2 and 5.2.3, is computationally
convenient for the EM and data augmentation algorithms in
this chapter. In general, this family is not conjugate when data
are incomplete; the observed data posterior P Yobsθ |( ) under a
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normal inverted-Wishart prior is tractable only in special
cases. Yet EM and data augmentation are both easy to
implement under this family of priors, because the simplicity
of these algorithms depends upon the tractability of the
complete-data problem.

When prior information about θ is scanty, we suggest that

the customary diffuse prior for complete data,

π θ( ) ∝ −( )+

Σ
p 1

2 ,

may also be reasonable when some data are missing. Recall
from Section 5.2.3 that one important justification for this
prior with complete data is that Bayesian and frequents
inferences about p coincide. This result does not immediately
generalize to incomplete data, but limited experience suggests
that Bayesian inferences under this prior may also be
approximately valid from a frequents point of view. Little
(1988) reports that in the case of bivariate datasets with
missing values on one variable generated by an ignorable
mechanism, this prior leads to Bayesian inferences about µ
that are well-calibrated; the HPD regions tend to have
frequency coverage close to the nominal levels. Because this
prior treats the variables Y1, Y2,..., Yp in a symmetric fashion,
we conjecture that similar results may hold for more
complicated multivariate scenarios as well.

When data are sparse and certain aspects of ∑ are poorly

estimated, we suggested in Section 5.2.3 that a useful prior for
complete data was the limiting form of the normal inverted-
Wishart with τ=0,  m=∈  for some ∈  > 0, and Λ −1=∈ Diag S,

where S is the complete-data sample covariance matrix. With
incomplete data S cannot be calculated, but a useful substitute
is the matrix with diagonal elements equal to the sample
variances among the observed values in each column of Y.
This prior effectively smooths the variances in ∑ toward the

observed-data variances and the correlations toward zero. If
the observed data in each column of Y have been scaled at the
outset of the program to have unit variances, then this prior
will simply take Λ−1=∈ Ι.
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Modications to the M-step

The joint mode of the normal inverted-Wishart distribution,

µ µ τ| ~ , ,

~ , ,

Σ Σ

Σ Λ

N

W m

0
1

1

−

−
( )

( )
is achieved at µ0 and (m+p+2)-1Λ−1 for µ and ∑, respectively

(Section 5.2.2). Thus the complete-data posterior mode for
θ = (µ,Σ) under the normal inverted-Wishart prior with

hyperparameters (τ,m,µ0,Λ), denoted by ˜ ˜ , ˜ ,θ µ= ( )Σ  is

˜ and ˜ ,µ µ= ′ =
′ + +

′( )−
0

11
2

Σ Λ
m p

where µ 0,  m ′  and Λ′ are the updated versions of the

hyperparameters given in Section 5.2.2. By reverse-sweeping
the mode on position 0 and equating the result to a matrix of
modified sufficient statistics,

RSW
˜

˜ ˜
˜

˜ ˜ ˜ ˜

˜

˜ ˜
0

1 1 1 1

1 2
[ ] −











=
+













=












−µ
µ

µ
µ µµ

T T

T

T
n

n T

T TΣ Σ
the mode can be computed as if it were an ML estimate based
on T̃1 and T̃2  rather than T1 and T2. Solving for T̃1 and T̃2  and
substituting expressions for the updated hyperparameters gives

T
n

n
T

n
n

1 1 0
~ =

+




 +

+




τ

τ
τ

µ

and

˜ ˜ ˜T
n

n m p
T T T A T Tn

T
n

T
2 2

1
1 1

1 1
1 12

=
+ + +

− + +( ) +−Λ

as the modified sufficient statistics, where

A
n n

T n T n T=
+( )

−( ) −( )τ
τ

µ µ1 0 1 0 .

To modify the EM algorithm shown in Figure 5.2 to compute
a posterior mode rather than an MLE, we need only to replace
the expected sufficient statistics T1 and T2 in the workspace T
by the modified versions T̃1 and T̃2  immediately before

executing the final step θ : = SWP[0]n-1Τ.
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5.3.5 Calculating the observed-data loglikelihood

One of the great advantages of the EM algorithm is that it
never requires calculation of the observed-data loglikelihood
function or its derivatives. The observed-data likelihood for
this problem, discussed in Example 3 of Section 2.3.2, or its
logarithm l(θ|Υobs), would be very tedious to differentiate or

maximize by gradient-based methods. Evaluation of l(θ|Υobs),
at a specific value of θ, however, is not overwhelmingly

difficult; the computations required for a single evaluation are
comparable to those needed for a single iteration of EM.

It follows from (2.10) that the observed data-loglikelihood
function may be written as

− − −( ) −( )






∗
( )

∗ ∗−
( )

∗

∈ ( )=
∑∑ 1

2
1
2

1

1

log ,Σ Σs i obs s
T

s i obs s
i I ss

S

y yµ µ

where yi(obs) denotes the observed part of yi and µs
∗  and Σs

∗

denote the subvector of µ and the submatrix of ∑,

respectively, that pertain to the variables that are observed in
pattern s. An equivalent but computationally more convenient
expression is

l Y tr Mobs
n

s s s
s

S
sθ | log ,*( ) = − − }{ ∗ −

=
∑ 2

1
2

1

1

Σ Σ (5.38)

where ns is the number of observations in missingness pattern
s and

M y ys i obs s
i I s

i obs s
T

= −( ) −( )( )
∗

∈ ( )
( )

∗∑ µ µ .
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Figure 5.3. Calculation of observed-data loglikelihood function.

Pseudocode for calculating l(θ|Υobs) is shown in Figure 5.3.

This algorithm requires a p × p matrix workspace M to hold
values of M<i>s</i>, and a p × 1 vector c for temporary storage

of µ . The constants d and t hold log Σs
∗  and tr Ms sΣ*−1 ,

respectively, and after execution the loglikelihood value is
contained in 1. This program modifies the parameter matrix θ;

if necessary, however, the single line
θ:=RSW[Ο(S)θ

may be added at the end of the program, which will return θ to

its original state except for rounding errors.
Notice that the algorithm for evaluating L(θ|Υobs) bears a

strong resemblance to a single step of EM. An obvious
question to ask is whether the two sets of code can be
combined, so that an evaluation of the loglikelihood is
efficiently woven into EM itself This is certainly possible, but
subject to the following caveats. First, the loglikelihood would
have to be evaluated at the parameter estimate from the
previous iteration; that is, we would have to evaluate l(θ(t)

|Υobs) as we computed θ ( t + 1 ). Second, notice that a
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loglikelihood evaluation requires accumulation of the
observed parts of the complete-data sufficient statistics, rather
than the expected values of the missing parts. Recall that the
EM code in Figure 5.2 assumes that Tobs the portion of the
expected value of T that does not change over the iterations,
has already been computed and stored at the outset of the
program. Evaluation of the observed-data loglikelihood,
however, requires access to the individual matrices Tobs(s) for
s = 1,2,..., S which could be very cumbersome to store. If, as in
Figure 5.3, the matrices Tobs(s) are not stored but effectively
recomputed at each iteration, then the proportionate reductions
in computing time achieved by combining the two algorithms
over running them separately would not be overwhelming.

When EM is used to find a posterior mode rather than an
MLE, the function that is guaranteed to be non-decreasing at
each iteration is no longer the observed-data likelihood but the
observed-data posterior density. The logarithm of the
observed-data posterior density is

log | | log ,P Y l Yobs obsθ θ π θ( ) = ( ) + ( )
where unnecessary normalizing constants have been omitted.
Thus the log-posterior density may be evaluated by adding log
π(θ) to the result of the algorithm in Figure 5.3. Under a

normal inverted-Wishart prior with hyperparameters
(τ,m,µ0,Λ), this additional term is

log log ,π θ( ) = − + + − −m p
tr M

2
2

1
2

1
0Σ Σ

where

M T
0

1
0 0= + −( ) −( )−Λ τ µ µ µ µ ,

and unnecessary constants have again been omitted.

5.3.6 Example: serum-cholesterol levels of heart-attack
patients

Ryan and Joiner (1994, Table 9.1) report serum-cholesterol
levels for n  = 28 patients treated for heart attacks at a
Pennsylvania medical center. For all patients in the sample,
cholesterol levels were measured 2 days and 4 days after the
attack. For 19 of the 28 patients, an additional measurement

©1997 CRC Press LLC



 

was taken 14 days after the attack. The data are displayed in
Table 5.1 (a), with readings at 2, 4 and 14 days denoted by Y1,
Y2 and Y3, respectively.

Regarding the complete data as a random sample from a
trivariate normal distribution, we applied EM to find the observed-data

Table 5.1. EM algorithm applied to cholesterol levels for heart-attack patients
measured 2, 4 and 14 days after attack

ML estimates of the nine parameters in θ=(µ,Σ) (ML estimates

for this dataset could also be calculated noniteratively; see
Section 6.5). Denote the elements of µ and ∑  by µj and σjκ,
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respectively, for j, k = 1, 2, 3, and let ρjκ =σjκ(σjjσκκ)-1/2 denote

the correlations. From starting values chosen based on a crude
guess, µ(ο)=(200,200,200)Τ  and ∑ ( ο)=(50)2Ι, convergence

within four significant digits to

ˆ
.

.

.

, ˆ
.

µ =
















=
















253 9

230 6

222 2

2195 1455 835 4

2127 1515

1953

Σ

was achieved in just three iterations. Because no data, e
missing for Y1 or Y 2, the five parameters (µ1,µ2,σ11,σ22,ρ12)
converge in a single step regardless of the starting value.
Iterates of the four remaining parameters, expressed as µ3,

σ3=√σ33, ρ13 and ρ23, are displayed to six significant digits in

Table 5.1 (b).
For estimation of θ, the iterations beyond t  = 4 are

superfluous because precision beyond three or four digits is
rarely necessary. As discussed in Section 3.3.4, however, these
additional iterations can be used to estimate elementwise rates
of convergence, which are typically equal to the largest
fraction of missing information. Elementwise rates of
convergence for the four parameters that do not converge in
one step, estimated using (3.27), are displayed in Table 5.1 (c).
These estimates, which are all close to 47%, do not measure
the individual rates of missing information for the four
parameters µ3, σ3, ρ13 and ρ23; rather, they pertain to the

function of θ for which the rate of missing information is

highest.
Notice that the 47% rate of missing information is

somewhat higher than the 9/28 = 32% rate of missing
observations for Y3. Because we know that the parameters
pertaining to the joint distribution of (Y1, Y2) have no missing
information, the 47% rate must pertain to some function of the
parameters of the regression of Y3 on Y1 and Y 2. It is
instructive to consider why the largest rate of missing
information exceeds the rate of missing observations for Y3. A
hint is provided by the scatterplot of Y1 versus Y2 displayed in
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Figure 5.4 (a). The cases having missing values for Y3 tend to
be slightly farther, on average, from the center of the (Y1, Y2)
distribution than do the cases for which Y3 is observed.
Because they are farther from the center, they exert more
influence on the estimates of the regression parameters. A well
known measure of influence in linear regression models is
provided by the leverage values, the diagonal elements of the
hat matrix (e.g. Draper and Smith, 1981).

Figure 5.4. (a) Scatterplot of Y1 versus Y2 for all cases, and boxplots of
leverage values hii for cases having (b) Y3 observed and (c) Υ3 missing.

The hat matrix for linear regression is defined to be
Η=Χ(ΧΤΧ)−1ΧΤ,

where X is the matrix of predictor variables, in this case a 28 ×
3 matrix containing the observed values of Y1 and Y2 and the
column vector 1=(1,1,...,)Τ. Boxplots of the diagonal elements

hii of H for the cases having Y3 observed and the cases having
Y3 missing are shown in Figures 5.4 (b) and (c), respectively.
The incomplete cases tend to have slightly higher values of hii

and thus exert greater influence on an average, per-case basis
over the estimates of the regression parameters.

The parameters of greatest interest in this problem appear to
be functions of µ, such as comparisons or contrasts among µ1,

µ2 and µ3. Although the rate of missing observations for Y3 is

32%, we might conjecture that the rate of missing information
for µ3 or a contrast involving µ3 is substantially lower, because

of the high correlations between Y3 and the completely
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observed variables Y1 and Y2. The rate of missing information
for µ3, a contrast involving µ3 or any other function of θ may

be estimated in a straightforward manner by multiple
imputation; see Section 6.2.1.

5.3.7 Example: changes in heart rate due to marijuana use

Weil et al. (1968) describe a pilot study to investigate the clinical 
and psychological effects of marijuana use in human subjects. Nine

Table 5.2. Change in heart rate recorded 15 and 90 minutes after marijuana
use, measured in beats per minute above baseline

healthy male subjects, all of whom claimed never to have used
marijuana before, received doses in the form of cigarettes of
uniform size. Each subject received each of the three
treatments (low dose, high dose and placebo) and the order of
treatments within subjects was balanced in a replicated 3 × 3

Latin square. Changes in heart rate for the n = 9 subjects
measured 15 and 90 minutes after the smoking session are
displayed in Table 5.2. Because the article does not specify the
order in which the treatments were given to the individual
subjects, we will ignore this feature of the data and proceed as
if the order effects are negligible.

At first glance, it appears that missing data are only a minor
problem here; only 5 of the 54 data values are missing. Yet,
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the EM algorithm converges very slowly. Depending on the
starting values and convergence criterion, several hundred
iterations may be needed to obtain convergence. The
elementwise rates of convergence indicate that the largest
fraction of missing information is approximately 97%.
Moreover, the ML estimate of θ lies on the boundary of the

parameter space. The ML estimates of the means, standard
deviations and correlations are displayed in Table 5.3, along
with the eigenvalues of the estimated correlation matrix. The
smallest eigenvalue is zero to three decimal places, indicating
that the estimated covariance matrix is singular or nearly so.

Why do so few missing values create such difficulty in this
example?

Table 5.3. ML estimates of means, standard deviations and correlations for
the columns of Table 5.2, with eigenvalues of the estimated correlation matrix

There are two primary reasons. First, the incomplete cases
appear to be very influential. A comparison of the ML
estimates of the means in Table 5.3 (a) with the means of the
observed data in the columns of Table 5.2 is quite revealing.
The large discrepancy for the fourth column (10.6 versus 1.0)
demonstrates that a disproportionate amount of information
about the mean for that column is provided by subjects 4 and
5. Further examination of Table 5.2 reveals that these two
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subjects have rather extreme values in some of the other
columns, which gives them high leverage. When these two
subjects are deleted, EM converges rapidly and the estimated
largest fraction of missing information drops to 45%.

A second reason why this example is problematic is that the
complete-data estimation problem is poorly conditioned. The
number of subjects n = 9 is not much greater than the number
of variables p = 6. When n and p are nearly equal, it becomes
likely that certain linear combinations of the columns of Y will
show little or no variability, particularly when the columns are
correlated. The multivariate normal model for this example
has 27 parameters, too many to be estimated well from a
dataset of this size even with complete data. Although certain
aspects of θ are poorly estimated, however, we can still make

reasonable inferences about the parameters of interest; see
Section 5.4.4.

5.4 Data augmentation

5.4.1 The I-step

Data augmentation for incomplete multivariate normal data is
remarkably similar to the EM algorithm. The deterministic E-
and M-steps are replaced by stochastic I- and P-steps,
respectively, where the I-step simulates

Y P Y Ymis
t

mis obs
t+( ) ( )( )1 ~ | , ,θ

and the P-step simulates

θ θt
obs mis

tP Y Y+( ) +( )( )1 1~ | , .

Because the rows y 1, y2,...,yn of Y are conditionally
independent given θ, the I-step is carried out by drawing

y P y yi mis
t

i mis i obs
t

( )
+( )

( ) ( )
( )( )1 ~ | ,θ

independently for i = 1, 2,..., n. As discussed in Section 5.3.2,
if row i is in missingness pattern s then the conditional
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distribution of yi(mis) given yi(obs) and θ is multivariate normal

with means

E y Y a a yij obs j kj ik
k O s

| ,θ( ) = +
∈ ( )
∑0 (5.39)

and covariances

Cov , | ,y y Y aij ik obs jkθ( ) = (5.40)

for j,k∈ M(s), where ajk denotes an element of the matrix

A=SWP[Ο(s)]θ. (5.41)

Thus the I-step of data augmentation involves nothing more
than the independent simulation of random normal vectors for
each row of the data matrix, with means and covariances given
by (5.39) and (5.40).

A convenient way to simulate random normal vectors within
the I-step is to create a Cholesky factorization routine that operates

Figure 5.5. Calculation of A:= CholsA.

on square submatrices of (5.41). The Cholesky factor of a
positive definite matrix A, denoted by

C=CholA,
is an upper-triangular matrix of the same dimension of A
having the property that CTC  = A . To simulate a random
vector z from N(b, A), we may take

z=b+(CholA)Τz0,

where z0 is a vector of the same length as z containing
independent standard normal variates. A typical Cholesky
factorization routine operates on the upper-triangular portion
of a symmetric matrix, overwriting it with its Cholesky factor,
To draw from the distribution of yi(mis) given yi(obs) and θ,
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however, we need to calculate the Cholesky factor of only the
square submatrix of (5.41) corresponding to the rows and
columns in M(s). For a set S of row labels of a matrix A, let us

use
Α:=CholsA (5.42)

to indicate the operation that overwrites (the upper triangular
portion of) the square submatrix { ajκ : j,k∈ S}  with its Cholesky
factor, while leaving the remaining elements of A unchanged.
A simple algorithm for this operation, adapted from
pseudocode given by Thisted (1988, p. 83), is shown in Figure
5.5.

Once the Cholesky factorization is available, the I-step
becomes a simple matter of cycling through the missingness
patterns s = 1,..., S, calculating

CholM(s)SWP[Ο(s)]θ
for each s, and simulating yi(mis) for each i∈ Ι(s). An implemen-
tation of the I-step is shown in Figure 5.6. The code simulates the

Figure 5.6. I-step for incomplete multivariate normal data.

©1997 CRC Press LLC



 

missing values in Ymis and stores them in the appropriate
elements of Y . In addition, the code contains four lines
preceded by the single character ’C’ which accumulate the
simulated complete-data sufficient statistics and store them in
a (p + 1) × (p + 1) matrix workspace T. If the I-step is to be
followed by a P-step, then these sufficient statistics will be
needed to describe the complete-data posterior distribution of
θ. If the I-step will not be followed by a P-step (e.g. if it is the

final step of a chain for producing an imputation of Ymis) then
these four lines may be omitted. The code in Figure 5.5
requires two temporary workspaces: a p × p  matrix C  for
storing Cholesky factors, and a p × 1 vector z for holding
simulated N (0, 1) variates.

5.4.2 The P-step

Under the prior distributions discussed in Sections 5.2.2 and
5.2.3, the complete data posterior Ρ(θ|Υobs,Υmis) is a normal

inverted-Wishart distribution. The P-step of data
augmentation, therefore, is merely a simulation of the normal
inverted-Wishart distribution,

µ µ τ| ~ , ,

~ , ,

Σ Σ

Σ Λ

N

W m

0
1

1

−

−
( )

( )
for some (τ,m,µο,Λ)determined by the prior, the observed data

Υobs, and the missing data Ymis
t( )  imputed at the last I-step. The

specific values of (τ ,m,µο,Λ)) are calculated using the

formulas for updating hyperparameters given in Section 5.2.2.
The most obvious way to generate ∑~W-1(m,Λ) is to take

∑=(ΧΤΧ)-1, where X  is an m  × p  random matrix whose rows

are independent draws from N(0,Λ). This method cannot be

used for non-integer values of m , however, and may be
cumbersome for large m  because it requires mp random
variates. More efficient methods for generating random
Wishart matrices are available that require simulation of only
p (p + 1)/2 random variates. One such method relies on a
characterization of the Wishart distribution known as the
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Bartlett decomposition (e.g. Muirhead, 1982). If Α~W(m,I)
where I is a p × p identity matrix and m ≥ p, then we can write

A = BTB where B is an upper triangular matrix whose elements
are independently distributed as

b X j pjj m j~ ,..., ,,− + =1
2 1 (5.43)

b N j kjk ~ , , .0 1( ) < (5.44)

Suppose that we generate an upper-triangular matrix B
according to (5.43)-(5.44), so that ΒΤΒ~W(m,I), and take

M=(ΒΤ)-1C,

where C  is the Cholesky factor of Λ−1(i.e.CΤC=Λ−1). Then

∑=MΤM will be distributed as W-1(m,Λ) because

M M C B B C

W m C C

T T T

T

( ) = ( )
( )





− − −

−

1 1 1

1
~ , .

(Here we have made use of the property that D ~W(n,Γ)
implies CΤDC~W(n,CΤΓC) which follows immediately from

the definition of the Wishart distribution.) Moreover, taking
µ µ τ= + −

0
1 2/ .M zΤ

where z~N(0,Ι) is a p  ×  1 vector of independent standard

normal variates, results in µ |∑~N(µ0,τ−1Σ)This method

requires the inversion of only the triangular matrix BT, which
can be accomplished via a simple backsolving operation. Note
that with the exception of M, all matrices used here are either
symmetric or triangular, so memory requirements can be
reduced by retaining only their upper-triangular portions in
packed storage.

5.4.3 Example: cholesterol levels of heart-attack patients

Recall the example of Section 5.3.6 in which cholesterol
measurements were recorded for patients 2, 4 and 14 days
after heart attack. The EM algorithm converged rapidly with
an estimated largest fraction of missing information equal to
47%. We applied data augmentation to this example under the
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noninformative prior (5.18). Output analysis from preliminary
runs suggested that the data augmentation algorithm also
converged rapidly. For illustration, we ran a single chain for
1100 iterations starting from the ML estimate of θ, discarded

the first 100 iterations, and estimated ACFs for a variety of
scalar functions of θ over the remaining 1000 iterations. We

deliberately chose functions of θ  for which the rates of

missing information were thought to be high, including:

1. µ 3 and σ 3, the mean and standard deviation of Y3,

respectively;

2. the parameters of the linear regression of Y3 on Y1 and Y2,
including the slopes

β
β

σ σ
σ σ

σ σ3112

32 12

11 12

21 22
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⋅

][ −


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the intercept

β µ
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and the residual standard deviation σ σ3 12 33 12⋅ ⋅= , , where

σ σ
σ σ
σ σ

σ
σ

σ σ
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1
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[ ]
−

= −



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












 ;

and

3. the worst linear function ξ=ξ(θ) estimated from the final

iterations of EM, as described in Section 4.4.3. This is the
inner product of θ  and the estimated eigenvector

corresponding to the largest eigenvalue of EM’s asymptotic
rate matrix. Because there are no missing values on Y1 or
Y2, ξ  is a weighted sum of µ3, σ13, σ23 and σ33, where the

weights are the perturbations from the ML estimates in the
final iterations of EM.
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Table 5.4 Sample ACFs of selected scalar parameters estimated over
iterations of data augmentation

Sample ACFs for these functions of θ  up to lag 20 are

displayed in Table 5.4. Correlations that are significantly
different from zero at the 0.05 level, as determined by
Bartlett’s formula (4.49), are marked with an asterisk. Because
the series is so long and the serial dependence is not high, the
standard errors are small and even very small correlations are
deemed significant. Even for the worst functions examined,
however, the correlations are effectively zero by lag 10, and
definitely negligible by lag 20. Time-series plots of these
functions showed no unusual features and resembled those of
the rapidly-converging series displayed in Figure 4.2 (a) and
(b). Based on this evidence, we feel safe in concluding that the
algorithm effectively achieves stationarity by 20 iterations.

The parameters of greatest interest in this problem are
functions of µ=(µ1,µ2µ3)Τ. For illustration, we will focus
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attention on three quantities: µ3, the average cholesterol level at 14 days;

Figure 5.7. Histograms of sample values of (a)µ3, (b) δ13, (C) τ13 and (d) dL

from 5000 consecutive iterations of data augmentation.

δ µ µ13 1 3= − , the average decrease in cholesterol level from

day 2 to day 14; and τ13=100(µ1−µ3)⁄µ1, the relative percentage

decrease in average cholesterol level from day 2 to day 14. To
draw inferences about these quantities, we simulated another
single chain of 5100 iterations starting from the ML estimate,
discarded the first 100, and saved the 5000 remaining values
of µ3, δ13 and τ13. Histograms of the sample values for these

three quantities are shown in Figure 5.7 (a)-(c). Because µ3

and δ13  are linear combinations of the elements of µ, obtaining

Rao-Blackwellized estimates of the marginal densities of these
quantities is straightforward. Under the prior (5.18), the
complete-data posterior is given by (5-19)-(5.20). Using
(5.17), it follows that the complete-data posterior density of a
linear combination η−aTµ is

P Y Y k
a y

n p
obs mis

T
n p

η
η

σ
| , ,

/

( ) = +
−( )
−( )

















− − +( )

1

2

2

1 2

(5.45)
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where n = 28 and p = 3 are the number of observations and

variables, respectively; σ 2 1= −( )−n p a Sa y ST ; and  are the
sample mean vector (5.5) and covariance matrix (5.6)
computed from Υ=(Υobs,Υmis); and

k
n p

n p

n p
=

( )
( ) −( )

− +

−

Γ

Γ

1
2

2
2π σ

.

Rao-Blackwellized density estimates for µ3=(0,0,1)µ and

δ13=(1,0,−1)µ estimated from the first 1000 iterations after the

τ13 initial burn-in period are shown superimposed over the

histograms in Figure 5.7 (a) and (b). Because τ13 is nonlinear

its density is somewhat less easy to find, and Rao-
Blackwellized estimates for this quantity are not shown.

In addition to µ3, δ13 and τ13, we also calculated and stored

values of the likelihood-ratio statistic

d d l Y l YL L obs obs= ( ) = ( ) − ( )[ ]θ θ θ2 ˆ | |

over the 5000 iterations, where θ̂  is the ML estimate. For
large samples, the posterior distribution of dL is approximately
χ d,

2 , where d  is the dimension of θ (in this case, 9). A

histogram of the sample values of dL is displayed in Figure 5.7
(d) with the χ9

2  density function superimposed over it,
showing that the actual posterior matches the theoretical
approximation quite closely.

Simulated posterior means for µ3, δ13 and τ13 were found by

averaging the 5000 iterates of each parameter. Simulated 95%
posterior intervals were found by calculating the 2.5 and 97.5
percentiles of each sample using (4.8). To obtain a rough
assessment of the random error in these estimates, a second
chain was generated in an identical fashion with a different
random-number generator seed. The simulated posterior
means and 95% intervals (in parentheses) for the two replicate
runs are shown below.
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µ δ τ3 13 13

222 2 31 8 12 4

201 6 244 0 8 9 55 4 3 7 20 9

222 4 31 4 12 3

201 7 242 6 8 9 53 3 3 7 20 3

. . .

. , . . , . . , .

. . .

. , . . , . . , .

( ) ( ) ( )

( ) ( ) ( )
Inferences about µ3, δ13 and τ13 can also be conducted through

multiple imputation. This will be demonstrated in Section
6.2.1.

5.4.4 Example: changes in heart rate due to marijuana use

Returning to the data in Table 5.2, let µj denote the population

mean corresponding to column j, and let δjκ=µj−µκ,j,k=1,...,6.
Following the original article be Weil et al. (1968), we will
focus attention on the six treatment comparisons below.
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Data augmentation under the usual noninformative prior
(5.18) does not work for this problem; the iterates of θ quickly

wander to the boundary of the parameter space, causing
numeric overflow. This pathological behavior suggests that
the posterior is not proper. To stabilize the inference, we
applied a ridge prior as described in Sections 5.2.3 and 5.3.4.
After centering and scaling the columns of Y so that the
observed data in each column have mean zero and unit
variance, we set the hyperparameters of the normal inverted-
Wishart prior to τ=0, m=∈ ,  and Λ−1=∈Ι  for ∈ =0.5. Under this

weak prior, EM converges slowly but reliably to a posterior
mode in the interior of the parameter space, with the largest
fraction of missing information estimated at 95%.

The slow convergence of EM in this example suggests that
data augmentation will also converge slowly, and output
analysis from a preliminary run confirmed this. Using the
same ridge prior, we simulated a single chain beginning at the
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posterior mode and monitored a variety of scalar summaries of
θ. Time-series plots for δ21 and δ54 (on the original scale) from

the first 100 iterations are shown in Figure 5.8 (a) and (b),
respectively. The iterates of δ21 appear to approach stationarity

quickly, whereas the series for δ54 shows long-range

dependence. This is not surprising, because δ54 is a function of

µ4, and our earlier analysis led us to conjecture that the rate of

missing information for µ4 was very high. Sample ACFs for

δ21 and δ54 estimated from 10 000 iterations are displayed in

Figure 5.8 (c) and (d), respectively. Figure 5.8 (d) is typical of
the ACFs for other slowly converging functions of θ. For all

the functions we examined, the serial correlations effectively
died out by lag 50.

The slow convergence in this example should lead us to use extra 
caution in designing the simulation experiment. Running independent
chains from overdispersed starting values would be attractive,

Figure 5.8. Time-series plots of (a) δ21 and (b) δ54 over the first 100 iterations

of data augmentation, and sample AM for (C) δ21 and (d) δ54 estimated from

10 000 iterations, with dashes indicating approximate 0.05-level critical
values for testing ρκ=ρκ+1=…=0.
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but obtaining overdispersed starting values is not easy.
Bootstrap resampling is unlikely to work well, because n is not
much larger than p, so the distribution of θ over bootstrap

samples will probably bear little resemblance to the observed-
data posterior. Sampling from the prior is not possible,
because the prior is not a proper probability distribution.
Because convergence to stationarity tends to be fastest when
the starting value is near the center of the observed-data
posterior, we decided to run ten independent chains of 5500
iterations each, starting each chain at the posterior mode. After
discarding the first 500 values from each chain, the pth sample
quantile for each contrast δjκ, was calculated for p = 0.025,

0.25, 0.5, 0.75 and 0.975 from the remaining 5000 values.
Finally, the sample quantiles were averaged across the ten
chains. For each of these averages, the variance of the
quantiles across chains was used to estimate a standard error
with nine degrees of freedom. The estimated quantiles for all
six parameters are displayed in Figure 5.9. All of the
simulated 95% posterior intervals cover zero, indicating that
there is no strong evidence that any of the contrasts is different
from zero. Standard errors for the simulated quantiles

Figure 5.9. Simulated posterior medians, quantiles and 951% equal-tailed
intervals for six contrasts.

ranged from 0.02 to 0.72, which is quite small relative to the
width of the intervals displayed in Figure 5.9, so these
simulation results are sharp enough for our purposes.
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One could very well argue that the unrestricted multivariate
normal model has too many parameters to be estimated from a
dataset of this size, and that the unnecessarily large number of
nuisance parameters hinders us from making clear inferences
about the parameters of interest. Indeed, the long tails
exhibited in the marginal posteriors of Figure 5.9, particularly
for the two contrasts involving µ4, suggest that some of the

nuisance parameters are very poorly estimated, and we might
do well to simplify the model. One possible simplification is
to reduce the number of free parameters by applying a priori
constraints to ∑. For example, we could require ∑ to satisfy

the condition of compound symmetry (i.e. equal diagonal
elements and equal off-diagonal elements). Simulation
algorithms for incomplete multivariate normal data with
constrained covariance structure are possible, but they are
beyond the scope of this book. A slightly different approach
would be to specify fixed, additive effects for the rows and
columns of the data matrix, and define the parameters of
interest to be contrasts among the column effects (Chapter 9).

Yet another possibility is to perform a simple bivariate
analysis for each contrast, making inferences about δjκ using

only the data in columns j and k . Under this bivariate
approach, it is no longer possible to make joint inferences
about  the contrasts .  Moreover ,  ignoring the data  in  
columns other than j and k when making inferences about 

δ j k  m a y  t e n d  t o  i n t r o d u c e  n o n r e s p o n s e  b i a s e s ;
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Figure 5.10. Simulated posterior medians, quantiles and 951% equal-tailed
intervals for six contrasts using a bivariate approach.

the MAR assumption tends to be less plausible for the
bivariate dataset than for the one with six variables. The
decision whether to include additional variables in an analysis
is not always an easy one, particularly for small datasets, and
is an important topic worthy of further research.

Simulated posterior quantiles from a bivariate analysis are
shown in Figure 5.10. For each contrast, data augmentation
was applied to the bivariate dataset under the standard
noninformative prior (5.18). Output analyses suggested that
convergence to stationarity was rapid. For each contrast, 10
100 steps of a single Markov chain were simulated, beginning
from the ML estimate. The first 100 values of the simulated
contrast were discarded, and sample quantiles were calculated
from the remaining 10 000. The distributions in Figure 5.10
are much narrower than those in Figure 5.9, and there is now a
fair amount of evidence that the three contrasts δ21, δ31, and δ65

are nonzero.
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CHAPTER 6

More On The Normal Model

6.1 Introduction

In the last chapter, we introduced EM and data augmentation
algorithms for the multivariate normal model. In this chapter,
we illustrate how to effectively apply these algorithms with
more real-data examples, and discuss modifications to the
algorithms that can help to increase their efficiency.

Sections 6.2 and 6.3 present two examples of analysis by
multiple imputation. The first, which was previously analyzed
in Chapter 5 by parameter simulation, is straightforward and
illustrates some of the basic properties of multiple-imputation
point and interval estimates. The second is more complicated,
involving categorical variables and inestimable parameters. By
working through this second example, the reader will come to
understand some of the complications and subtle issues that
often arise with real data, and learn strategies for effectively
dealing with these issues.

Real data often do not conform to normality, and it is
important to know whether the multiple-imputation
procedures advocated in this book are robust to departures
from the modeling assumptions. Section 6.4 presents a
simulation experiment to demonstrate the robustness of
multiple imputation in a realistic setting.

When rates of missing information are high, EM and data
augmentation tend to converge slowly. Section 6.5 presents a
new class of simulation algorithms, called monotone data
augmentation, that tend to converge quickly under certain
types of missingness.
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6.2 Multiple imputation: example 1

6.2.1 Cholesterol levels of heart-attack patients

Recall the example introduced in Section 5.3.6 in which serum
cholesterol levels for heart-attack patients were recorded 2
days (Y1), 4 days (Y2) and 14 days (Y3) after attack. Nine of the
n = 28 values of Y3 were missing. In Section 5.4.3, we used
data augmentation to simulate posterior distributions for three
parameters of interest:

1. µ3 the mean cholesterol level at 14 days;

2. δ13 = µ1−µ3, the average decrease in cholesterol level from

day 2 to day 14; and

3. τ13 = 100(µ1−µ3)/µ1, the percentage decrease in cholesterol

level from day 2 to day 14.

We now demonstrate how inferences for these same quantities
can be conducted by multiple imputation.

6.2.2 Generating the imputations

Recall that proper multiple imputations are independent draws
of Ymis from the posterior predictive distribution of the missing
data, P(Ymis|Yobs). The exploratory run of data augmentation
revealed no discernible autocorrelations in scalar functions of
θ beyond lag 10. Thus we can probably obtain acceptable

imputations by (a) running data augmentation in a single chain
starting from the MLE, and taking every tenth iterate of Ymis as
an imputation; or (b) running independent, parallel chains of
ten iterations each starting from the MLE, and taking the final
value of Ymis from each chain as an imputation.

Because of the small size of this dataset, however, iterations
are computationally inexpensive, and we can easily afford to
increase the number of steps. To illustrate a conservative
approach, we generated m =5 multiple imputations by
simulating five independent chains of 50 steps each.
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Independent starting values for the chains were obtained by
running EM on independent bootstrap samples of size n/2 = 14
(Section 4.4.2). These starting values are probably
overdispersed relative to the observed-data posterior P(θ|Yobs),

so that in the unlikely event that stationarity has not been
achieved by 50 steps, the resulting inferences will tend to be
conservative. The m = 5 sets of imputed values for Y3, rounded
to integers, are displayed in Table 6.1.

6.2.3 Complete-data point and variance estimates

Multiple imputation r equires that for each estimand Q we spec-
ify a complete-data point estim ate Q̂Q  an d a co mplete-data varian ce

Table 6.1. Cholesterol levels for heart-attack patients measured 2, 4 and 14
days after attack, with m = 5 multiple imputations
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estimate U. It also requires a sample size large enough for the
approximation
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for j, k = 1, 2, 3 denote the complete-data sample means and
covariances. For µ3, the obvious complete-data estimates are

Q̂ y= 3  and U=S33/n. For δ13=µ1−µ3, the obvious choices are
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Asymptotic normality of y3  and y y1 3−  is guaranteed by the
Central Limit Theorem, and a sample of size n = 28 should be
large enough for the normal approximations to work well.

For the nonlinear parameter τ13 = 100(µ1−µ3)/µ1, a first-

order Taylor expansion of the function y y y1 3 1−( ) /  about

(µ1,µ3),
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suggests that the complete-data point estimate
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will be approximately unbiased for τ13, with approximate

variance
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A handy rule-of-thumb used by survey statisticians is that a
ratio of sample means will be approximately unbiased and
normally distributed if the coefficient of variation (the
standard deviation divided by the mean) of the denominator is
10% or less (e.g. Cochran, 1977, p. 166). The observed values
of Y1 in Table 6.1 have a mean and standard deviation of 253.9
and 47.7, respectively, so the estimated coefficient of variation

for y1 is 47 7 28. /( )/253.9=0.036, suggesting that the

normal approximation should work well.

Table 6.2. Complete-data point estimates and standard errors for µ3, δ13 and

τ13 from m=5 multiply-imputed datasets

Following the notation of Section 4.3.2, let  Q̂ t( ) and U(t)

denote the complete-data point and variance estimates from
the tth imputed dataset. Point and variance estimates for µ1,

δ13 and τ13 over the five imputations are displayed in Table

6.2.

6.2.4 Combining the estimates

Combining the complete-data point and interval estimates is a
straightforward application of the formulas in Section 4.3.2 for
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inference with a scalar estimand. The overall estimates Q ,

standard errors T , degrees of freedom v  for the t-
approximation and 95% interval estimates are displayed in
Table 6.3. The values of v are large, suggesting that the total
variance estimates T are stable even though they are based on
only m = 5 imputations. The point and interval estimates in
Table 6.3 differ somewhat from those obtained by parameter
simulation in Section 5.4.3, but the differences are mild
relative to the sizes of the standard errors.

Table 6.3 also displays two diagnostics described in Section
4.3.2: the relative increase in variance due to nonresponse r,

and the estimated fraction of missing information λ̂ .
Although 32% of the Y3 values are missing, the estimated rates
of missing information for µ3, δ13 and τ13 are under 10%, due

undoubtedly to the correlations between Y3 and the two
variables that are never missing.

6.2.5 Alternative choices for the number of imputations

For this analysis we chose m=5 imputations, because we knew
that the fractions of missing information would not be severe. Recall
that if the fraction of missing information for a parameter is λ,
the relative efficiency of an estimate based on m imputations to one

Table 6.3. Results of multiple-imputation inference for µ3, δ13 and τ13

based on an infinite number is approximately (1+λ /m)-1

(Section 4.3.1). From EM we learned that the worst fraction of
missing information for this problem was about 47% (Section
5.3.6). Thus in the worst case, m = 5 would lead to a point
estimate that is about (1+0.47/5)-1 = 91% as efficient as one
with m  = ∞ . In fact, the estimated fractions of missing
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information for the parameters of interest were about 10%, so
the estimates from m  = 5 imputations appear to be about
(1+0.1/5)-1 = 98% efficient.

To those unaccustomed to multiple imputation, basing any
conclusion on a Monte Carlo simulation with only m  = 5
draws might seem risky. A critic might argue that with only
five imputations, one or more ’bad’ (i.e. highly unusual)
imputations could exert an undue influence on the results. To
illustrate the effect of increasing the size of m, we generated
an additional 95 imputations in the manner described above,
for a total of 100 imputations. We then calculated point and
interval estimates based on m − 3, 5, 10, 20, and 100. For m =
3 we used the first 3 imputations; for m = 5 we used the first 5
imputations; and so on. Finally, to get a rough idea of the
amount of random variation in the estimates, we replicated the
entire experiment, generating another 100 imputations from a
different random-number generator seed and calculating
another set of estimates for m = 3, 5, 10, 20, and 100.

The point and interval estimates for the various values of m
are displayed graphically in Figure 6.1. For comparison,
Figure 6.1 also displays the results of the two parameter-
simulation runs of length 5000 described in Section 5.4.3. The
multiple-imputation (MI) intervals for m = 3 and m = 5 appear
to have more random variation than the parameter-simulation
(PS) intervals. By m = 10, however, the MI intervals appear to
remarkably stable, and there is little random variation (relative
to the widths of the intervals) in any of the results for m = 10,
20 or 100.

The variability  for  m  = 3 and  m  =  5 does not mean that these
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Figure 6.1. Point and 95% interval estimates for µ 3 , δ1 3  and τ 1 3  from

parameter simulation (PS) and multiple imputation (MI).

intervals are unreliable. The intervals explicitly include
simulation error as a component of uncertainty, and over
repeated application they should still cover the true values of
the parameters at least 95% of the time. To reduce random
variation, one might consider increasing m , particularly if
generating and storing imputations is not expensive. Based on
Figure 6.1, however, there appears to be little reason to use
more than m = 10 imputations for this problem.

Advantages of multiple imputation over parameter simulation

The PS estimates based on 5000 iterates of θ appear to be

about as stable as MI estimates based on only m=10 imputations
of Ymis. Notice, however, that the latter required only one-tenth as much 
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Table 6.4. Estimated fractions of missing information from m=3, 5, 10, 20 and
100 imputations

computation (500 steps of data augmentation versus 5000) and
0.6% as much storage (10 × 9 = 90 locations to hold

imputations of Ymis, versus 5000 × 3 = 15 000 to hold values of

µ3, δ13 and τ13).

A further advantage of MI is that it provides an estimated
fraction of missing information for each estimand. For small
m, however, these estimates can be noisy. To illustrate,
estimated fractions of missing information for µ3, δ13 and τ13

based on m  = 3, 5, 10, 20, and 100 imputations (both
replicates) are shown in Table 6.4. For small m, the estimates
vary substantially between replicates. This is to be expected,
because they depend on the between-imputation components
of variance which are estimated with only m1 degrees of
freedom. Recall that our initial estimates of A based on m = 5
imputations were all under 10% (Table 6.3); after increasing
the value of m to 100, the estimates rose to 13-18%.
Additional replications (not shown) demonstrate that even for

m = 100, the estimates λ̂  still have standard errors of

approximately 0.02. Thus for small values of m, λ̂  should be
used only as a rough guide.
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6.3 Multiple imputation: example 2

6.3.1 Predicting achievement in foreign language study

Raymond (1987) describes data that were collected to investigate
the usefulness of a newly developed instrument, the Foreign Language

Table 6.5. Variables in foreign language achievement study, with number of
missing values

Attitude Scale (FLAS), for predicting success in the study of
foreign languages. In particular, the investigators wanted to
determine whether the FLAS had substantial predictive ability
beyond that already provided by other well-established
instruments such as the Modern Language Aptitude Test
(MLAT). Twelve variables were collected for a sample of n =
279 students enrolled in foreign language courses at The
Pennsylvania State University in the early 1980s (Raymond
and Roberts, 1983). Descriptions of the variables, along with
the number of missing values for each one, appear in Table
6.5. The raw data, kindly provided by Dr. Mark Raymond, are
reproduced in Appendix A.
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In this example, only 8% of all the values in the 279 × 12

data matrix are missing, and missingness rates per variable
range from 0% to 18%. Only 62% of the cases (174 out of
279) have complete data for all twelve variables, however, so
the  case-de le t ion  methods  used  by  most  s ta t i s t ica l
software packages would discard over one third of the

Figure 6.2. Histograms of observed data for variables in foreign language
achievement study.

entire dataset.  Imputing for the missing values  makes
more efficient use of the available data.

6.3.2 Applying the normal model

Histograms of the observed values for each variable are
displayed in Figure 6.2. Although these data clearly do not
follow a multivariate normal distribution, we will still use the
normal model for imputation. For the dichotomous and ordinal
variables, we will impute under an assumption of normality
and round off the continuous imputes to the nearest category.
Examination of Figure 6.2 suggests that this strategy might not
work well for AGE, PRI or GRD, because these variables are
far from being symmetric and unimodal.

To make the variables AGE, PRI and GRD less
troublesome, we recoded them by collapsing some adjacent
categories. (In Chapter 9, when we are able to explicitly model
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mixed continuous and categorical data, we will analyze these
data again without recoding.) An overwhelming majority of
students received final grades of A or B; very few received C
or below; the data provide relatively little information to
characterize the C-or-below group, so we recoded final grade
as a simple dichotomy (A, B or below). Similarly, the three
highest age groups had very few students in them, so age was
collapsed to a dichotomy as well (less than 20, 20+). Prior
experience was reduced from five categories to three.
Histograms of the recoded versions of AGE, PRI, and GRD
and the revised definitions of these variables appear in Figure
6.3 and Table 6.6, respectively.

Notice that the variable LAN is nominal and should not be
handled as a normal variable; the four language groups have
no intrinsic ordering. To address this issue, LAN was replaced
by a set of three dummy variables to distinguish among the
four language groups: LAN2 = 1 if Spanish and 0 otherwise,
LAN3 = 1 if German and 0 otherwise, and LAN4 = 1 if
Russian and 0 otherwise. Including LAN2, LAN3 and LAN4

effectively treats the eleven remaining variables as
multivariate normal within each of the four language groups,
with a separate mean vector for each group and a common
covariance matrix. The multivariate normal model clearly
misspecifies the marginal distribution of the dummy variables,
but this misspecification is of no consequence because the
dummies are completely observed and do not need to be
imputed (Section 2.6.2).

Finally, it is important to remember that a normal
distribution has support on the whole real line, but the
continuous variables in this dataset have a limited range of
possible values. For example, SAT scores may not exceed
800, and grade point averages may not exceed 4.0. Imputing
under normality might occasionally result in an imputed value
that is out of range. To handle this problem, we included a
consistency check in our imputation routine. After performing
the final I-step of data augmentation to create an imputation of
Ymis, each row of the imputed dataset was examined to see
whether any of the imputed values were out of range; if so, the
missing data for that row were re-drawn until the necessary
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constraints were satisfied. The final values of Ymis created by
this procedure approximate proper multiple imputations under
a truncated multivariate normal model.

6.3.3 Exploring the observed-data likelihood and posterior

When LAN is replaced by three dummy variables, the dataset
has p, = 14 variables. The EM algorithm applied to these 14
variables converged rapidly; the parameter estimates stabilized
to four significant digits after only ten iterations. When EM
converges so quickly, estimating the largest fraction of
missing information from the iterations can be difficult,
because the estimated elementwise rates of convergence (3.27)
tend to become numerically unstable after only a few
iterations. Moreover, the iterations at which instability begins
vary from component to component. The multivariate normal
model for 14 variables has 119 parameters. With so many
parameters, it is not easy to estimate the fraction of missing
information by visually inspecting the elementwise rates. In
situations like this it is helpful to apply graphical techniques.

To estimate the worst fraction of missing information, we
first calculated elementwise rates (3.27) for each of the 119
parameters over the first 20 iterations of EM. After trimming
away any values outside the interval (0, 1), we formed
boxplots of the remaining values for each parameter,
displaying them side-by-side. Boxplots for 50 randomly
selected elements of µ and Σ  are shown in Figure 6.4.

Although a large number of outliers are present, all of the
boxplots tend to be centered around 0.4. The median of the
values in Figure 6.4 is 0.42, so a reasonable estimate of the
worst fraction of missing information is 42%.

Inestimability of parameters

The moderate rates of missing information and the rapid convergence
of EM might lead one to believe that the observed-data
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Figure 6.4. Boxplots of estimated elementwise rates of convergence for 50
randomly selected parameters.

likelihood function for this problem is well behaved. It turns
out, however, that the likelihood is pathological. We
performed a long exploratory run of data augmentation under
the usual noninformative prior (5.18) and constructed time-
series plots for selected elements of µ and Σ. For most

parameters, the algorithm appeared to achieve stationarity
very quickly. For a few parameters, however, the simulated
values drifted into implausible regions of the parameter space.
Time series plots for the means of the two variables with the
highest rates of missingness, MLAT and GRD, are shown in
Figure 6.5. Figure 6.5 (a) is typical of the plots for most
parameters, with no discernible trends. Figure 6.5 (b),
however, shows extreme long-range dependence. The mean of
the dichotomous variable GRD is known to lie between 1 and
2, but by the 900th iteration the series has drifted above 2.
This unusual behavior suggests that one or more components
of θ are nearly or entirely inestimable from the observed data.

Additional runs of EM confirmed the presence of
inestimable parameters. Using various simulated values of θ
from the data-augmentation series as starting values, we re-ran
EM and found that in each case it converged to a different
stationary value. Moreover, when we evaluated the observed-
data loglikelihood function at these stationary values, the
loglikelihood was exactly the same in each case. Thus it
appears that the stationary values are not distinct modes, but
form a ridge of constant likelihood. The pathological behavior
in Figure 6.5 (b) arises because the observed-data posterior
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distribution is not proper; although the I- and P-steps of data
augmentation are both well defined, the algorithm is not

Figure 6.5. Time series plots of (a) mean MLAT and (b) mean GRD over 1000
iterations of data augmentation.

Table 6.7. Cross-tabulation of LAN with GRD

converging to any stationary distribution (Section 3.5.2).
With a little exploration it is easy to detect the source of

difficulty. Figure 6.5 (b) suggests that the inestimable part of θ
pertains to the distribution of GRD. A cross-tabulation of
GRD with LAN, shown in Table 6.7, reveals that GRD is
missing for all cases with LAN = 4. Because no values of
GRD are available for any students enrolled in Russian
courses, it is impossible to estimate the parameters of the
conditional distribution of GRD given LAN= 4 from this
dataset.

6.3.4 Overcoming the problem of inestimability

One way to solve the problem of inestimability is to simply
exclude the Russian language group and the variable LAN4
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from the analysis. Because GRD is missing for all 20 of these
cases, they contribute little or no information about the main
question of scientific interest, which pertains to the quality of
FLAS as a predictor of GRD. Another way to handle the
problem is to introduce a small amount of information about
the inestimable portions of θ through a mildly informative

prior distribution. Although excluding the Russian language
group is certainly reasonable, we will adopt the latter approach
to illustrate the use of an informative prior distribution.

After centering and scaling the observed data for each
variable to have mean 0 and variance 1, we applied the ridge
prior described in Section 5.2.3 with τ=0, m=∈  and Λ− =∈1 I

for ∈ =3. This prior adds the equivalent of three degrees of

freedom to the estimation of Σ and smooths the estimated

correlation matrix toward 1. With a sample size of n = 279 the
degree of smoothing is slight, and the effect on those portions
of θ that are already well estimated is almost negligible. For

portions of θ that are poorly estimated, however, this prior

smooths the estimates toward a model of mutual independence
among all variables. Inferences under this prior will thus tend
to be conservative in the sense that we will be less likely to
conclude that associations among variables are present when
in fact they are not.

Under this prior, EM was found to converge reliably from a
variety of starting values to a single posterior mode. The
convergence was slower than before, requiring about 30
iterations, and the largest fraction of missing information was
estimated at 92%. It may seem somewhat counterintuitive that
the introduction of prior information appears to raise the worst
fraction of missing information rather than lower it. This
fraction, however, pertains only to those directions or
functions of θ for which the function being maximized (i.e. the

observed-data likelihood or posterior) is not flat. The
elementwise rates estimate the largest eigenvalue of the
asymptotic rate matrix that is less than one (Section 3.3.2). A
ridge in the function produces one or more eigenvalues equal
to one, and thus the inestimable functions of θ do not
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contribute to the estimated worst fraction of missing
information when EM is used to maximize the likelihood.
When an informative prior is introduced, however, the
posterior is no longer precisely flat in any direction, and every
function of θ then contributes to the estimated worst fraction

of missing information.
Under the informative prior, data augmentation also appears

to converge reliably. Starting at the mode, we ran a single chain for
1000 iterations and monitored a variety of functions of q. Sample 

Figure 6.6. Sample ACFs for (a) mean GRD and (b) the worst linear function
of θ, estimated from 1000 iterations of data augmentation, with dashed lines

indicating approximate critical values for testing ρk=ρk+1=⋅⋅⋅=0.

ACFs for two functions are shown in Figure 6.6. The mean of
GRD, which behaved pathologically under the noninformative
prior, now shows no appreciable dependence after lag 20. The
worst linear function of θ, as estimated by the trajectory of

EM in the vicinity of the posterior mode (Section 4.4.3),
appears to achieve stationarity in about 25 steps.

6.3.5 Analysis by multiple imputation

Following the preliminary run, we created m = 20 multiple
imputations of the missing data by running 20 independent
chains for 100 steps each. Starting values for the chains were
obtained by finding posterior modes from independent
bootstrap samples of 140 subjects each.

Inferences for logistic-regression coefficients

Because the response variable GRD was collapsed to a
dichotomy, we decided to measure the predictive ability of
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FLAS and the other variables by logistic regression (e.g.
McCullagh and Nelder, 1989). Let πi denote the probability of

GRD = 2 for subject i. We examined the model

log ,
π

π
βi

i
i
Tx

1 −
= (6.2)

where xi is a vector of covariates for subject i and β a vector of

unknown coefficients. Covariates in xi included a term for the
intercept; three dummy indicators for language (LAN2, LAN3

and LAN4); an indicator for age (AGE2 = 1 if 20+ and 0
otherwise); an indicator for sex (SEX2 = 1 if female and 0
otherwise); linear and quadratic contrasts for PRI (PRI L

= −1,0,1 and PRIQ = 1,−2,1 for PRI = 1,2,3, respectively);

Table 6.8. Multiple-imputation inferences for logistic-regression coefficients,
full model

and the variables FLAS, MLAT, SATV, SATM, ENG, HGPA
and CGPA. For each of the 20 imputed datasets, we computed
ML estimates and asymptotic standard errors for the elements
of β, and then combined the 20 sets using the formulas for

multiple-imputation inference for scalar estimands (Section
4.3.2).
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The results of the analysis are summarized in Table 6.8. For
each coefficient, Table 6.8 displays the point estimate Q  and

standard error T , the t-statistic Q T/ , the degrees of
freedom v for the Student’s t-approximation, and the p-value
for testing the hypothesis Q = 0 against a two-sided
alternative. Also shown are the relative increase in variance
due to nonresponse r and the estimated fraction of missing

information λ̂ . The p-value for FLAS (0.021) suggests that
this variable is useful for predicting GRD. Increasing FLAS
by ten points multiplies the odds πi/(1−πi) by an estimated

factor e10×0.0386 = 1.47 in other words, every ten-point increase

in FLAS makes a student 47% more likely (on the odds scale)
to receive a grade of A, if other covariates are held constant.
The most powerful predictor of final grade appears to be high-
school GPA; a one-unit increase in HGPA causes the
predicted odds to be multiplied by e2.27 = 9.68. The only
significant language effect is the coefficient of LAN3, which
distinguishes between the German and French groups; a
student taking German appears to be about e1.12 = 3.06 times
as likely to receive an A as a student taking French. Notice
that LAN4, which contrasts Russian with French, has a non-
significant effect (p = 0.979) and a high fraction of missing
information (50%). This is to be expected, because essentially
all information about this parameter comes from the prior
distribution which tends to pull the estimated coefficient
toward zero.

Joint inferences for groups of coefficients

The inferences in Table 6.8 pertain to the logistic-regression
coefficients individually. To make joint inferences about
groups of coefficients, we need the methods for
multidimensional estimands presented in Section 4.3.3. Of the
three methods described there, we will demonstrate the
procedure of Meng and Rubin (1992b) for combining
likelihood-ratio test statistics.

With complete data, the loglikelihood function for the
logistic model (6.2) may be written as
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where zi = 1 if individual i has GRD = 2, and zi = 0 otherwise
(e.g. McCullagh and Nelder, 1989). Suppose we want to test
whether the coefficients for a group of variables (say, LAN2

and LAN4) are simultaneously zero. The usual likelihood-ratio
test with complete data requires us to fit (a) the full model
with all variables, and (b) the reduced model with all variables
except LAN2 and LAN4. Denote the ML estimates of β under

the full and reduced models by β̂  and β̂  respectively. For

notational convenience, we assume that β̂  and β̃  are of the

same length, with the elements of β̃  corresponding to the
omitted variables set to zero. The likelihood-ratio test statistic
is

d Y Y l Y Y l Y YL obs mis obs mis obs mis
ˆ, ˜ | , ˆ | , ˆ | , ,β β β β( ) = ( ) − ( )[ ]2

which, under the reduced model, is approximately distributed
as χ2

2  because the reduced model differs from the full model
by two parameters.

The method of Meng and Rubin (1992b) requires two passes

through the imputed data. Let β̂ t( )  and β̃ t( )  denote the ML
estimates for the full and reduced models, respectively, fit to the tth

Table 6.9. Multiple-imputation likelihood-ratio tests for eliminating groups of
variables from the regression model

imputed dataset. In the first pass, we calculate the likelihood-
ratio statistic for each imputed dataset and find their average,
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In the second pass, we calculate the average of the likelihood-

ratio test statistics with β̂ t( )  and β̃ t( )  replaced by their
averages,

˜ ˆ , ˜ | , .d
m

d m m Y YL L
t

m

t
m t

t
m t

obs mis
t= ∑ ∑( )

=

−
=

( ) −
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1

1
1

1
1β β

The test statistic D3 and p-value are then found by (4.44)-
(4.46).

Using this technique, we tested three groups of variables
and removed them from the model in turn after confirming
that their p-values were high. The three groups were (a) the
language indicators LAN2 and LAN4; (b) the test scores
SATV, SATM and ENG; and (c) the linear and quadratic
contrasts for PRI. Results from each test are shown in Table
6.9, including the test statistic D3, the degrees of freedom k
and v3 for the F-approximation, the p-value, the relative
increase in variance due to nonresponse r3, and the fraction of

missing information λ̂  calculated as ˆ /λ = −( )r r3 31 . Notice

that D3 for omitting LAN2 and LAN4 is slightly less than zero.
With complete data, a likelihood-ratio test statistic cannot be
negative. With Meng and Rubin’s method, however, negative
values do sometimes occur, particularly when the estimates of
the coefficients in question are close to zero and their fractions
of missing information are high. Multiple-imputation
inferences for the coefficients of the final regression model are
shown in Table 6.10.

6.4 A simulation study

We have claimed that it is often sensible to use a normal model to
create multiple imputations even when the observed data are some
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Table 6.10. Multiple-imputation inferences for logistic-regression coefficients,
final model

what nonnormal. A growing body of evidence supports this
claim. The simulation results of Rubin and Schenker (1986),
also reported by Rubin (1987, Chap. 4), demonstrate that for
estimating the mean of a univariate population, imputations
based on a normal model result in interval estimates with
excellent repeated-sampling properties. Even for populations
that are skewed or heavy-tailed, the actual coverage of
multiple-imputation intervals is very close to the nominal
coverage, except when the fraction of missing information is
high (in excess of 50%). A recent simulation study in the
context of a large national health survey produced
encouraging results for a wide variety of linear and nonlinear
estimators under plausible non-normal populations (Schafer et
al., 1996). The study was designed to mimic the specific
features of a health examination survey conducted by the U.S.
National Center for Health Statistics, including a complex
sampling plan with unequal selection probabilities and
multiple phases of data collection. Results of that simulation,
which involved a mixed model for continuous and categorical
variables, will be discussed in Chapter 9. Here we present a
miniature version of the simulation to convey the essential
result: model-based multiple imputation tends to work well for
a wide variety of estimands, and is robust to moderate
departures from the data model.

6.4.1 Simulation procedures

Data for this simulation, provided by the National Center for
Health Statistics (NCHS), were drawn from Phase 1 of the

©1997 CRC Press LLC



 

Third National Health and Nutrition Examination Survey (NHANES III) 

Table 6.11. Variables in the simulation study

Figure 6.7. Histograms of AGE, BMI, HYP and CHL in the population.

(NCHS, 1994). The data were collected by interviews and medical
examinations in mobile examination centers. Because many of
the sampled persons did not show up for examination,
missingness rates for key exam variables exceeded 30%. To
keep matters simple, this study is restricted to adult males (age
20+) and four variables. Definitions of the variables are given
in Table 6.11.

An artificial population of 2000 subjects was created by
drawing a simple random sample without replacement of all
the adult males in the survey who had complete data for all
four variables. Histograms for the variables in this population
are shown in Figure 6.7. Because the survey used
disproportionate sampling in certain racial, ethnic and age
categories, and because we have omitted cases with missing
data, these 2000 subjects are not representative of any
population of substantive interest; the data and results
presented here should not be regarded as estimates for any
meaningful segment of the U.S. population. This study is
meant only to illustrate the properties of model-based multiple
imputation when applied to a population of real data that do
not conform to simplistic modeling assumptions.
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Sampling and response mechanism

From the population of 2000 subjects, simple random samples
of size n = 100 were drawn without replacement. After a sample was
drawn, a random pattern of missingness was imposed on BMI,

Table 6.12 Probabilities for response patterns by AGE, with observed and
missing variables denoted by × and ?, respectively

HYP and CHL for each sampled person according to his age.
The probabilities for the 23 = 8 possible response patterns by
age were estimated from all adult males in the MANES III
sample, and are shown in Table 6.12. Because the response
probabilities depend only on AGE, which is always observed,
this mechanism is ignorable. The mechanism creates
missingness rates of approximately 20% for each of the three
variables BMI, HYP and CHL over repetitions of the sampling
procedure.

Imputation

After imposing a pattern of missingness, the ’missing’ values
were then imputed m = 5 times under a multivariate normal
model. AGE was entered into the model as two dummy
variables: AGE2 = 1 for AGE = 2 and 0 otherwise; and AGE3

= 1 for AGE = 3 and 0 otherwise. BMI, HYP and CHL were
entered without recoding or transformation. The imputations
were created by running five independent chains of data
augmentation under the standard noninformative prior (5.18).
Each chain was started at the ML estimate and allowed to run
for 20 cycles. The final value of Ymis from each chain was
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taken as an imputation, and the continuous imputes for HYP
were rounded off to the nearest category.

6.4.2 Complete-data inferences

After imputing five times, five sets of complete-data point and
variance estimates were calculated for a variety of scalar
estimands, and the results were combined in the usual way
(Section 4.3.2). Eighteen different estimands were examined,
including population means, proportions, quantiles, a
correlation coefficient and an odds ratio. Methods of
complete-data inference for means and proportions are well
known. If µ is the mean of a population, and y  and S2 are the

sample mean and variance, respectively, from a simple
random sample of size n, then the standard point and variance
estimates are y  and S2/n. Similarly, if p  is a population
proportion and p̂ is a sample proportion, the point and
variance estimates are p̂ and ˆ ˆ /p p n1 −( ) . Complete-data

inferences for quantiles, correlations and odds ratios are
described below.

Quantiles

The following approximate method for quantiles was
described by Woodruff (1952). Suppose that Q is the p th
quantile of a distribution function F, and Q̂  is an estimate of
Q based on a simple random sample of size n. Then

Q Q Q1 2≤ ≤

will be true if and only if

F Q p F Q1 2( ) ≤ ≤ ( ) ,

because F and F−1 are strictly increasing. Rather than finding

an interval estimate for Q directly, we instead construct an
interval estimate for the proportion of the population that lies
below Q, and then translate the endpoints of this interval into
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quantiles. For example, an approximate 95% interval for p
ranges from

p p
p p

n1 2
1

= −
−( )

  to  p p
p p

n2 2
1

= +
−( )

.

If we set Q 1 and Q2 equal to the p 1ith and p2ith sample
quantiles, respectively, then the approximate 95% confidence
interval for Q ranges from Q 1 to Q 2. This interval is not
necessarily symmetric about Q̂ . It is well known, however
that under mild smoothness conditions for F  the sample
quantiles are asymptotically normally distributed (e.g Serfling,
1980), and for large samples we can take (Q2 − Q 1)/4 as an

estimated standard deviation for Q̂  (Francisco and Fuller,
1991).

Correlation coefficients

Suppose that r is a correlation coefficient from a simple
random sample of n  units, and ρ is the corresponding

population value.
The familiar transformation due to Fisher (1921),

z r r
r
r

( ) = ( ) = +
−

−tanh log ,1 1
2

1
1

makes z(r) approximately normally distributed about z(ρ) with

variance 1/(n−3). This result is derived under an assumption

of bivariate normality. An interval estimate for ρ can be

calculated by first finding an interval for z(ρ) using the normal

approximation, and then applying the inverse transformation
z−1(⋅) = tanh(⋅) to the endpoints. Because z(r) ≈ r for values of

r near zero (they agree to two decimal places for  r <0.24),

the approximation V(r) ≈ 1/(n−3) is also acceptable in the

vicinity of r = 0.
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Odds ratios

Suppose that Y1 and Y2 are two binary variables taking values
1 and 2. In a simple random sample of size n, let xij be the
number of sample units for which Y1 = i and Y2 = j, i, j = 1, 2.
The population odds ratio, defined as

ω =
= =( ) = =( )
= =( ) = =( )

P Y Y P Y Y

P Y Y P Y Y
1 2 1 2

1 2 1 2

1 1 2 1

1 2 2 2

| / |

| / |
,

is estimated by ω̂  = (x11x22)/(x12x21). In large samples, the log

odds ratio ˆ log ˆβ ω=  is approximately normally distributed

about β =logω, and a large-sample variance estimate for β is

x x x11
1

12
1

22
1− − −+ +  (e.g. Agresti, 1990). An interval estimate for

ω can be obtained by first finding an interval for β using the

normal approximation, and then taking antilogs of the
endpoints.

6.4.3 Results

The entire simulation procedure of drawing a sample,
imposing patterns of missingness, creating five imputations
and calculating point and interval estimates was carried out
1000 times. The results are summarized in Table 6.13. For
each of the eighteen estimands, this table shows the true
estimand Q (i.e. the population value), the multiple-imputation
point estimates Q , the endpoints of the nominal 95% interval
estimates (low and high) and the estimated fraction of missing
information λ  averaged over 1000 iterations. In addition, the
table reports the simulated actual coverage (cvg.), the number
of intervals out of 1000 that covered the true estimand. The
average simulated coverage across all eighteen estimands is
952.7, indicating that the procedure is well calibrated. Some of the 

 p p
p p

n2 2
1

= +
−( )

. p p
p p

n2 2
1

= +
−( )

.
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Table 6.13. Summary of simulation results for eighteen estimands

multiple-imputation point estimates, those denoted by an
asterisk, have a statistically significant bias; for these, the
average of the 1000 values of Q  was significantly different
from Q at the 0.05 level as judged by an ordinary t-test. But
the biases are minor when compared to the average width of
the 95% interval estimates, and thus are of little consequence.

Multiple imputation performs well in this example even
though the normality assumption of the imputation model is
clearly violated: the distributions of BMI and CHL are skewed to the right,
and CHL is binary. In practice, one would probably transform BMI
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Figure 6.8. Monotone missingness pattern.

and CHL (e.g. to the log scale) before applying the normal
model, in which case the performance should be even better.

6.5 Fast algorithms based on factored likelihoods

6.5.1 Monotone missingness patterns

This section presents a class of simulation algorithms for
incomplete multivariate normal data which, in certain cases,
will achieve stationarity more rapidly than ordinary data
augmentation. These algorithms are based on the observation,
first made by Li (1988), that we do not really need to fill in the
entire set of missing data Ymis at each I-step. The function of
the I-step is to impute enough of the missing values to make
the P-step into a tractable, complete-data posterior simulation.
Under the multivariate normal model, however, the P-step can
be made tractable by filling in only enough of the missing
values to complete a monotone pattern.

The missingness pattern for a data matrix is said to be
monotone if, whenever an element yij is missing, yik is also
missing for all k > j (Rubin, 1974; Little and Rubin, 1987). A
monotone pattern is shown in Figure 6.8. Monotone patterns
often arise in repeated-measures or longitudinal datasets,
because if a subject drops out of the study in a given time
period, then his or her data will typically be missing in all
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subsequent time periods. Sometimes a non-monotone dataset
can be made monotone or nearly so by reordering the
variables according to their missingness rates. Let nj denote
the number of rows of the data matrix for which Yj is
observed. If the pattern is monotone, then np ≤ np−1 ≤ ⋅⋅⋅ ≤ n1 =

n. We will assume that the rows of the monotone dataset have
been sorted as in Figure 6.8, so that Yj (and hence Y1,..., Yj − 1

as well) is observed for rows 1,...,nj and missing for rows nj +
1,...,n.

Factoring the observed-data likelihood

When the observed data Yobs are monotone, the observed-data
likelihood function can be expressed in a very convenient
form. Let φ = (φ1,φ2,...,φp), where φ1 denotes the parameters of

the marginal distribution of variable Y1, φ2, the parameters of

the conditional distribution of Y2 given Y1, φ3 the parameters

of the conditional distribution of Y3 given Y1 and Y2, and so
on. In other words, φj contains the intercept, slopes and

residual variance from the normal linear regression of Yj on

Y1,...,Yj − 1. It is easy to show that φ = φ(θ) is a one-to-one

function of the usual parameters θ = (µ ,Σ). Moreover, if no

prior restrictions are imposed upon θ, then the components

φ1,...,φp are distinct in the sense that the parameter space of φ
is the cross-product of the individual parameter spaces for
φ1,...,φp. Expressions for φ1,...,φp in terms of θ = (µ,Σ) can be

found by partitioning µ and Σ and applying the formulas given

in Section 5.2.4.
When Yobs is monotone, the observed-data likelihood

function for φ factors neatly into independent likelihoods for

φ1,...,φp. To see this, notice that the joint density of the

variables Y1,...,Yp can be factored as
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(6.3)

The inner product in (6.3),

P y y yij i i j j
i

n

| , ..., , ,,1 1
1

−
=

( )∏ φ

can also be written

P y y y P y y yij i i j j
i

n

ij i i j j
i n

nj

j

| , ..., , | , ..., , ., ,1 1
1

1 1
1

−
=

−
= +

( ) ( )∏ ∏φ φ (6.4)

The observed-data likelihood L(φ|Yobs) is by definition the

integral of (6.3) over Ymis. But notice that the first product in
(6.4) does not involve Ymis, because variable Yj is observed in
rows 1,..., nj, whereas the second product integrates to unity
because Yj is missing in rows nj + 1,..., n. It follows that

L Y L Yobs j obs
j

p

φ φ| | ,( ) = ( )
=

∏
1

(6.5)
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where

L Y P y y yj obs ij i i j j
i

n j

φ φ| | , ..., , .,( ) = ( )−
=

∏ 1 1
1

(6.6)

Under the multivariate normal model, (6.6) is simply the
likelihood for the normal linear regression of Yj on Y1,..., Yj−1,

based on the rows 1,..., nj of the data matrix. Thus the
factorization (6.5) effectively reduces the problem of inference
about φ to a sequence of complete-data regressions over

subsets of the rows of the data matrix.

6.5.2 Computing alternative parameterizations

When the data are monotone, the observed-data likelihood has
a convenient form when expressed in terms of φ = (φ1,...,φp).

The parameters of the multivariate normal, however, are
usually expressed in terms of θ = (µ,Σ), a vector of means and

a covariance matrix. To make use of the convenient form of
the likelihood, we will need to switch back and forth between
the two parameterizations.
A numerical procedure for computing φ = φ(θ) or θ = φ−1(φ)

can be formulated in terms of the sweep operator (Section
5.2.4). For convenience, we introduce a slight generalization
of sweep which gives a compact notation to the process of
sweeping a square submatrix of a larger matrix. Let G be a p ×
p symmetric matrix with elements gij, and let A be a subset of
the p  columns (and rows) of G . The generalized sweep
operator SWPA performs the usual sweep computations on the
rows and columns of G in the set A but leaves the rest of G
unchanged. Formally, SWPA[k] for some k ∈  A operates on G

by replacing it with another p × p matrix H,

H SWP k GA= [ ] ,
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where the elements of H are given by
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This operation will be referred to as sweeping submatrix A of
G on position k. Similarly, the corresponding reverse sweep
operator RSWA applies the usual reverse-sweep computations
to the rows and columns of G in set A, while leaving the rest
of G unchanged. Formally, RSWA[k] for some k ∈  A operates

on G by replacing it with another p × p matrix H,

H RSW k GA= [ ] ,

where the elements of H are given by

h g

h h
g g j A j k

g j A

h h
g g g g j A l A j k l k

g j A l A

kk kk
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 or 

When the sweep or reverse sweep operators are written
without a subscripting set, as in SWP[k] or RSW[k], it will be
understood that the operation is being applied to the entire
matrix.

We are now ready to give a compact notation to the process
of computing φ from θ and vice-versa. Let

φ β γj j
T

j
T

= ( ), (6.7)
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where βj is the j  × 1 vector of coefficients (including the

intercept) from the linear regression of Yj on Y1, Y2,...,Yj−1 and

γj is the residual variance, so that

Y Y Y N Y Yj j j j j j| , ..., , ~ , , ..., , ,1 1 1 11− −( )( )φ β γ (6.8)

Let µj denote the jth element of µ and σjk the (j, k) element of

Σ, and define

θ µ σ σ σj j j j jj
T

= ( ), , , ..., ,1 2 (6.9)

so that θ = (θ1,θ2,...,θp). As in Section 5.2.4, let us express θ
as a symmetric (p + 1) × (p + 1) matrix,

where the lower portion of the matrix is not shown to avoid
redundancy. Finally, let the row and column labels for this
matrix run from 0 to p , so that θj appear in column j . To

convert θ to
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note that sweeping θ on positions 1,2,..., j−1 produces a new

matrix whose jth column is φj. Therefore, if we sweep the full

θ matrix on positions 1, 2,..., p−1, then φ(p) appears in the pth

column. If we then reverse-sweep all but the last row and
column on position p−1, then φp−1 appears in column p−1.

Reverse-sweeping all but the last two rows and columns on
position p−2 makes φp−2 appears in column p−2, and so on.

This procedure can be expressed very concisely in
pseudocode. Let Aj = {0,1,..., j} for j  = 1, 2,..., p. The
following two lines will overwrite a θ matrix, replacing it with

φ = φ(θ).

for j:=1 to p−1 do θ:=SWP[j]θ

for j:=p−1 down to 1 do θ:=RSWAj[j]θ

The transformation from φ back to θ is simply a reversal of

these steps. The following two lines will overwrite a φ matrix,

replacing it with θ = φ−1(φ).

for j:=1 to p−1 do φ=SWPAj [j] φ

for j:=p−1 down to 1 do φ:=RSW[j] φ

6.5.3 Noniterative inference for monotone data

Maximum-likelihood estimation

When Yobs has a monotone pattern, the factorization of the
likelihood in terms of φ=(φ1,...,φp),
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L Y L Yobs j obs
j

p

φ φ| | ,( ) = ( )
=

∏
1

enables us to calculate ML estimates without iteration (Little
and Rubin, 1987, Chapter 6). Because the parameters φ1,...,φp

are distinct, maximizing L(φ|Yobs) is equivalent to maximizing

each factor L(φj|Yobs) separately for j=1,...,p. The ML estimate

of φ is φ̂, where φ̂ j  is the maximizer of L(φj|Yobs).

The maximization of each factor L(φj|Yobs) is accomplished

by ordinary least-squares regression of Yj on Y1,..., Yj−1, using
rows 1,..., nj of the data matrix. Let zj denote the observed data
in column j,

z y y yj j j n j
T

j
= ( )1 2, , ..., ,, (6.10)

and Xj the upper-left nj x  (j−1) submatrix augmented by a

column of ones,
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By (6.8), the conditional distribution of zj given Xj and φj is

z X N X Ij j j j j j| , ~ , , ,φ β γ( )
so the likelihood for φj is

L Y z X z Xj obs j
n

j
j j j

T
j j j

jφ γ
γ

β β| exp .( ) ∝ − −( ) −( )










− 2 1

2
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Using well-known properties of the normal linear regression
model, the ML estimate of φj is given by

ˆ ,β j j
T

j j
T

jX X X z= ( )−1
(6.12)

ˆ ˆ ˆ ,γ j j j
T

jn= ∈ ∈−1 (6.13)

where ˆ ˆ∈ = −j j j jz X β  (e.g. Draper and Smith, 1981). Notice

that γ̂ j , the ML estimate of the residual variance, is biased

because its denominator is nj rather than nj−j. Calculating

(6.12)-(6.13) for j = 1, 2,..., p yields φ̂, the ML estimate of φ.

Because ML estimates are invariant under transformations of
the parameter, the ML estimate for θ can be calculated as
ˆ ˆθ φ φ= ( )−1 .

Bayesian inference

Similarly, when Yobs has a monotone pattern, we can also
conduct Bayesian inferences without iteration provided that
the prior distribution has a certain form. If we apply a prior
density to φ that factors into independent densities,

π φ π φ π φ π φ( ) = ( ) ( ) ( )1 1 2 2 L p p , (6.14)

then it is obvious that the posterior distribution P(θ|Yobs) will

also factor into independent posteriors for φ1,...,φp, a structure

that Rubin (1987) calls monotone distinct. Bayesian inferences
for φ can then be carried out as a sequence of independent

inferences based on the posteriors

P Y L Yj obs j obs j jφ φ π φ| |( ) ∝ ( ) ( )
for j = 1,..., p. For example, we can simulate a value of φ from

P(θ|Yobs) by drawing φj from P(θj|Yobs) independently for j =
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1,...,J. A simulated value of θ from P(θ|Yobs) can then be

obtained by applying the back-transformation θ = φ−1(φ) to the

simulated value of φ.

The noninformative prior most commonly used for
multivariate normal data,

π θ( ) ∝ −( )+

Σ
p 1

2 , (6.15)

can be factored as in (6.14). To avoid confusion, let us refer to
the density (6.15) as πθ(θ), and the corresponding density for φ
induced by (6.15) as πθ(φ). The relationship between πθ and πφ

is

π φ π φ φφ θ( ) = ( )( )− −1 1J , (6.16)

where θ=φ−1(φ) is the inverse of the transformation φ=φ(θ), J

is the Jacobian or first-derivative matrix of the transformation

φ=φ(θ) and J  is the absolute value of the determinant of J.

By a well known property of determinants,  Σ  can be written

as

Σ Σ
Σ Σ

Σ Σ Σ Σ Σ11 12

21 22
11 22 21 11

1
12= − −

for square submatrices Σ11 and Σ22. But Σ Σ Σ Σ22 21 11
1

12− −  is

the residual covariance matrix from the regression of the
variables corresponding to Σ22 on the variables corresponding
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to Σ11 (Section 5.2.4). Taking Σ22=σpp, the determinant of Σ
becomes

Σ Σ= 11 γ p, (6.17)

where Σ11 is Σ without the last row and column. Applying

(6.17) recursively to Σ11 leads to

Σ =
=

∏γ j
j

p

.
1

(6.18)

To find πφ,(φ) we also need to evaluate J . In Section

5.4.2, we derived the determinant of the Jacobian that arises
when we condition on a subset of the variables Y1,..., Yp.
Suppose that we first transform θ  to the intermediate

parameter (ξp−1,φp), where ξp−1 represents the portions of µ and

Σ pertaining to the marginal distribution of Y1,..., Yp—1, and φp

pertains to the regression of Yp on Yp−1 (5.28), the determinant

of the Jacobian for going from θ to (ξp−1,φp) is Σ 11 −1, where

Σ11 is the covariance matrix for Y1,...,Yp−1. But  Σ11 =

γ1,γ2⋅⋅⋅γp−1, so the determinant of the Jacobian of this

intermediate transformation is (γ1,γ2⋅⋅⋅γp−1)−1. If we then

transform ξp−1 to (ξp−2,φp−1), where ξp−2 contains the portions

of µ and Σ pertaining to Y1,...,Yp−2 and φp−1 pertains to the

regression of Yp−1 on Y1,...,Yp−2. the determinant of the

Jacobian is γ1γ2⋅⋅⋅γp−2. We can repeat this procedure until we

have reached the final parameterization φ=(φ1,...,φp), and the

determinant of the Jacobian for φ=φ(θ) will be the product of

the determinants for each of the intermediate transformations.
The result is

J p p
p= − −( ) − −( )

−
−γ γ γ1

1
2

2
1

1L . (6.19)
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Substituting (6.19) and (6.18) into (6.16) gives

π φ γφ( ) ∝
− +( )

=

+

∏ j
p j

j

p p 1
2

1

(6.20)

as the prior density for φ=φ(θ) induced by (6.15).

Now we show the posterior that results when this prior is
combined with the observed-data likelihood from a monotone
dataset. Consider the likelihood factor for φj,

L Y z X z Xj obs j
n

j
j j j

T
j j j

jφ γ
γ

β β| exp .( ) ∝ − −( ) −( )










− 2 1

2

With some algebraic manipulation, it can be shown that

z X z X X Xj j j
T

j j j j
T

j j j
T T

j j−( ) −( ) =∈ ∈ + −( ) −( )β β β β β βˆ ˆ ˆ ˆ ,

where β̂ j
T

j j
T

jX X X z= ( )−1
 and ˆ ˆ∈ =j j jX β . When

L(φj|Yobs) is combined with the factor in (6.20) involving φj,

π φ γj j j
p jp

( ) ∝
− − +( )+1

2 ,

the resulting posterior can be written as

P Y X Xj obs j
j

j
j j

T T
j j

j
n p j

j
j
T

j
j

φ γ
γ

β β β β

γ
γ

| exp ˆ ˆ

exp ˆ ˆ ,
/

( ) ∝ − −( ) −( )











× − ∈ ∈












−

− − + −( )( )−

2

1 2 1

1
2

1
2

which is the product of a multivariate normal and a scaled
inverted-chisquare density,

β γ β γj j obs j j
TY N X X| , ~ ˆ , ,( )





−1
(6.21)
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γ χj obs j
T

j n p jY
j

| ~ ˆ ˆ .∈ ∈ − + −
−

1
2 (6.22)

6.5.4 Monotone data augmentation

Thus far we have discussed methods of inference that are
appropriate when the observed data Yobs are monotone. It often
happens in practice that a dataset is not precisely monotone,
but would become monotone if a relatively small portion of
the missing data were filled in. This situation often arises with
double sampling, where investigators attempt to measure
certain variables for all units in a sample, and then measure
additional variables for only a subsample. If there were no
missing values except for those missing by design, then the
data would be perfectly monotone; in practice, however, there
is usually some additional unplanned missingness which
makes the overall pattern deviate slightly from monotonicity.
Near-monotonicity also results in many longitudinal or panel
studies, in which variables are measured for individuals on
multiple occasions. Subjects who drop out of the study at a
particular occasion or wave usually do not reappear in
subsequent waves, so that if the variables are ordered by wave
the overall pattern is nearly monotone.

When this situation arises, we can exploit the near-
monotone pattern to devise simulation algorithms that are
computationally more efficient than the data augmentation
procedures described in Chapter 5. These new procedures,
which we call monotone data augmentation, differ from
ordinary data augmentation in that they fill in only enough of
the missing data at each I-step to complete a monotone
pattern. Suppose that we partition the missing data as Ymis =
(Ymis*, Ymis**) where Ymis* is some subset of the missing values
which, if filled in, would result in (Yobs, Ymis*) having a
monotone pattern. Monotone data augmentation proceeds in
the following two steps.

1. I-step: Given the current simulated value θ(t) of the

parameter, draw a value from the conditional predictive
distribution of Ymis*,
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Y P Y Ymis
t

mis obs
t+( ) ( )( )1 ~ * | , .θ (6.23)

2. P-step: Conditioning on Ymis
t

*
+( )1 , draw a new value of θ from

its posterior given the now-completed monotone pattern,

θ θt
obs mis

tP Y Y+( ) +( )( )1 1~ | , .* (6.24)

In practice, the P-step will have to be carried out using the
parameterization φ=(φ1,...,φp) that corresponds to the

monotone pattern of (Yobs, Ymis*). That is, we will have to draw

φ φ φ( ) ( ) ( )( , ..., )t t
p
t+ + +=1

1
1 1

by drawing

φ φj
t

j obs mis
tP Y Y+( ) +( )( )1 1~ | , *

independently for j = 1, 2,..., p, and then calculate

θ φ φt t+( ) − +( )= ( )1 1 1

using the procedures for numerical transformation described
earlier in this section.

Monotone data augmentation has two computational
advantages over ordinary data augmentation. First, it requires
fewer random number draws per iteration, i.e. it is typically
faster to fill in Ymis* than the full Ymis. Second, it will achieve
approximate stationarity in fewer iterations. Liu, Wong 
and Kong (1994) show that `collapsing’ the data aug-
mentation by drawing only a subset of the unknown 
quantities at each iteration leads to faster convergence
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Figure 6.9. Possible missingness patterns for a three-variable dataset, with
observed and missing variables denoted by 1 and 0, respectively.

and smaller autocorrelations between successive iterates. With
ordinary data augmentation, convergence is governed by the
amount of information contained in Ymis relative to Yobs

(Section 3.5.3). With monotone data augmentation, however,
convergence is governed by the amount of information in Ymis*

relative to Yobs. When Yobs is not far from monotone, Ymis* is
relatively small; the distribution P(θ|Yobs,Ymis*) is then nearly

independent of Ymis*, and only a few steps of monotone data
augmentation will be needed to achieve approximate
stationarity. In the extreme case where Yobs is precisely
monotone, Ymis* is empty and the algorithm reaches
stationarity in one step.

Monotone data augmentation was first proposed by Li
(1988) who demonstrated its use in simple bivariate examples.
The algorithm presented here, which assumes multivariate
normal data and the customary noninformative prior

π θ( ) ∝ −( )+

Σ
p 1

2 ,

has also been described by Liu (1993).

Choosing the monotone pattern to be completed

To identify a Ymis* it helps to group the rows of the data matrix
by their patterns of missingness. For example, the possible
patterns of missingness for a three-variable dataset are shown
in Figure 6.9. The missing values in the unshaded region
constitute Ymis* and need to be filled in at every I-step; missing
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data in the shaded region constitute Ymis** and do not need to
be filled in.

In most cases, of course, there is no unique set of missing
data Ymis* that will complete a monotone pattern. By simply
reordering the columns Y1, Y2,..., Yp of the data matrix, we can
identify alternative sets of missing values that are candidates
for Ymis*. For computational efficiency, it is advantageous to
choose Ymis* to be ’small’ in two senses. First, the actual
number of missing values contained in Ymis*. should be small,
to reduce the number of random variates that need to be drawn
at each I-step. Second, Ymis* should contain as little
information as possible about the unknown parameters, to
reduce the number of steps required to achieve approximate
stationarity. These two objectives may sometimes conflict. In
a normal dataset, for example, there may be a tradeoff
between filling in a large number of relatively noninfluential
observations and filling in a smaller number with high
leverage. Finding a set Ymis* to maximize the efficiency of the
algorithm is a difficult problem, as it involves questions about
the convergence of Markov chain Monte Carlo algorithms that
are not easy to answer at present. Moreover, finding such an
optimal set may itself require substantial computation,
offsetting the potential gains of a more efficient algorithm.

To choose Ymis*, we suggest the naive approach of simply
ordering the columns of Y according to their fractions of
missing observations. That is, choose Y1 to be the variable
with the fewest missing values, Y2 the variable with the second
fewest, and so on. This approach is attractive because it is
computationally trivial. Moreover, it has the feature that if Yobs

is already monotone, it will find the monotone pattern and
identify Ymis* to be empty.

6.5.5 Implementation of the algorithm

In discussing how to implement monotone data augmentation
for the multivariate normal model, we will need to build on
the bookkeeping notation of Chapter 5. Suppose that the rows
of the data matrix have been grouped together according to
their patterns of missingness as shown in Figure 6.10. Index
the missingness patterns by s = 1, 2,..., S. Let sj denote the last
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pattern for which variable Yj may need to be filled in to
complete the overall monotone pattern, so that

S s s s p= ≥ ≥ ≥1 2 L .

Following Section 5.3.1, let

r
Y s

Y ssj
j

j
=







1

0

       

       

if is observed in pattern ,

if is missing in pattern .

Figure 6.10. Arrangement of missingness patterns for monotone data
augmentation, with 0 denoting a variable that is missing and × denoting a

variable that is either observed or missing.

Let O(s) and M(s) denote the column labels corresponding to
variables that are observed and missing, respectively, in
pattern s,

O(s) = {j : rsj  = 1}

M(s) = {j : rsj = o}

Also, let M*(s) denote the subset of M(s) that must be filled in
to complete the monotone pattern, and let M**(s) be the
remainder of M(s),

M*(s) = {j : rsj = 0 and sj ≥ s}
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M**(s) = {j : rsj = 0 and sj < s}

For any s, M*(s) lists the columns with missing values in the
unshaded region of Figure 6.10, and M**(s) lists the columns
in the shaded region. Finally, let I(s) denote the subset of {1,
2,..., n} corresponding to the rows of the data matrix Y in
pattern s.

The I- and P-steps

The I-step for monotone data augmentation is nearly identical
to the I-step for ordinary data augmentation; the only
difference is that rather than imputing all the missing values
Ymis, we need only impute the portion Ymis* to complete the
monotone pattern. Consequently, the pseudocode for the I-step
shown in Figure 5.6 can be used for monotone data
augmentation with only one modification: replace every
occurrence of M(s) with the potentially smaller set M*(s). The
four lines of code in Figure 5.6 preceded by the character ’C’
are not needed and may be removed.

The P-step, however, is computationally more complicated
than the P-step for ordinary data augmentation, because the
posterior distributions of φ1,φ2,...,φp depend on different sets

of sufficient statistics. The posterior of φj, given by (6.21)-

(6.22), depends on ˆ , ˆ ˆβ j j
T

j j
T

jX X( ) ∈ ∈
−1

 and , which are

obtained from the regression of Yj on Y1,...,Yj−1 over the rows

of the data matrix in missingness patterns s = 1,..., s j. To
perform this regression, we need to accumulate sums of
squares and cross-products for variables Y1,...,Yj and patterns s
= 1,..., sj.

As in Section 5.3.3, define T(s) to be the (p + 1) × (p + 1)

matrix of complete-data sufficient statistics from missingness
pattern s,
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T s

n y y y

y y y y y

y y y

y

s i i ip

i i i i ip

i ip

ip

( ) =























Σ Σ Σ
Σ Σ Σ

Σ Σ

Σ

1 2

1
2

1 2 1

2
2

2

2

L

L

L

O M

,

where all sums are taken over i∈ I(s), and ns i I s= ∈ ( )∑  is the

sample size in pattern s. For simplicity, we will number the
rows and columns of T(s) from 0 to p rather than from 1 to p +
1. Let Tmis (s) and Tobs (s) be matrices of the same size as T(s)
with elements defined as follows: the (j, k)th element of Tmis

(s) is equal to the (j, k)th element of T(s) if j∈ M(s) or k∈ M(s),

and zero otherwise; and Tobs(s) = T(s) − T mis(s). Notice that

Tmis(s) contains the sufficient statistics that depend on Ymis,
whereas Tobs(s) contains the sufficient statistics that are
functions only of Yobs. Finally, let Tmis*(s) be a matrix identical
to T mis(s), but with the following exception: the rows and
columns corresponding to variables that are not needed to
complete the monotone pattern are set to zero. That is, set the
(j, k)th element of Tmis*(s) equal to zero if j∈ M**(s) or

k∈ M**(s), otherwise set it equal to the (j, k)th element of

Tmis(s). Thus Tmis* contains the sufficient statistics that depend
on Ymis* but not on Ymis**.

Suppose that the unknown values in Ymis* have been filled in
by an I-step so that Tmis*(s) can be calculated. If we let

T T s T sj obs
s

s

mis
s

sj j

= +
= =

∑ ∑( ) ( ),*
1 1

then

T

X X X z

z X z zj

j
T

j j
T

j

j
T

j j
T

j=

















0

0

0 0 0

,
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where zj and Xj, given by (6.10) and (6.11), are the response
vector and covariate matrix needed for the regression of Yj on
Y1,..., Yj−1. If this matrix is swept on positions 0, 1,..., j−1, the

result is

−( ) ( )
( ) − ( )





















− −

− −
X X X X X z

z X X X z z z X X X X z

j
T

j j
T

j j
T

j

j
T

j j
T

j j
T

j j
T

j j
T

j j
T

j

1 1

1 1
0

0
0 0 0

.

But notice that

X X X zj
T

j j
T

j j( ) =
−1

β̂

is the vector of estimated coefficients from ordinary least-
squares regression of zj on Xj. Moreover, it is straightforward
to show that

z z z X X X X zj
T

j j
T

j j
T

j j
T

j j
T

j− ( ) =∈ ∈
−1

ˆ ˆ ,

where ˆ ˆ∈ = −j j j jz X β  is the vector of estimated residuals.

The quantities needed to describe the posterior distribution of
φj, given the observed data Yobs and imputed data in Ymis* can

thus be obtained by sweeping the matrix Tj. Note that all of the
elements of Tj in rows and columns j + 1,..., p are zero before
and after sweeping. Superfluous arithmetic can be avoided by
applying the generalized sweep operator (Section 6.5.2) to
sweep only the nonzero portions of T. The regression
computations become

SWP j T

X X

A j

j
T

j j

j
T

j
T

jj
0 1

0

0

0 0 0

1

, ...,

ˆ

ˆ ˆ ˆ ,−[ ] =

−( )
∈ ∈





















−
β

β
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where Aj = {0, 1,..., j}.
An implementation of the P-step is shown in Figure 6.11.

The components of φ are simulated in the reverse order

φ1,φp−1,...,φ1 and placed in a (p + 1) × (p + 1) matrix as shown

in Section 6.5.2. This implementation requires two matrix workspaces

Figure 6.11. P-step for monotone data augmentation.

of the same size as φ : T, in which the sufficient statistics Tj are

accumulated and swept; and C, which holds the Cholesky
factors required for simulating the vectors of regression
coefficients βj. In addition, a vector workspace v = (v0, v1,...,

vp−1) is needed for temporary storage of normal random

variates. The quantity Nj, which appears in the degrees of
freedom of the chisquare random variate, is

N nj s
s

s j

=
=

∑ ,
1

the total number of rows of the data matrix Y for which
variable Yj is either observed or imputed.

The algorithm of Figure 6.11 operates as follows. After the
elements of T are initialized to zero, the sufficient statistics for
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Y1,..., Yp are accumulated in T over missingness patterns 1,...,
sp. The matrix T is swept on positions 0,..., p − 1, producing

statistics from the regression of Yp on Y1,..., Yp−1. A random

value of φp = (γp,βp) is then drawn from its posterior,

distribution. If additional rows of Y will enter into the next
regression, i.e. if sp−1 > sp then T is reverse-swept on positions
0,..., p−1 to prepare for the accumulation of sufficient statistics

over these additional rows. Otherwise, T is reverse-swept only
on position p−1, yielding the results from the regression of Yp−1

on Y1,..., Yp−2. Continuing in this fashion, the algorithm draws

φp−1,φp−2,...,φ1. Upon completion, the resulting value of φ
should be transformed to the θ-scale (Section 6.5.2) to prepare

for the next I-step.
The accumulation of sufficient statistics in line 4 of this

algorithm may be rewritten as

T T T s T sobs mis
s s

s

s s

s

j

j

j

j

: .*= + ( ) + ( )
= += + ++

∑∑
11 11

(6.25)

The first sum on the right-hand side of (6.25) depends only on
the observed data Yobs and does not need to be recalculated at
each P-step. Calculating

B T sj obs
s s

s

j

j

= ( )
= ++

∑
1 1

once at the outset of the program and storing it for future
iterations can substantially reduce the amount of computation
required at each P-step. Notice that we do not need to
calculate and store Bj for every j = 1, 2,..., p, but only for those
values of j for which sj+1 < sj. The second sum on the right-
hand side of (6.25) depends on Ymis*, the missing values
imputed at the I-step, so these terms will need to be
recalculated at each P-step.
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6.5.6 Uses and extensions

Like ordinary data augmentation, monotone data augmentation
enables us to (a) simulate values of θ from the observed-data

posterior P(θ|Yobs), and (b) create proper multiple imputations

of Ymis. The output stream is a sequence

Y Y Ymis mis mis
t t

* * *, , , , ..., , , ...1 1 2 2( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )θ θ θ

with P(Ymis*, θ|Yobs) as its stationary distribution. After a

sufficient burn-in period, successive values of θ,

θ θ θt t t( ) +( ) +( ), , , ...,1 2

constitute a dependent sample from P(θ|Yobs) and may be

summarized using any of the methods described in Chapter 4.
Iterates of Ymis* that are sufficiently far apart in the output
stream, say

Y Y Ymis
t

mis
t k

mis
t k

* * *, , , ...( ) +( ) +( )2

for some large value of k, can be taken as proper multiple
imputations of Ymis*.

In many applications, we will want proper multiple
imputations of all the missing data in Ymis, not just the missing
data Ymis*. needed to complete a monotone pattern. To obtain
m proper multiple imputations of Ymis, we should first generate
m values of θ that are approximately independent, say

q ( t),q ( t+k), . . . ,q ( t+mk)

and then draw a value of Ymis  given each one,
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Y P Y Y

Y P Y Y

Y P Y Y

mis mis obs
t

mis mis obs
t k

mis
m

mis obs
t mk

1

2

( ) ( )

( ) +( )

( ) +( )

( )
( )

( )

~ | , ,

~ | , ,

~ | , ,

θ

θ

θ

M

using the I-step for ordinary data augmentation described in
Chapter 5. Of course, to obtain independent values of θ we do

not necessarily need to subsample every kth value from a
single chain of monotone data augmentation; we can also run
m independent chains of length k from a common starting
value, or better still, from m independent starting values drawn
from an overdispersed starting distribution (Section 4.4.2).

Alternative priors

The monotone data augmentation algorithm described above
uses the customary noninformative prior distribution

π θ( ) ∝ −( )+

Σ
p 1

2 .

It is occasionally helpful to use other priors. For example, in
sparse-data situations where some aspects of the covariance
structure are poorly estimated, we may want to apply the ridge
prior described in Section 5.2.3. A strategy for monotone data
augmentation under an arbitrary inverted-Wishart prior
distribution for Σ is outlined by Liu (1993). Liu’s algorithm

uses a clever factorization of the posterior distribution under
monotone data, derived using an extension of the Bartlett
decomposition (Section 5.4.2).

6.5.7 Example

Section 6.4 presented a small simulation study designed to
mimic the types of data and missingness found in a national
health examination survey. The response mechanism shown in
Table 6.12, which was estimated from an actual survey, tends
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to produce samples that are nearly monotone. The most
common missingness pattern, which occurs for about 70% of
sampled individuals, has all four survey variables (AGE, BMI,
HYP, CHL) observed. The next most common pattern, which
occurs about 15% of the time, has AGE observed and the
other three variables missing. If AGE is placed in the first
column of the data matrix, then at least 85% of the sampled
individuals will tend to conform to a monotone pattern. This is
precisely the type of situation in which monotone data
augmentation should outperform ordinary data augmentation.

To illustrate, a simple random sample of n = 25 individuals
was drawn from the study population, and a random pattern of
missingness was imposed on the sample according to the
estimated mechanism. The simulated data and missingness
patterns are shown in Table 6.14. Overall there are 27 missing
values, but only three of them (one value of HYP and two of
BMI) are needed to complete a monotone pattern.

As in the simulation study, we replaced AGE by two
dummy indicators (AGE2 = 1 for AGE = 2 and 0 otherwise;
AGE3 = 1 for AGE = 3 and 0 otherwise) and modeled the
resulting five-variable dataset as multivariate normal. An
exploratory run of the EM algorithm revealed that the worst
fraction of missing information, as estimated from the
elementwise rates of convergence, is about 66%. Runs of data
augmentation and monotone data augmentation under the
customary noninformative prior verified that monotone data
augmentation does indeed converge faster. Sample
autocorrelations for two functions of the parameter θ,

calculated over 5000 iterations of each algorithm, are
displayed in Figure 6.12. Figure 6.12 (a) shows ACFs for the
correlation between BMI and CHL, and Figure 6.12 (b) shows
ACFs for the worst linear function of θ, which was estimated

from the trajectory of EM. With respect to these two
parameters, data augmentation appears to be approximately
stationary by lag k = 4, whereas monotone data augmentation
seems nearly stationary at lag k = 1.

For a dataset of this size, iterations of either algorithm can
be executed so quickly on modern computers that the
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advantage of monotone data augmentation is of little practical importance.

Table 6.14. Sample data from a health examination survey with simulated
Pattern of missingness (1=observed, 0=missing)

In a large database, however, a four-fold reduction in the time
required to produce a given number of multiple imputations
can be a substantial improvement. Moreover, the gains tend to
become even more dramatic as the rates of missing
information increase. In studies that employ double sampling
or matrix sampling, it is not uncommon for the rates of
missing information for some parameters to be 90% or more.
These high rates of missingness, due primarily to data that are
missing by design, can make the convergence of ordinary
data augmentation painfully slow. It is easy to envision 
scenarios where exploiting a near-monotone pattern that
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Figure 6.12. Sample ACFs of series from ordinary data augmentation (dashed
line) and monotone data augmentation (dotted line) for (a) the correlation
between BMI and CHL, and (b) the worst linear function of the parameter.

arises by design can reduce the computations by one or more
orders of magnitude.
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CHAPTER 7

Methods For Categorical Data

7.1 Introduction

The past three decades have seen enormous growth in the
theory and application of models for categorical data.
Categorical-data techniques such as logistic regression and
loglinear modeling are now commonplace in the social and
biomedical sciences and nearly every other major area of
statistical application. For the most part, however, principled
methods for handling missing values in categorical data
analysis have not been readily available.

We have already demonstrated that, under certain
circumstances, categorical variables can be handled quite
reasonably by applying the multivariate normal distribution
(Sections 6.3 and 6.4). In other situations, however, it is
desirable to use a model specifically designed for categorical
data. This chapter develops techniques for parameter
simulation and multiple imputation for incomplete categorical
data under the saturated multinomial model. The saturated
multinomial is more general than the multivariate normal in
the sense that it allows for three-way and higher associations
among the variables; the multivariate normal captures simple
(two-way) associations only. When maintaining higher-order
associations among continuous variables is a priority, it may
even be worthwhile to categorize them and apply the methods
of this chapter rather than normal-based methods, even though
the categorization may result in a slight loss of information.

The generality of the saturated multinomial model can also
be a drawback, however, because in many applications
(particularly as the number of variables grows) some of the
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higher-order associations may be poorly estimated. In these
situations, it often helps to simplify the model by selectively
removing some of these complex associations. Elimination of
higher-order associations will be discussed within the
framework of loglinear modeling, which will be covered in
Chapter 8.

Section 7.2 lays the groundwork for our categorical-data
methods by reviewing fundamental properties of two
multivariate distributions, the multinomial and the Dirichlet.
Basic EM and data augmentation algorithms for the saturated
multinomial model are developed in Section 7.3. Section 7.4
introduces a class of algorithms that tends to be more efficient
when the missing values fall in a pattern that is nearly
monotone.

7.2 The multinomial model and Dirichlet prior

7.2.1 The multinomial distribution

Let Y1, Y2,..., Yp denote a set of categorical variables. For
notational convenience, we will suppose that the levels of each
variable are coded as positive integers, so that

Y dj j takes possible values , , ...,1 2

for j = 1, 2,..., p. Throughout this chapter, we will regard the
levels 1, 2,..., dj as nominal or unordered categories; we do not
consider models that explicitly account for ordering, e.g. the
models for ordinal variables discussed by Agresti (1984) and
Clogg and Shihadeh (1994). Incomplete ordinal data can
sometimes be handled, at least approximately, by pretending
that they are normally distributed and applying the methods of
Chapters 5-6. Alternatively, one can disregard the order of the
levels and apply the methods described here. Disregarding the
order results in some loss of information and may lead to
models that are more complex (i.e. having more parameters)
than necessary to describe the essential relationships among
the variables. For developing models that are parsimonious
and scientifically meaningful, it is usually desirable to retain
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the ordering of the levels, if possible. On the other hand, if the
immediate goal is to create plausible multiple imputations of
missing data for future analyses, then disregarding the order
and applying the methods of this chapter may be a perfectly
reasonable approach.

If values of Y1, Y2,..., Yp are recorded for a sample of n
units, then the complete data can be expressed as an n × p data

matrix Y. If the sample units are independent and identically
distributed (iid), then without loss of information we can
reduce Y  to a contingency table with D cells, where

D dj
p

j= =∏ 1  is the number of distinct combinations of the

levels of Y1, Y2,..., Yp. In practice, logical constraints among
the variables may render some of these combinations
impossible. For example, if Y1 represents age (1=0-9 years,
2=10-19 years,...) and Y2 represents marital status (1=never
married, 2=currently married,...) then under most
circumstances (Yi = 1, Y2 = 2) should be regarded as an
impossible event. Cells of the contingency table that are
necessarily empty due to logical constraints are called
structural zeroes (e.g. Agresti, 1990). Structural zeroes present
only minor complications, most of which are notational. For
now, we will proceed as if there are no structural zeroes.

Let us index the cells of the contingency table by the single
subscript d = 1, 2,..., D. Let xd be the number of sample units
that fall into cell d, and let

x x x xD= ( )1 2, , ...,

denote the entire set of cell frequencies or counts. If the

sample units are iid and the sample size n xd
D

d= =∑ 1  is

regarded as fixed, then x has a multinomial distribution. We
will write

x M n| ~ ,θ θ( )

to indicate that x is multinomial with index n and parameter

θ θ θ θ= ( )1 2, , ..., ,D
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where θd is the probability that a unit falls into cell d. The

probability distribution for x is given by

P x
n

x x xD

x x
D
xD|

!

! ! !
θ θ θ θ( ) =

1 2
1 2

1 2

L
L (7.1)

for d
D

dx n= =∑ 1  and 0 otherwise. Because the total sample

size n is fixed, one of the elements of x is redundant; we can

replace XD by d
D

dx=
−∑ 1

1  and regard (7.1) as the probability

distribution for (x1,..., xD − 1)

Notice that the cell probabilities must satisfy d
D

d= =∑ 1 1θ ,

so the multinomial model has only D − 1 free parameters; θD

can be replaced by1 1
1− =

−∑ d
D

dθ . Alternatively, we can regard

the full vector θ = (θ1, ...,θD) as the unknown parameter, with

the understanding that it must lie within the simplex

Θ = ≥ ={ }∑θ θ θ: ,d dd0 1 for all  and d =1
D (7.2)

a (D  −  1)-dimensional subset of D-dimensional space. When

D = 3, for example, Θ is the region encompassed by the

triangle with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1).
The simplex Θ  is the natural parameter space for the

multinomial, i.e. the set of all possible values of θ for which

(7.1) is a valid probability model. Throughout this chapter, we
allow θ to lie anywhere in Θ. Such a model is said to be

saturated, because it includes the maximum number of free
parameters (D − 1). The saturated model is very general; it

allows for any kind of relationships to exist among the
variables Y1, Y2,..., Yp. In many applications, however, such
generality is undesirable because the information contained in
the observed data may not be sufficient to estimate so many
parameters adequately. Moreover, when the goal is to develop
a model that is scientifically meaningful, models that are more
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parsimonious (i.e. having fewer parameters) than the saturated
model may be easier to interpret. In Chapter 8, we will show
how to reduce the number of free parameters by imposing
loglinear constraints on the elements of θ.

When the multinomial vector x has only D = 2 cells, x2 and
θ2 can be replaced by n − x1, and 1 − θ1, respectively, and

(7.1) reduces to a binomial distribution,

P x n
n

x n x
x n x

|
!

! !
.( ) =

−( ) −( ) −

1 1
1 1

1 11θ θ

In this special case, we will sometimes use the notation

x B n1 1 1| ~ ,θ θ( )
as an alternative to

x n x M n n1 1 1 1, | ~ , , .−( ) −( )( )θ θ θ

The first two moments of the multinomial distribution are
given by

E x n

V x n

x x n d d

d d

d d d

d d d d

| ,

| ,

Cov , | ,

θ θ
θ θ θ

θ θ θ

( ) =
( ) = −( )

( ) = − ′ ≠′ ′

1

Further properties of the multinomial distribution can be found
in texts on discrete data (e.g. Bishop, Fienberg and Holland,
1975; Agresti, 1990).

Maximum-likelihood estimation

The likelihood function for the multinomial parameter is

L Y Id
x

d

D
dθ θ θ| ,( ) ∝ ( )

=
∏ Θ

1

(7.3)
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where IΘ(θ) is an indicator function equal to 1 if θ∈Θ  and 0

otherwise. Notice that we have written L(θ|Y) rather than

L(θ |x). We are allowed to do this because all relevant

information about θ in the data matrix Y is captured in the

contingency table x; that is, we can reconstruct Y from x
except for the order of the sample units, which under the iid
assumption is statistically irrelevant. The loglikelihood is

l Y xd d
d

D

θ θ| log ,( ) =
=

∑
1

(7.4)

defined over the simplex Θ. The multinomial is a regular

exponential family distribution whose sufficient statistics are
simply the cell counts x = (x1,..., XD). Therefore, complete-data
ML estimates can be obtained simply by equating each
observed cell count xd to its expectation E(xd|θ) = nθd, leading

to the well-known result that the ML estimates for the cell
probabilities are the observed proportions

ˆ , , ..., .θd
dx
n

d D= =1 (7.5)

7.2.2 Collapsing and partitioning the multinomial

The multinomial distribution has two convenient properties
that enable us to factor the probability distribution P(x|θ) and

the likelihood L(θ|Y). Suppose that we collapse two cells of

the contingency table, say x1 and x2, adding the frequencies
together to produce a new table x* = (z,x3, ...,xD) where z = x1

+ x2. Then (a) the distribution of x* is multinomial,

x M n* | ~ , * ,θ θ( ) (7.6)

where θ* = (ξ,θ3, . . . ,θD) and ξ  = θ1+θ2; and (b) the conditional

distribution of (x1, x2) given z is also multinomial,
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x x z M z1 2 1 2, | , ~ , / , / .( ) ( )( )θ θ ξ θ ξ (7.7)

Property (a) is derived by summing the multinomial
probabilities for all x-vectors consistent with x1 + x2 = z,

P x P x j x z j x x

n
j z j x x

n
z x x

z
j z j

D
j

z

D

j z j x
D
x

j

z

D

x
D
x

j

z
j z

D

D

* | , , , ...,

!

! ! ! !

!

! ! !

!

! !

θ

θ θ θ θ

θ θ θ θ

( ) = = = −( )

=
−( )

=
−( )

=

−

=

=

−

∑

∑

∑

1 2 3
0

3
1 2 3

0

3
3

0
1 2

3

3

L
L

L
L jj ,

and noting that

z
j z j

j z j z

j

z
!

! !−( ) = +( )−

=
∑ θ θ θ θ1 2 1 2

0

by the Binomial Theorem. Property (b) can be deduced as
follows.
Notice that if we repeatedly apply Property (a) to collapse the
table down to x1 + x2 = z and x3 +⋅⋅⋅+ xD = n − z, we obtain

z n z M n, | ~ , , .−( ) −( )( )θ ξ ξ1

Moreover, if we collapse x3 +⋅⋅⋅+ xD = n − z but leave x1 and x2

intact, then

x x n z M n1 2 1 2 1, , | ~ , , , .−( ) −( )( )θ θ θ ξ

The conditional distribution of (x1, x2) given z is by definition

P x x z
P x x n z

P z n z1 2
1 2, | ,
, , |

, |
θ

θ
θ

( ) =
−( )

−( )
(7.8)
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for x1 + x2 = z  and 0 otherwise. Substituting expressions for
the numerator and denominator, the right-hand side of (7.8)
becomes

n
x x n z

n
z n z

x x n z z n z!

! ! !

!

! !1 2
1 2

1
1 2 1 1

−( )
−( )







 −( )

−( )









− −
−

θ θ ξ ξ ξ

which reduces to

P x x z
z

x x

x x

1 2
1 2

1 2
1 2

, | ,
!

!
,

!
θ θ

ξ
θ
ξ

( ) =












the desired result.
We have stated these results in terms of collapsing just two

cells (x1 + x2 = z), but they extend to arbitrary types of
collapsing. Suppose that we partition the cell numbers {1, 2,...,
D} into subsets A1, A2,...,AK that are mutually exclusive and
collectively exhaustive. Denote the part of x corresponding to
Ak by

x x d Ak d k( ) = ∈{ }: .

The collection {x(1), x(2),..., x(K)} of these parts will be called
the partitioned table, and x(k) will be called the kth part of x.
Denote the total frequency for the kth part by

z xk d
d Ak

=
∈
∑ .

The collection z = (z1, z2,...,zK) of these total frequencies will
be called the collapsed table. Denote the probability that a
sample unit falls into the kth part by

ξ θk d
d Ak

=
∈
∑ , (7.9)

and the conditional probability that a sample unit falls into cell
d given that it falls into the kth part by
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φ θ ξkd d k kd A= ∈/ . for all (7.10)

Denote the collection of all such conditional probabilities for
the kth part by

φ φk kd kd A= ∈{ }: .

Notice that φk is simply the kth part of θ, rescaled so that its

elements sum to one. Under these conditions, it can be shown
that (a) the marginal distribution of the collapsed table is
multinomial,

z M n| ~ , ,θ ξ( ) (7.11)

where ξ  = (ξ1,ξ2,...,ξK); and (b) the conditional distribution of

the partitioned table given the collapsed table is a set of
independent multinomials,

x z M z

x z M z

x z M zK K K

1 1 1

2 2 2

( )

( )

( )

( )
( )

( )

| , ~ , ,

| , ~ , ,

| , ~ , .

θ φ

θ φ

θ φ

M
(7.12)

A set of independent multinomial distributions over a
partitioned contingency table is often called a product
multinomial. For any collapsing scheme, we can thus factor
the multinomial distribution into a multinomial for the
frequencies in the collapsed table, whose parameters are
obtained by summing or collapsing θ in the same manner that

x was collapsed, and a product multinomial for the conditional
distribution of the partitioned table given the collapsed table,
whose parameters are obtained by partitioning θ and rescaling

each part to sum to one.
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Factoring the likelihood

It is easy to see that the parameters for the collapsed table and
the partitioned table, which we denote collectively by

ψ ξ φ φ= ( ), , ..., ,1 K

are a one-to-one function of θ  = (θ1,...,θd); the forward

transformation ψ = ψ(θ) is defined by (7.9)-(7.10), and the

back transformation θ=ψ −1(ψ) is

θ ξ φd k kd kd A= ∈ for all , (7.13)

k = 1, 2,..., K. Moreover, the parameters for the collapsed table
and each part of the partitioned table are mutually distinct; any
values of ξ,φ1,...,φK in their respective simplexes will produce

a value of θ in its simplex Θ. It follows that the likelihood

function for ψ can be factored into a sequence of independent

multinomial likelihoods,

L x L z L x L xK Kψ ξ φ φ| | | | .( ) = ( ) ( ) ( )( ) ( )1 1 L

Likelihood-based inferences about each part of ψ  can be

carried out independently, and the results can then be
combined to produce a valid overall inference. For example,
ML estimates for each part ξ ,φ1,...,φK can be calculated

independently; they are

ξ̂k
kz
n

=   and φ̂kd
d

k

x
z

=  for all d∈ Ak.    for all d ∈Ak.

Applying the back transformation θ = ψ-1(ψ) to these values

gives θ̂d  = xd/n, the ML estimates for θ. Bayesian inferences

for each part can also proceed independently, provided that the
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prior distribution applied to ψ factors into independent priors

for ξ,φ1, . . . , φK.

Non-multinomial sampling

This factorization of the multinomial likelihood has important
implications for statistical inference. In many datasets, the
distribution of one or more categorical variables is not random
but fixed by design. Common examples of this include (a)
treatment indicators in randomized experiments and (b)
variables used to define strata in sample surveys. When the
distribution of one or more variables is fixed by design, the
cell frequencies x = (x1, x2,..., XD) are not multinomial; rather,
they follow a product-multinomial distribution. If we
erroneously apply a multinomial model, however, we can still
obtain valid likelihood-based or Bayesian inferences about the
parameters of the nonfixed portion of the model. This result
holds for incomplete data, provided that the missing values are
confined to variables that are not fixed (Section 2.6.2). In
addition, the multinomial likelihood may lead to valid
conditional inferences in situations where the total sample size
n is random (e.g. Poisson sampling) (Bishop, Fienberg and
Holland, 1975; Agresti, 1990). Although we will speak almost
exclusively of the multinomial model throughout this chapter
and the next, the reader should be aware that the methods
presented here can be reasonably applied in many non-
multinomial situations.

7.2.3 The Dirichlet distribution

The simplest way to conduct Bayesian inference with a
multinomial model is to choose a parametric family of prior
distributions whose density has the same functional form as
the likelihood (7.3). Suppose that θ = (θ1,...,θD) is a vector of

random variables with the property that θd ≥ 0 for d = 1,...,D

and d
D

d= =∑ 1 1θ . Then θ  is said to have a Dirichlet

distribution with parameter α = (α1, . . . , αD) if its density is

©1997 CRC Press LLC



 

P
D

D
Dθ α

α
α α α

θ θ θα α α|( ) =
( )

( ) ( ) ( )
− − −Γ

Γ Γ Γ
0

1 2
1

1
2

1 11 2

L
L (7.14)

over the simplex Θ, where α0 = d
D

d=∑ 1α and ΓΓΓΓ (⋅) denotes

the gamma function. As a shorthand for (7.14), we will write

θ α α| ~ .D( )

The right-hand side of (7.14) is a valid probability density
provided that αd > for 1, . . . , D.

When the Dirichlet is used as a prior distribution for the
parameters of the multinomial, we will typically omit the
normalizing constant and write the prior density as

π θ θ θ θα α α( ) ∝ − − −
1

1
2

1 11 2 L D
D , (7.15)

where α1,...,αD  are understood to be user-specified

hyperparameters. Although this appears to be a joint density
for D random variables, we must remember that one of the
elements of θ is redundant. In taking expectations, for

example, we would replace θD by 1 1
1− =

−∑ d
D

dθ  and integrate

with respect to θ1,...,θD−1 In the special case of D = 2, θ2 =

1−θ1 and the Dirichlet reduces to a beta distribution for θ1. In

this special case we may write

θ α α α1 1 2| ~ ,Beta( )
as an alternative to

θ θ α α1 2, | ~ .( ) ( )D
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Figure 7.1. Dirichlet densities for (a) α = (5,3,4) and (b) α = (3,1,2), plotted

as functions of θ1 and θ2.

Properties of the Dirichlet distribution

Here we state without proof some basic properties of the
Dirichlet distribution. For a more detailed treatment, see Wilks
(1962). The first two moments are given by

E

V

d d

d
d

d
d d

d d
d d

θ α
α

θ
α α α
α α

α α
α α

α α

( ) =

( ) =
−( )
+( )

( ) = −
+( )

′ ≠′
′

0

0

0
2

0

0
2

0

1

1

,

,

Cov , , .

If the means αd/α0 are held constant but α 0 is allowed to

increase, then the variances and covariances are of order

O α0
1−( ) . For this reason, α0 may be regarded as a precision

parameter; as it increases, the distribution becomes more
tightly concentrated about the mean.

The mode of the Dirichlet can be found by noting that its
density is equivalent to the likelihood function from a
multinomial contingency table x = (x1,...,XD) with xd = α d−1, d

= 1,...,D. This function is maximized at θd d d
D

dx x= ′ = ′∑/ 1

provided that every xd is nonnegative. Therefore, the mode of
the Dirichlet density occurs at

θ α
αd

d

D
d D= −

−
=1

1
0

, ..., , (7.16)
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provided that every αd ≥ 1.

Two examples of the Dirichlet density for D = 3 are shown
in Figure 7.1. Because one of the elements of θ = (θ1,θ2,θ3) is

redundant, the densities are plotted as functions of θ1 and θ2

over the triangular region θ1 ≥  0, θ2 ≥  0, θ1 + θ2 ≤  1. Figure

7.1 (a) shows the density for α  = (5,3,4), and Figure 7.1 (b)

shows the density for α = (3,1,2). Notice that in (a) the mode

lies in the interior of the parameter space Θ, whereas in (b) the

mode lies on the boundary. It is true in general that if every αd

> 1, then the density has a unique mode in the interior of Θ. If

every αd = 1, then the Dirichlet density is uniform over Θ. If

one or more of the parameters ad is equal to one but none are
less than one, then the density is bounded and the mode occurs
on the boundary. Finally, if αd < 1 for any d then the density

function becomes infinite on the boundary. These properties
suggest that if θ  ~ D(α) represents the current state of

knowledge about θ, and if one or more elements of a are less

than or equal to one, then the mode may not be a sensible
point estimate for θ; a better estimate would be the mean.

Relationship to the gamma distribution

An important relationship exists between the Dirichlet
distribution and the gamma distribution. A random variable v
is said to have a standard gamma distribution with parameter a
> 0 if its density is

P v a
a

v ea v|( ) =
( )

− −1 1

Γ

for v > 0, and we write

v a G a| ~ .( )

The gamma distribution is usually presented as a two-
parameter family, with one parameter determining the shape
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and the other determining the scale. The standard gamma
distribution is obtained by setting the usual scale parameter to
one. The mean and variance of the standard gamma are both
equal to a. The standard gamma also has the following
reproductive property: if v1 ~ G (a1) and v 2 ~ G(a2) are
independent, then v1+v2 ~ G(a1+a2).

The Dirichlet distribution can be obtained from the standard
gamma as follows. Suppose that v1, v2,..., vD are independent
standard gamma variates with parameters α1,α2, . . . ,αD,

respectively. If we take

θd
d

d
D

d

v

v
d D= =

′ = ′∑ 1

1 2, , , ..., ,

then θ = (θ1,θ2, ...,θD) will have a Dirichlet distribution with

parameter α  = (α 1,α2, ...,αD). This property enables us to

simulate a Dirichlet random vector using a standard gamma
variate generator. Methods for efficient generation of gamma
random variates are reviewed by Kennedy and Gentle (1980).

Limitations of the Dirichlet prior

From a purely conceptual standpoint, the Dirichlet distribution
is not the most attractive prior for cross-classified contingency
tables. One of its drawbacks is that it treats the cells of the
table in an unordered fashion, ignoring its cross-classified
structure. We have adopted the Dirichlet prior mainly for
computational convenience, because with complete data it
leads to posterior distributions that are easily summarized. If
the parameters of the data model are not well estimated by the
data, and it becomes apparent that the choice of prior has a
substantial impact on the results, then one should be wary of
drawing firm conclusions from an analysis under a Dirichlet
prior or, for that matter, any other type of prior.

7.2.4 Bayesian inference

It is easy to see what happens when a Dirichlet prior is applied
to the parameters of the multinomial. Suppose that a

©1997 CRC Press LLC



 

contingency table x = (x1,...,XD) has a multinomial distribution
with parameter θ = (θ1,...,θD), and the prior distribution for θ
is Dirichlet with hyperparameter α = (α1, ...,αD),

x M n| ~ , ,θ θ( ) (7.17)

θ α~ .D( ) (7.18)

Multiplying the Dirichlet density (7.15) by the multinomial
likelihood (7.3) produces

P Y x x
D

xD Dθ θ θ θα α α| ,( ) ∝ + − + − + −
1

1
2

1 11 1 2 2 L (7.19)

which is a Dirichlet density with parameters

′ = ′ ′ ′( )
= + + +( )
= +

α α α α

α α α
α

1 2

1 1 2 2

, , ...,

, , ...,

.

D

D Dx x x

x

(7.20)

The posterior distribution of θ under (7.17)-(7.18) is thus

θ α| ~ .Y D ′( )

The posterior mean is

E Y Dθ α
α

α
α

α
α

| , , ...,( ) = ′
′

′
′

′
′







1

0

2

0 0

where ′ = +( ) = +=∑α α α0 1 0d
D

d dx n, and the posterior

mode is

mode θ α
α

α
α

α
α

| , , ...,Y
D D D

D( ) = ′ −
′ −

′ −
′ −

′ −
′ −







1

0

2

0 0

1 1 1

provided that every  ′α d ≥ 1.
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The Dirichlet prior (7.17) is a proper probability
distribution if α1,α2,...,αD are all positive. Notice, however,

that for (7.19) to be proper, we only need the updated
hyperparameters α′d = αd+xd to be positive. This means that

we can adopt an improper prior density function such as

π θ θ θ θ( ) ∝ − − −
1

1
2

1 1L D , (7.21)

which is the limiting form of the D(α) density as a approaches

(0, 0,..., 0), and still obtain a proper posterior if αd+xd > 0 for

every d. In a slight abuse of terminology, we will call (7-21)
the Dirichlet density with α = (0, 0,..., 0); it should be

understood that this is not a density per se, but it leads to a
proper Dirichlet posterior if there are no empty cells (i.e. if
every xd ≥ 1).

7.2.5 Choosing the prior hyperparameters

Because of the rule (7.20) for updating the hyperparameters α
= (α1,...,αD), it is tempting to think of these as imaginary prior

counts in the cells of the contingency table. This notion is
certainly correct in a relative sense; increasing αd by one has

the same inferential effect as observing one additional sample
unit in cell d. In an absolute sense, however, we hesitate to
interpret αd as the number of prior observations in cell d,

because it is not necessarily true that αd = 0 represents no prior

observations in cell d.

Noninformative priors

When little prior information is available about 0, it may be
sensible to take α1,α2, . . . , αD equal to a common value that is,

to set α = (c,c,...,c) for some constant c. However, there is no

unique choice for c that clearly represents a state of ignorance
about θ. Most statisticians would agree that without strong

prior information, the ML estimate
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ˆ , , ...,θ = 





x
n

x
n

x
n
D1 2 (7.22)

is a reasonable point estimate for θ. This is particularly true if

θ̂  lies in the interior of the parameter space, i.e. if there are no
empty cells. Notice that (7.22) is the posterior mean of θ under

the improper prior with c = 0, assuming that there are no
empty cells. But it is also the posterior mode under the
uniform prior with c = 1. From the standpoint of estimating θ,

one could thus argue that either (or neither!) of these priors is
noninformative. Moreover, the Jeffreys invariance principle
for choosing a noninformative prior (e.g. Box and Tiao, 1992)
leads to the choice c = 1/2. Therefore, it seems reasonable to
regard the whole range of values of c between zero and one as
potentially noninformative.

With certain techniques or algorithms, there may be a
natural choice for a noninformative prior. For example, with a
mode-finding algorithm such as EM, the uniform prior (c = 1)
will cause the procedure to converge to an ML estimate. In a
general-purpose implementation of EM, therefore, it would be
natural to adopt c  = 1 as a default noninformative prior. In
other situations, however, the choice is less clear. In data
augmentation, for example, the parameters of interest are
typically estimated by their simulated-posterior means. Under
the prior with c = 0, the posterior mean coincides with the ML
estimate (at least in the complete-data case) for parameters
that are linear functions of θ1,...,θD, but not for nonlinear

parameters (e.g. odds ratios). Unlike ML estimates, posterior
means are not invariant under nonlinear transformations.
Therefore, we cannot really claim that c = 0 is a good default
prior for a general-purpose data augmentation routine. The c =
0 prior is also unattractive because it is improper; the
existence of a proper posterior under this prior is not
guaranteed.

If the sample size is large relative to the number of
parameters being estimated, the choice of prior will tend to
have little impact on the final inferences. For the examples in
this book, we will adopt the Jeffreys prior (c  = 1/2) as a
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default noninformative prior for simulations where the sample
size is large. This choice is admittedly somewhat arbitrary. If
there is any doubt that the influence of the prior is minimal,
one should always conduct a sensitivity analysis, applying a
variety of alternative priors to see how the resulting inferences
change. If the results vary dramatically over a range of
plausible priors, then the only scientifically justifiable
conclusion may be that no firm conclusions are possible.

Sparse tables and flattening priors

When the sample size n is not much larger than the number of
cells D , a substantial number of cells may contain no
observations. A table x = (x1,...,xD) in which a high proportion
of the frequencies xd are zero is said to be sparse. It is well
known that when common models for discrete data (e.g.
loglinear or logistic models) are fit to sparse tables, the empty
cells can lead to inestimable parameters and/or ML estimates
on the boundary. For this reason, it has often been suggested
that a small positive number such as 1/2 should be added to
every cell of a sparse table prior to model fitting. The use of
such a number, called a flattening constant, is reviewed by
Clogg et al. (1991).

The effect of a flattening constant is to smooth the estimate
of θ toward a uniform table in which all cell probabilities are

equal. When x = (x1,..., xD) represents a cross-classification by
discrete variables Y1,Y2,...,Yp, a uniform table has no
relationships whatsoever among the variables. Adding a
constant ∈  > 0 to every cell thus tends to be conservative, in

the sense that it makes us less likely to conclude that
relationships among the variables exist when in fact they do
not.

A prior distribution that smooths parameter estimates
toward a uniform table will be called a flattening prior.
Flattening priors can be helpful for ensuring that the mode of
θ is unique and lies in the interior of the parameter space. For

mode-finding algorithms, the prior with α = (c,c ,...,c) for

some c > 1 is flattening; it adds the equivalent of ∈  = c−1
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prior observations to every cell. Values of c less than one are
not recommended for mode-finding algorithms because they
are ’anti-flattening,’ pushing the estimate of θ away from a

uniform table. For simulations in which the results are
summarized by posterior means, any prior with c  > 0 has a
flattening effect on the elements of θ, adding the equivalent of

∈  = c observations to every cell relative to the ML estimate.

For odds ratios and other nonlinear parameters, however, the
effect of these priors when c is near zero may hardly be
flattening. For such parameters, priors with c close to zero
may place too much mass near the boundary, causing
inferences about nonlinear parameters to be unstable when the
table is sparse. In sparse-data situations, it is always advisable
to apply a variety of reasonable alternative priors and see how
the results change.

When using a flattening prior, care should be taken not to
oversmooth the data. Adding ∈  imaginary counts to every cell

introduces information equivalent to D∈  prior observations. In

a very sparse table, adding, say, 1/2 to every cell may result in
an effective prior sample size comparable to or greater than
the actual sample size. In the absence of strong prior beliefs
about θ, it is probably unwise to add prior information that

amounts to more than about 10-20% of the actual sample size,
so that the integrity of the observed data is not seriously
compromised. If inferences about the parameters of interest
cannot be stabilized by these modest amounts of prior
information, then the model is probably too complex to be
supported by the observed data. In such situations, it would be
wise to simplify the model by eliminating unnecessary
variables or by imposing loglinear constraints (Chapter 8).

Data-dependent priors

One obvious potential drawback of flattening priors is that
when they are applied to cross-classified contingency tables,
they smooth the data toward a model in which each variable Yj

has a uniform distribution over its levels 1,2,...,d j. In many
contexts, it is more desirable to smooth toward a model of
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mutual independence among the variables but to leave the
marginal distributions of the variables unaffected. This can be
achieved by making the prior data-dependent.

Suppose that one of the variables (say Y1) represents the
response of greatest interest, and the other variables are
potential predictors of Y1. Clogg et al. (1991) advocate a
strategy in which prior observations are divided among cells
of the contingency table in such a way that the marginal
distribution of Y1 in the observed data is preserved. For
example, suppose that Y1 is dichotomous, with Y1 = 1 and Y1 =
2 observed for 30% and 70% of the sample units, respectively.
After an appropriate total number of prior observations n0 has
been chosen, 30% of this total can be allocated to cells of the
table corresponding to Y1 = 1, with the remaining 70% going
to cells corresponding to Y1 = 2. This strategy, which has an
empirical Bayes flavor, smooths the estimates of θ toward a

null model in which none of the predictors has any effect on
Y1, but it does not affect the overall distribution of Y1 itself.

This strategy can be extended to formulate a prior that
simultaneously preserves the marginal distributions of all the
variables in the dataset (Fienberg and Holland, 1970, 1973).
Suppose that cell d of a frequency table corresponds to the
event Y1 = y1, Y2 = y2,..., Yp = yp. If Y1, Y2,..., Yp are mutually
independent, then the probability associated with this cell is

θd p pP Y y P Y y P Y y= =( ) =( ) =( )1 1 2 2 L . (7.23)

The probabilities on the right-hand side of (7.23) can be
estimated by the observed proportions in the sample.
Substituting these estimates into (7.23), and multiplying the
resulting estimate of θd by the desired total number of prior

observations n0, gives the number of prior observations to be
allocated to cell d . For mode-finding algorithms, the
hyperparameter associated with cell d would be

α d j j
j

p

n P Y y= + =( )
=

∏1 0
1

ˆ (7.24)
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where P̂ Y yj j=( )  is the observed proportion of sample units

for which Yj = yj. For simulations,

α d j j
j

p

n P Y y= =( )
=

∏0
1

ˆ (7.25)

is a more natural choice, at least when we are concerned with
linear functions of the elements of θ. These data-dependent

priors can be thought of as discrete-data versions of the ridge
prior for the parameters of the multivariate normal (Section
5.2.3), which also smooths toward a model of mutual
independence among variables.

If the marginal distribution of each Yj is not far from
uniform (i.e. if the levels 1, 2,..., dj occur with roughly the
same frequency), then these data-dependent priors will have
nearly the same effect as flattening priors. If some levels are
relatively much rarer than others, however, then flattening
priors may exert undue influence on these rarer categories,
inflating their probabilities and distorting the inferences about
certain functions of θ. When this is the case, data-dependent

priors can be an attractive alternative to flattening priors,
particularly when the data are sparse.

7.2.6 Collapsing and partitioning the Dirichlet

A Dirichlet random vector can be collapsed and partitioned in
a manner analogous to that already described for the
multinomial (Section 7.2.2), and the resulting vectors will
have Dirichlet distributions. Let us first consider what happens
when we collapse two elements. Suppose that θ = (θ1,...,θD)

has a Dirichlet distribution with parameter α = (α 1,...,αD). If

we form a new vector θ* = (ξ,θ3,...,θD), where ξ = θ1+θ2, then

(a) the distribution of θ* is Dirichlet with parameter α* =

(β,α3, ...,αD ), where β = α1+α2; and (b) the conditional

distribution of (θ1/ξ,θ2/ξ ) given ξ  is Dirichlet with parameter

(α1,α2). Proofs of these properties are given by Wilks (1962);
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they can also be justified by appealing to the relationship
between the Dirichlet and the standard gamma distribution
(Section 7.2.3).

More generally, suppose that θ = (θ1,...,θD) represents the

cell probabilities for a multinomial vector x = (x1,...,xD), and
we apply the transformation described in Section 7.2.2 to θ,

transforming it into the cell probabilities for the collapsed and
partitioned versions of x. That is, suppose that A1, A2,..., AK are
mutually exclusive and collectively exhaustive subsets of {1,
2,..., D} let

x x d Ak d k( ) = ∈{ };

be the kth part of x; and let

z xk d
d Ak

=
∈
∑

be the total frequency for the kth part. The cell probabilities
for the collapsed table z = (z1, z2,..., zk) are ξ  = (ξ1,ξ2,...,ξK),

where

ξ θk d
d Ak

=
∈
∑ ,

and the conditional probability of falling into cell d given that
we are already in the kth part of the table is

φ θ ξkd d k kd A= ∈/ . for all 

If θ has a Dirichlet distribution with parameter α = (α1,...,αD),

then it can be shown that the distribution of ξ is Dirichlet,

ξ α β| ~ ,D( )
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where the parameters β = (β1,...,βK) are obtained by summing

the elements of α  in the same way the elements of θ were

summed to obtain ξ,

β αk d
d Ak

=
∈
∑ ,

Moreover, if φk = {φk d  : d∈ Ak} is the set of conditional

probabilities for the k th part of x, then the conditional
distribution of φ  = (φ1,φ2, ...,φK ) given ξ  is a set of K

independent Dirichlet distributions,

φ ξ α α

φ ξ α α

φ ξ α α

1 1

2 2

| , ~ ,

| , ~ ,

| , ~ ,

D

D

DK K

( )

( )

( )

( )
( )

( )
M

(7.26)

where α(k) = {αd : d∈ Ak} denotes the kth part of α.

These properties imply that if a Dirichlet prior is applied to
the parameter θ of a multinomial contingency table x, then the

prior distribution of ψ = (ξ,φ) which is a one-to-one function

of θ can be factored into independent Dirichlet distributions

for ξ,φ1,...,φK. This ability of the Dirichlet distribution to be

collapsed and partitioned makes it a very attractive prior for
use in simulation algorithms, and provides the basis for a
monotone data augmentation routine to be described in
Section 7.4.
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7.3 Basic algorithms for the saturated model

7.3.1 Characterizing an incomplete categorical dataset

This section presents EM and data augmentation algorithms
for incomplete categorical datasets under the saturated
multinomial model, which imposes no restrictions on the types
of relationships that may exist among the variables Y1,
Y2,...,Yp. These algorithms are conceptually simple, but the
notation needed to describe them in a general setting is
somewhat unwieldy. To characterize the information
contained in an incomplete multivariate categorical dataset,
we must extend our notation for contingency tables in several
ways.

First, we must account for the fact that the complete-data
contingency table x  = (x 1 , x2,...,X D) is actually a cross-
classification by the levels of Y1, Y2,..., Yp, and as such can be
regarded as a p-dimensional array. Suppose that variable Yj

takes possible values 1, 2,...,dj. Let xy, where y = (y1, y2,..., yp),
be the total number of units in the sample for which the event
Y1 = y1, Y2 = y2,..., Yp = yp occurs, and let θy be the probability

of this event for any unit. Here we are using y to represent a
generic realization of (Y1, Y2,..., Yp) for a single unit, i.e. a
possible row of the n × p data matrix Y. We will denote the set

of all possible values of y by Y. Assuming for the moment that
there are no structural zeroes, Y is the Cartesian cross-product
of the sets for {1, 2,...,dj} for j = 1, 2,..., p. When a cell count
or probability appears with the vector subscript y = (y1, y2,...,
yp) it should be interpreted as an element of an array with
dimensions d1 ×  d2 ×  ⋅⋅⋅ ×  d p, but when it appears with the

scalar subscript d it should be interpreted as the dth element of

a vector of length D dj
p

j= =∏ 1 . Depending on the context,

we will sometimes think of the tables x and θ as vectors,

x x x xD D= ( ) = ( )1 2 1 2, , ..., , , , ..., ,θ θ θ θ
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and at other times as p-dimensional arrays,

x x y Y y Yy y= ∈{ } ∈{ }: , : .θ θ

The distinction between the two forms is simply a matter of
notational convenience, because it is always possible to turn
an array into a vector by assigning a linear ordering to its cells.

Now we must extend the notation to allow for missing data.
Let us assume that observations have been grouped according
to their missingness patterns. Index the missingness patterns
that appear in the dataset by s = 1, 2,..., S and define a set of
binary response indicators

r
Y s

Y ssj
j

j
=







1

0

 if  is observed in pattern 

 if  is missing in pattern 

,

.

Let xy
s( ) denote the number of sample units within

missingness pattern s for which (Y1, Y2,..., Yp) = y, and let

x x y Ys
y
s( ) ( )= ∈{ }:

denote the full set of these counts for pattern s. If any variables
are missing in pattern s, then x(s) is not observed; rather, we
observe the counts for a lower dimensional table in which the
sample units have been cross-classified only by the observed
variables. Let Os and Ms be functions that extract from y = (y1,
y2,..., yp) the elements corresponding to the variables that are
observed and missing, respectively, in pattern s,

O y y r

M y y r

s j sj

s j sj

( ) : ,

( ) : .

= ={ }
= ={ }

1

0

Also, let Os and Ms be, respectively, the sets of all possible
values of Os(y) and M s(y). For example, suppose that in a
dataset with p = 4 variables, missingness pattern s has Y1 and
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Y4 observed but Y2 and Y3 missing; then Os(y) = (y1,y4), Ms(y)
= (y2,y3),

O y y y d y d

M y y y d y d

s

s

= ( ) = ={ }
= ( ) = ={ }

1 4 1 1 4 4

2 3 2 2 3 3

1 2 1 2

1 2 1 2

, : , , ..., ; , , ..., ,

, : , , ..., ; , , ..., .

When the units within missingness pattern s are cross-
classified only by their observed variables, the result is a table
with counts that we shall denote by

z x O y OO y
s

y
s

M y M
s s

s

s s

( )
( ) ( )

( )∈
= ( ) ∈∑  for all . (7.27)

The marginal probability that an observation falls within cell
Os(y) of this table will be called

β θO y y
M y M

s

s s

( )
( )∈

= ∑ . (7.28)

Observed-data likelihood

When x = (x1, x2,..., XD) has a multinomial distribution with
parameter θ  = (θ 1 ,θ2,...,θD ), then the complete-data

loglikelihood function for θ is

l Y xd
d

D

dθ θ| log( ) =
=

∑
1

over the simplex Θ (Section 7.2.1). Equivalently, viewing x

and θ as p-dimensional arrays, we can write the loglikelihood

as

l Y xy y
y Y

θ θ| log .( ) =
∈
∑ (7.29)
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When some data are missing, the observed-data loglikelihood
can be calculated as follows. For any missingness pattern s,
the observed data are summarized by the table

z z O y Os
O y
s

s s
s

( )
( )

( )= ( ) ∈{ }: . (7.30)

Notice that z(s) is a collapsed version of the unobserved x(s). By
our rules for collapsing multinomial tables (Section 7.2.2), it
follows that the contribution of z(s) to the observed-data
loglikelihood is equivalent to that of a multinomial
distribution with index

n xs y
s

y Y

= ( )

∈
∑

and parameter

β βs
O y s s

s
O y O( )

( )= ( ) ∈{ }: . (7.31)

That is, the contribution of z(s) to the observed-data
loglikelihood is

zO y
s

O y
O y O

s s

s s

( )
( )

( )
( )∈
∑ log .β

The observed-data loglikelihood is the sum of these
contributions for missingness patterns s = 1, 2,..., S,

l Y zobs O y
s

O y
O y Os

S

s s

s s

θ β| log .( ) = ( )
( )

( )
( )∈=
∑∑

1

(7.32)

Despite the concise appearance of (7.32), it is a rather
complicated function of the individual elements of θ.

Evaluating l(θ|Yobs) at specific numerical values of θ is not

difficult, but calculating analytic expressions for its first two
derivatives can be tedious. For this reason, it is inconvenient
to maximize l(θ|Yobs)  by gradient methods. The EM algorithm
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is straightforward, however, because it involves only the
repeated maximization of the complete-data loglikelihood
(7.29).

7.3.2 The EM algorithm

EM for the saturated multinomial model was first described by
Chen and Fienberg (1974) in the special case of p  = 2
variables, and extended by Fuchs (1982) to arbitrary p. A
description also appears in Chapter 9 of Little and Rubin
(1987). The algorithm, which was already presented in Section
3.2.2 for two binary variables, is simple and intuitive. For each
missingness pattern s = 1,..., S, we allocate the counts in the
observed table z(s) to the cells of the full p-way table x(s). This
allocation is carried out in the proportions implied by the
current estimate of θ. When the allocation is complete, the

proportions in the resulting table x = x(1)+x(2)+⋅⋅⋅x(S) provide

the updated estimate of θ.

Before running EM, the observed data for each missingness
pattern should first be cross-classified according to the
observed variables; that is, the data should be reduced to
z(1),..., z(S). Notice that z(1),..., z(S) can be regarded as arrays of
varying dimensions; the number of dimensions for z(s) is equal
to the number of variables observed in pattern s. When
implementing EM on a computer, however, storing z(1),..., z(S)

as multidimensional arrays tends to be cumbersome and
inefficient. As the number of variables p grows, the number of
arrays S can increase very rapidly. Moreover, these arrays can
be very sparse; many of them may contain only a few or
perhaps even just one observation each. A general-purpose
computer program should be efficient in its use of memory,
and the data structures it creates should have predictable size
and shape. A more efficient way to store and manipulate the
counts in z(1),..., z(S) is outlined in Appendix B.

The E- and M-steps

The complete-data loglikelihood (7.29) is a linear function of
the elements of x = {xy : y∈ Y}, the unobserved p-dimensional
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table that cross-classifies all sample units by their values of Y1,
Y2,..., Yp. To perform the E-step, we must find the expectation
of each count xy given the observed data and an assumed value

for θ. Notice that x can be expressed as x xs
S s= =

( )∑ 1 , the

sum of individual tables for missingness patterns 1,..., S.
Moreover, the observed data z(s) for pattern s is a collapsed
version of x(s), and by our rules for collapsing and partitioning
(Section 7.2.2) it follows that the conditional distribution of
x(s) given z(s) is product-multinomial. Let

x x M y MO y
s

y
s

s s
s ( )

( ) ( )= ( ) ∈{ }: (7.33)

denote the portion of x(s) that is obtained by fixing Os(y) at a

specific value but varying Ms(y) over Ms; that is, xO y
s
s ( )

( )  is

simply the set of all cell counts in x(s) that contribute to the

observed count zO y
s
s ( )

( ) . By the partitioning rules, xO y
s
s ( )

( )  has,

given zO y
s
s ( )

( ) , a multinomial distribution with index zO y
s
s ( )

( )

and parameters

γ θ βO y M y Ms y O y s s
s

( ) = ( ) ∈{ }( )/ : ; (7.34)

that is,

x z M zO y
s

O y
s

O y
s

O ys s s s( )
( )

( )
( )

( )
( )

( )




, ~ , .θ γ (7.35)

Notice that (7.34) is simply the portion of θ corresponding to

xO y
s
s ( )

( ) , rescaled so that its elements sum to one. It follows that

the conditional expectation of an element of x(s) is

E x z zy
s s

O y
s

y O ys s

( ) ( )
( )

( )
( )





 =, / .θ θ β (7.36)

The E-step consists of calculating (7.36) for every s = 1,...,S
and summing the results,
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E x Y zy obs O y
s

s

S

y O ys s
| , / .θ θ β( ) = ( )

( )

=
( )∑

1

(7.37)

Once the E-step has been completed, the M-step is trivial. The
complete-data loglikelihood (7.29) is maximized at θy = xy/n,

so the M-step is simply to

estimate  by θ θy y obsE x Y n| , /( ) (7.38)

for all y∈ Y

A pseudocode implementation of the E- and M-steps is
shown in Figure 7.2. Given the observed counts z(1),..., z(S) and
the current value of θ, this code overwrites θ with its updated value. A

temporary workspace x of the same size as θ is required for accumulating

Figure 7.2. Single iteration of EM for the saturated multinomial model.

the expected sufficient statistics. The algorithm cycles through
the missingness patterns and checks to see whether the current
pattern s has any missing variables (i.e. if Ms(y) is nonempty).
If not, then the observed counts for pattern s are added into the
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elements of x; otherwise, the expectations (7.36) are calculated
and added into x. After this is done for s = 1, 2,..., S, the
resulting elements of x are divided by n, which yields the
updated value of θ.

Starting values and posterior modes

If the starting value of θ lies on the boundary of the parameter

space Θ , i.e. if some of its elements are zero, then an

inconsistency could arise in the initial E-step. It could happen
that a nonzero count appears in one of the cells of the
observed-data tables z(1),..., z(S) for which the probability
implied by the starting value of θ is zero. If this occurs, then

the algorithm may halt due to attempted division by zero. To
prevent such inconsistencies from arising, a starting value
should be chosen in the interior of the parameter space. A
good default starting value is a uniform table, in which all the
elements of θ are equal.

The algorithm in Figure 7.2 calculates an ML estimate, but
with a slight modification it can also be used to find a
posterior mode under a Dirichlet prior. The E-step remains the
same, but the M-step must be altered to maximize the
complete-data posterior density rather than the complete-data
likelihood. If the prior distribution of θ is Dirichlet with

hyperparameter α = {αy : y∈ Y}, then the last line in Figure 7.2

should be changed to

for  do y Y x n Dy y y∈ = + −( ) + −( )θ α α: / ,1 0 (7.39)

where α0 and D is the total number of cells in θ. Taking αy = 1

for all y ∈ Y  results in a uniform prior, under which the

posterior mode and the ML estimate coincide. Notice that if
any α y < 1 and the corresponding cell count xy is zero, then

(7.39) will produce a negative estimate for θy. For computing

posterior modes, priors with αy < 1 are not recommended.
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Random zeroes and structural zeroes

When cells of the observed-data tables z(1),..., z(S) are empty
not because the events corresponding to those cells are
impossible but merely as an artifact of chance, the cells are
said to contain random zeroes. Random zeroes in z(1),..., z(S)

may have two undesirable effects. First, they may produce an
ML estimate on the boundary of Θ . Such an estimate is

conceptually unattractive, because it implies that some events
in the discrete sample space have zero probability even though
they have not been deemed impossible on a priori grounds.
Second, random zeroes may render certain functions of θ
inestimable, in which case the ML estimate will not be unique;
the observed-data likelihood will be maximized along a ridge,
and EM will converge to different stationary values depending
on the starting value (Fuchs, 1982).

When random zeroes result in inestimable parameters or
ML estimates on the boundary, the algorithm in Figure 7.2
does not experience any numerical difficulty; it still converges
reliably from any starting value in the interior of Θ. The value

to which it converges, however, may be a poor estimate for
certain functions of θ. When this happens, it is often helpful to

apply a Dirichlet prior distribution in which all the
hyperparameters are greater than one, e.g. a flattening prior
with α = (c, c,..., c) for some c > 1, which adds the equivalent

of c − 1 prior observations to each cell. Another good choice is

a data-dependent prior that smooths the estimate toward a null
model of independence (Section 7.2.5).

A cell that is empty because the corresponding event is
logically impossible is said to contain a structural zero.
Structural zeroes are qualitatively different from random
zeroes and should not be handled in the same way. Because
the probabilities associated with structural zeroes are known to
be zero a priori, those cells should be omitted from the
estimation procedure. In the algorithm of Figure 7.2, structural
zeroes can be handled by providing a starting value for θ in

which the elements corresponding to structural zeroes have
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been set to zero. If the initial value of θy is zero, then the first

E-step will not allocate any portion of the observed counts in
z(1),...,z(S) to cell y, and the resulting expectation E(x y|Yobs,θ)

will be zero. To ensure that the estimate of θy remains zero for

all subsequent iterations, the last line of the algorithm should
be revised to

for  do y Y x n Dy y y∈ = + −( ) + −( )* : / * ,*θ α α1 0 (7.40)

where Y* is the set of all possible values of y excluding the

structural zeroes, α α0
*

*= ∈∑ y Y y  is the sum of the prior

hyperparameters and D* is the number of elements in Y* (i.e.
the total number of cells excluding structural zeroes).

Observed-data loglikelihood

The observed-data loglikelihood function l(θ|Yobs), given by

(7.32), and the observed-data log-posterior density

log | | log ,P Y l Yobs obsθ θ π θ( ) = ( ) + ( )

are not difficult to calculate for specific values of θ .

Evaluating the loglikelihood or log-posterior density can be
helpful for monitoring the progress of EM and data
augmentation (Sections 3.3.4 and 4 .4 .3 ). Pseudocode for
evaluating l(θ|Yobs) is shown in Figure 7.4. The loglikelihood

at the current value of θ is calculated and stored in l. Notice

that this code is very similar to the E-step and could easily be
woven into EM.

7.3.3 Data augmentation

Data augmentation for the saturated multinomial model is
quite similar to the EM algorithm described above. Recall that
in data augmentation, we alternately draw from the predictive
distribution of the missing data given the observed data and
the parameters (the I-step) and from the complete-data
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posterior distribution of the parameters (the P-step). The
observed data consist of the tables z(s) for missingness patterns
s = 1,..., S , and the missing data consist of the information
needed to expand each z(s) into a full p-dimensional table x(s).
The predictive distribution of x(s)

Figure 7.3. Evaluation of the observed-data loglikelihood function.

given z(s) and θ is the product multinomial given by (7.33)-

(7.35). Therefore, the I-step consists of drawing each x(s) from
its product multinomial distribution and summing them to
obtain a simulated complete-data table x = x(1) + x(2) +⋅⋅⋅+ x(S).

Under the Dirichlet prior θ  ~ D(α), the P-step is then just a

simulation of θ from its complete-data posterior D(α + x).

In the pseudocode of Figure 7.2, the line

for  do sumM y M x x zs s y y O y
s

y
s

( ) ∈ = + ( )
( ): /θ (7.41)

allocates an observed count zO y
s
s ( )

( )  to the cells of the

complete-data table in fixed proportions determined by the
current value of θ. To convert this E-step into an I-step, the

proportional allocation must be replaced by a random
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allocation; that is, we must replace (7.41) by a routine that will
draw

x M zO y
s

O y
s

O ys s s( )
( )

( )
( )

( )




~ ,γ

and add the result into x. One method for simulating the
multinomial counts, called table sampling, is to compare
standard uniform U (0, 1) random variates to cumulative sums
of the probabilities in γO ys ( ) . Pseudocode for table sampling

is shown in Figure 7.4. Substituting this code for (7.41) will
change the E-step into an I-step. Table sampling can be slow if
the counts in the observed-data tables z(s) are large. A more
efficient method for simulating multinomial

Figure 7.4. Table sampling for the data augmentation I-step.

draws in that situation, which relies on a Poisson variate
generator, is described by Brown and Bromberg (1984).

To complete the conversion of the EM algorithm to data
augmentation, the M-step (the final line of Figure 7.2) must be
changed to a P-step; that is, the estimation of θ from the

complete-data table x must be replaced by a random draw of θ
from the Dirichlet posterior D(α+x). The Dirichlet is easily

simulated using standard gamma variates (Section 7.2.3). If
any structural zeroes are present, those cells should be omitted
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from the P-step and their probabilities should be set to zero. If
random zeroes occur in z(1),..., z(S) and the improper Dirichlet
prior with α = (0,0, ,0) is being used, then depending on the

pattern of the zeroes the P-step could be undefined, because
some elements of a + x could be zero. For this reason, the prior
α = (0, 0,..., 0) should be avoided whenever random zeroes are

present. A proper prior, e.g. a flattening prior with α = (c, c,...,

c) for some positive value of c, should be used instead.

Imputation of unit-level missing data

The I- and P-steps of the data augmentation algorithm
described above operate on the sufficient statistics stored in
the workspace x. After enough steps have been taken to
achieve approximate stationarity, x will contain a simulated
draw from the posterior predictive distribution of the
complete-data contingency table P(x|Yobs). If the algorithm is
being used for multiple imputation, however, it may be
necessary at the end of the simulation run to impute the
missing values at the unit level, i.e. to fill in the missing
elements Ymis of the n × p data matrix Y.

Figure 7.5 shows pseudocode for a modified I-step that
imputes the missing elements of Y. Executing this code once at
the end of a sufficiently long data augmentation run will result
in a proper imputation of Ymis i.e. a simulated draw from
P(θ|Yobs,Ymis). In Figure 7.5, y i (obs) and yi(mis) denote the

observed and missing portions, respectively, of the ith row of
the data matrix Y, and I(s) denotes the rows of Y that exhibit
missingness pattern s. The vector workspace y = (y1, y2,..., yp)
serves as a counter, indexing the cells of the p-dimensional
contingency table. For any row i in missingness pattern s, the
subvector Os(y) of y is first set equal to the observed data in
yi(obs), so that the remaining portion Ms(y) indexes all the cells
of the contingency table into which observation i might fall.
The missing values in yi(mis) are then drawn simultaneously by
table sampling, comparing a single uniform variate u to the set
of probabilities derived from θ that describe the conditional

distribution of yi(mis) given yi(obs).
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7.3.4 Example: victimization status from the National Crime
Survey

Recall the data of Table 3.3 from the National Crime Survey,
in which households were classified according to whether they
had been victimized by crime in two six-month periods. In the
sample of 756 households, 38 had victimization status missing
for the first period, 42 had status missing for the second period
and 115 had status missing for both periods. Using the EM
algorithm and likelihood-ratio tests, we found very strong
evidence that victimization status on the two occasions was
related; the p-value for testing the hypothesis of independence
was essentially zero. Moreover, we found fairly strong
evidence that the rates of victimization in the two periods were
not equal; the p-value for testing the hypothesis of marginal
homogeneity/symmetry was 0.06 (Section 3.2.4).

Analysis by parameter simulation

Tests of independence and marginal homogeneity/symmetry
can also be readily carried out by parameter simulation. To
test a hypothesis by parameter simulation, we first select a
function of the
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Figure 7.5. I-step for imputing missing values at the unit level.

cell probabilities θ that measures the degree to which θ
departs from the null hypothesis, and simulate the posterior
distribution of this quantity given the observed data. For
independence, a natural quantity to examine is the odds ratio

ω θ θ
θ θ

= 11 22

12 21
, (7.42)

where θij denotes the probability of (Y1 = i, Y2 = j) for i, j = 1,

2. The proportion of simulated values of ω that are less than or

equal to one can be taken as an approximate one-sided p-value
for testing the hypothesis of independence (ω = 1) against the

alternative that households victimized in the first period were
more likely to be victimized in the second period (ω > 1). For

marginal homogeneity/symmetry, we can examine the
difference in victimization rates between the second period
(θ+2 = θ12 + θ22) and the first period (θ+2 = θ12 + θ22).
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δ θ θ
θ θ

= −
= −

+ +2 2

12 21.
(7.43)

Figure 7.6. Histograms of (a) ω = (θ11θ22)/(θ12θ21) and (b) δ = θ12−θ21 over

5000 iterations of data augmentation, and of (c) the likelihood- ratio statistic

dL with the χ3
2

 density superimposed.

The proportion of simulated values of δ that fall above zero is

an approximate one-sided p-value for testing the hypothesis of
no change (δ = 0) against the alternative that the victimization

rate has dropped (δ < 0).

One interesting question is whether the 115 households for
which both variables are missing should be included in the
simulations. From an inferential standpoint it does not matter;
under the ignorability assumption these sample units
contribute nothing to the likelihood function for θ, so

likelihood-based or Bayesian inferences for θ will be the same

whether these units are included or not. From a computational
standpoint, however, it is slightly better to omit them, because
their presence needlessly increases the fractions of missing
information and slows the convergence of data augmentation.
In this particular example, the difference is barely noticeable.
Without these 115 cases, the worst fraction of missing
information as estimated from the iterations of EM (Section
3.3.4) is about 13%. Including these cases, it rises to 26%.
Either way, data augmentation converges very quickly; in
preliminary runs under the Jeffreys prior (all α = 1/2), the

autocorrelations in scalar functions of θ essentially died out

after lag 2 or 3 even when the 115 cases were included.
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Starting from the ML estimate of θ, we simulated 5000

steps of data augmentation under the Jeffreys prior following a
burn-in period of 100 steps. Histograms of the simulated
values of ω and δ are shown in Figure 7.6 (a) and (b),

respectively. All 5000 values of w were greater than one, so
the simulated p-value for the test of independence is zero. Of
the 5000 values of δ, 164 fell above zero, so the simulated p-

value for testing δ = 0 against the one-sided alternative δ < 0 is

164/5000 = 0.033; the p-value against the two-sided
alternative is 2 × 0.033 = 0.066.

Notice that these simulated p-values agree closely with
those from the likelihood-ratio tests performed in Chapter 3.
Because of the large sample size and the small number of
parameters in this example, Bayesian and likelihood-based
inferences are essentially identical. Further evidence that the
large-sample properties are working well is provided by the
posterior distribution of the likelihood-ratio statistic. The
quantity

d l Y l YL obs obs= ( ) − ( )[ ]2 ˆ | | ,θ θ

where θ̂  is the ML estimate, has (when regarded as a function
of θ) a posterior distribution that is asymptotically chisquare

with three degrees of freedom, because the multinomial model
for this example has three free parameters. A histogram of the
5000 simulated values of dL is shown in Figure 7.6 (c) with the
χ3

2  density function superimposed; the two are nearly
indistinguishable.

By averaging the 5000 iterates of ω  and δ, we obtain

simulated posterior means

ˆ | . ˆ | . .E Y E Yobs obsω δ( ) = ( ) = −3 67 0 036 and 

Comparing these to the ML estimates obtained in Section
3.2.2,
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ˆ . ˆ . ,ω δ= = −3 57 0 037 and 

we find that the agreement is close. Simulated 95% posterior
intervals for ω and δ based on sample quantiles of the 5000

iterates are (2.20, 5.77) and (-0.076, 0.001), respectively.

Analysis by multiple imputation

In this example, it is also straightforward to conduct
inferences by multiple imputation. We generated a set of m =
10 imputations by running ten independent chains of data
augmentation for 100 steps, starting each chain from the ML
estimate. To speed convergence, the 115 households for which
both variables were missing were omitted from the sample. At
the final I-step of each chain, however, these households were
restored to the sample so that their missing data could be
imputed. Because these households contribute nothing to the
observed-data likelihood, inferences will be essentially the
same whether they are included or not. We decided to include
them in the final I-steps so that the variation among the
imputed datasets would more accurately reflect the real levels
of missing-data uncertainty. The observed data and ten
imputations of the complete-data table are shown in Table 7.1.

Table 7.1. Victimization status for households in the National Crime Survey,
with m = 10 multiple imputations
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As before, let us make inferences about the odds ratio ω =

(θ11θ22)/(θ12θ21) and the difference δ = θ12−θ21. The standard

method for obtaining a point estimate and confidence interval
for an odds ratio with complete data is given in Section 6.4.2.
The obvious complete-data estimate of the difference δ i s
ˆ ˆ ˆδ θ θ= −12 21, where ˆ /θ12 12= x n  and ˆ /θ21 21= x n . In large

samples δ̂  will be approximately normally distributed, and a
consistent estimate of its variance is

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆV
n

δ θ θ θ θ θ θ( ) = −( ) + −( ) +[ ]1
1 1 212 12 21 21 12 21

by elementary properties of the multinomial distribution
(Section 7.2.1). Given these complete-data methods and the
ten imputations in Table 7.1 (b), multiple-imputation point and
interval estimates were obtained by Rubin’s method for scalar
estimands (Section 4.3.2). The resulting point estimates for ω
and δ are 3.60 and −0.039, respectively, which agree closely

with the ML estimates and the simulated posterior means. The
resulting 95% interval estimates are (2.15, 6.04) and (-0.079,
0.001), which also agree well with the intervals obtained
through parameter simulation. Estimated fractions of missing
information for ω and δ are 35% and 26%, respectively.

7.3.5 Example: Protective Services Project for Older Persons

Fuchs (1982) analyzed data from the Protective Services
Project for Older Persons, a longitudinal study designed to
measure the impact of enriched social casework services on
the well-being of elderly clients (Blenkner et al., 1971). For
101 clients in the study, six dichotomous variables were
recorded:
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Variable Levels Code
Group membership 1 = experimental, 2 = control G
Age 1 = under 75, 2 = 75+ A
Sex 1 = male, 2 = female S
Survival status 1 = deceased, 2 = survived D
Physical status 1 = poor, 2 = good P
Mental status 1 = poor, 2 = good M

For an additional 63 clients, values of physical and/or mental
status were missing. The observed dataset, including complete
and incomplete cases, is shown in Table 7.2.

Results from this project generated considerable
controversy in the social work literature. Some (Fischer, 1973)
argued that the enriched services seemed to be detrimental to
the clients, because the mortality rate for the experimental
group was actually higher than for the control group.
Classifying the subjects by only G and D , both of which are
observed for the entire sample, we obtain the marginal
frequencies displayed in Table 7.3. The test for independence
in this table, based on the well-known Pearson X2 statistic,
yields X2 = 5.03 with one degree of freedom; the approximate
p-value is 0.025, which provides fairly strong evidence that G
and P are related. The estimated odds ratio is 2.04, suggesting
that subjects in the experimental group were about twice as
likely (on the odds scale) to die than subjects in the control
group.

If subjects had been assigned to treatments in a random
fashion, then Table 7.3 would indeed provide evidence that the
services given to the experimental group were detrimental. If
we examine the relationships between G  and the other
variables, however, we find that the treatment assignments
were not random. Subjects in the experimental group tended to
be older, and also tended to have poorer physical and mental
status, than subjects in the
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Table 7.2. Data from the Protective Services Project for Older Persons

Table 7.3 Classification of subjects by G and D

control group. It appears that the investigators tended to give
the enriched services to clients who appeared to have the
greatest need for them. The marginal association between G
and D could thus be due, at least in part, to the fact that the
subjects in the experimental group were simply more prone to
die than the subjects in the control group, regardless of any
services they received. Rather than examining the marginal
association between G and D, we ought to focus on their
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conditional associations given the covariates A, S, P and M, to
see whether G and D are still related after the possibly
confounding effects of these covariates have been removed.
That is, we should examine the odds ratios for G and D within
the sixteen 2 × 2 tables that correspond to the unique

combinations of the levels of A, S, P and M.
The complete-data contingency table has 26 = 64 cells; with

a sample size of n = 164, this results in an average of only 2.6
observations per cell. As noted by Fuchs (1982), the ML
estimate of θ under the saturated model is not unique due to

the pattern of random zeroes in the observed-data tables.
Moreover, the suprema of the likelihood function lie on the
boundary of the parameter space. To make EM converge to a
unique mode in the interior, a Dirichlet prior was applied with
α=(c,c, ...,c) for c = 1.1 which adds the equivalent of 6.4 prior

observations and spreads them uniformly across the 64 cells.
Then, taking this mode as a starting value, single chains of
data augmentation were simulated under two alternative
priors: c = 0.1 and c = 1.5. Each chain was run for 1000 steps
following a burn-in period of 200 steps.

Boxplots of the simulated GD odds ratios for each of the
sixteen ASPM combinations are shown in Figure 7.7. The
odds ratios are plotted on the natural log scale, with positive
values indicating a positive association between enriched
services (G = 1) and death (D = 1). Under the c = 0.1 prior, the
simulated odds ratios show enormous variability; this prior
assigns high probability to regions of the parameter space near
the boundary, where odds ratios can approach 0 or +∞. Under

the stronger prior c = 1.5 the situation has improved, but the
range of the simulated odds ratios is still implausibly wide.
Notice that under either prior, all of the boxplots straddle the
null value of zero, and there is no overwhelming tendency for
the boxplots to be centered either to the left or to the right of
zero. Thus there seems to be no strong evidence against the
null hypothesis that G and D are unrelated.

To further sharpen the posterior distributions, we could
increase the value of c even more. But this does not seem
appropriate,
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Figure 7.7. Boxplots of simulated log-odds ratios from 1000 iterations of data
augmentation under two flattening priors.

because with c = 1.5 we have already added the equivalent of
1.5 × 64 = 96 prior observations with respect to estimation of

the elements of θ. It appears that modest amounts of prior

information are not sufficient to stabilize the inference; the
observed data are simply too sparse to support the estimation
of separate odds ratios within each cell of the ASPM
classification. We will deal with this problem of sparseness in
Chapter 8 by fitting a simpler model that assumes a common
odds ratio for all sixteen levels of ASPM.
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7.4 Fast algorithms for near-monotone patterns

7.4.1 Factoring the likelihood and prior density

In Chapter 6 we introduced a class of algorithms called
monotone data augmentation. Monotone data augmentation is
similar to ordinary data augmentation except that in each I-
step we impute only enough of the missing values to complete
a monotone pattern. The advantage of monotone data
augmentation is that it tends to converge very quickly when
the observed data are nearly monotone. In this section we
present monotone data augmentation for the saturated
multinomial model.

Monotone data augmentation is feasible when the prior and
likelihood for the complete data factor neatly into independent
pieces corresponding to the marginal distribution of Y1, the
conditional distribution for Y2 given Y1, the conditional
distribution for Y3 given Y1 and Y2, and so on. Let us first
consider the likelihood. Until now we have been describing
the data by a single multinomial distribution for the complete-
data contingency table x, but we can equivalently characterize
this model as a sequence of product-multinomials. Suppose we
write

P Y Y P Y P Y Y

P Y Y Y

p

p p p

1 1 1 2 1 2

1 1

, ..., | | | ,

| , ..., , ,

θ φ φ

φ

( ) = ( ) ( )
( )−L

(7.44)

where φj denotes the parameters governing the conditional

distribution of Yj given (Y1,..., Yj−1). Each of the factors of the

right-hand side of (7.44) corresponds to a product-multinomial
distribution on a collapsed version of x.

To be more precise we need some additional notation.
Suppose that y = (y1, y2,..., yp) is a generic realization of (Y1,
Y2,..., Yp) for a single unit. Let Fj be a function that extracts
from y the first j elements,

F y y yj j( ) = ( )1, ..., ,
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and let Lj extract the last p − j elements,

L y y yj j p( ) = ( )+1, ..., .

Let Fj and Lj, respectively, be the sets over which Fj(y) and
Lj(y) are allowed to vary; that is, Fj will be the Cartesian cross-
product of the sets {1, 2,..., dk} for k = 1,..., j, and Lj the cross-
product for k = j + 1,..., p. We will write the probability of the
event Y1, y1, Y2 = y2,..., Yj = yj as

ξ θF y y
L y L

j

j j

( )
( )∈

= ∑ ,

and the full set of parameters governing the marginal
distribution of (Y1, Y2,..., Yj) as

ξ ξj F y j j
j

F y F= ( ) ∈{ }( ) : .

The conditional probability of the event Yj = yj given that Y1 =
y1, Y2 = y2,..., Yj − 1 = yj − 1 will be

φ ξ ξF y F y F yj j j( ) ( ) ( )=
−

/ ,
1

(7.45)

and the full set of parameters governing the conditional
distribution of Yj given (Y1, Y2,..., Yj − 1) is

φ φj F y j j
j

F y F= ( ) ∈{ }( ) : .

Suppose we collapse the p-dimensional contingency table x
on its last p  − j dimensions, producing a table that cross-

classifies the units by (Y1, Y2,..., Yj). Denote a frequency in this
table by

z xF y y
L y L

j

j j

( )
( )∈

= ∑ ,
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and the entire j-dimensional table by

z z F y Fj F y j j
j

= ( ) ∈{ }( ) : .

By the rules for collapsing and partitioning (Section 7.2.2), zj

has a multinomial distribution with index n and parameter ξj.

Moreover, the conditional distribution of zj given zj−1 is a

product-multinomial whose parameters are contained in φj.

More specifically, suppose we partition zj into a set of d1 × d2

× ⋅⋅⋅ dj−1 vectors, each of length dj. Denote one of these vectors

by

z z y dj F y F y j j
j j; : , , ..., ,
− ( ) ( )= ={ }1

1 2

which is simply the portion of zj obtained by fixing (y1,..., yj−1)

at a specific value but letting yj vary over {1, 2,..., dj}. The
table zj is then the collection of these vectors,

z z F y Fj j F y j j
j

= ( ) ∈{ }− ( ) − −; : .
1

1 1

If we partition φj in the same fashion, as

φ φj j F y j j
j

F y F= ( ) ∈{ }− ( ) − −, :
1

1 1

where

φ φj F y F y j j
j j

y d; : , , ..., ,
− ( ) ( )= ={ }1

1 2

then the conditional distribution of zj given zj − 1 is

z z M zj F y j j F y j F yj j j; ;| , ~
− − −( ) − ( ) ( )





1 1 1

1 φ φ (7.46)

independently for all Fj−1(y)∈ Fj−1.
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By these properties, it follows that the multinomial
likelihood function for any ξj can be factored as

L z L z L zj j j j j jξ ξ φ| | | ,( ) = ( ) ( )− −1 1

the product of a multinomial likelihood for ξj−1 whose

sufficient statistics are contained in zj−1 and  a

productmultinomial likelihood for φj whose sufficient statistics

are contained in zj. Applying this factorization recursively,
first to ξp = θ, then to ξp−1, and so on down to ξ2, we obtain

L Y L zj j
j

p

φ φ| | ,( ) = ( )
=

∏
1

where each factor L(φj|zj) is a product-multinomial likelihood.

The full set of parameters φ = (φ1,φ2, ...,φp) forms a one-to-one

transformation of θ, and it follows from (7.45) that the back-

transformation is

θ φ φ φy F y F y F yp
= ( ) ( ) ( )1 2

L .

Factoring the prior

Just as the likelihood function factors into independent pieces
for φ1,φ2, ...,φp, the density function for φ induced by the

ordinary Dirichlet prior on θ also factors into a product of

independent densities. Suppose that a priori θ has a Dirichlet

distribution,

θ α~ ,D( ) (7.48)

where the hyperparameters are regarded as an array with the
same dimensions as θ,
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α α= ∈{ }y y Y: .

By the collapsing rules for the Dirichlet discussed in Section
7.2.6, the distribution for ξ j implied by (7.48) is also Dirichlet.

The parameters of this distribution, which we shall call

β βj F y j j
j

F y F= ( ) ∈{ }( ) : ,

are obtained by summing the elements of a in the same way
the elements of θ were summed to produce ξj,

β αF y y
L y L

j

j j

( )
( )∈

= ∑ .

Moreover, by the results of Section 7.2.6, the conditional
distribution of φj given ξj−1 for any j  is a product of

independent Dirichlet distributions. That is, if we partition the
j-dimensional table βj in precisely the same manner as we

partitioned φj, as

β βj j F y j j
j

F y F= ( ) ∈{ }− ( ) − −; :
1

1 1

where

β βj F y F y j j
j j

y d; : , , ..., ,
− ( ) ( )= ={ }1

1 2

the conditional distribution of φj given ξj−1 is

φ ξ βj F y j j F yj j
D; ;| ~

− −( ) − ( )




1 1

1 (7.49)

independently for all Fj−1(y)∈ Fj−1.

Now from (7.45) it is clear that ξ j is a one-to-one function

of (φ1, ...,φj) for any j. The prior density for φ = (φ1, ...,φj) can

thus be written
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π φ π φ π φ φ φ

π φ π φ ξ

( ) = ( ) ( )

= ( ) ( )

−
=

−
=

∏

∏

1 1 1 1
2

1 1 1
2

j j j
j

p

j j j
j

p

| , ...,

| .

(7.50)

But notice that ξj−1 does not appear on the right-hand side of

(7.49); thus φj is independent of ξj−1, and (7.50) becomes

π φ π φ( ) = ( )
=

∏ j j
j

p

1

, (7.51)

where each of the terms πj(φj) is a product of independent

Dirichlet densities whose parameters are contained in βj.

7.4.2 Monotone data augmentation

By the factorizations described above, it immediately follows
that complete-data Bayesian inferences under the saturated
multinomial model and Dirichlet prior,

x M n

D

| ~ , ,

~ ,

θ θ
θ α

( )
( )

can be carried out as a sequence of independent Bayesian
inferences for φ1,φ2, ...,φp,

P Y P zj j
j

p

φ φ| | .( ) = ( )
=

∏
1

By combining (7.46) with (7.49), we see that the complete-
data posterior distribution for any term φj is

φ βj F y j j F y j F yj j j
z D z; ; ;| ~

− − −( ) ( ) ( )+



1 1 1

(7.52)
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independently for all Fj−1(y)∈ Fj−1.

This factorization of the posterior applies not only when the
data are complete; more generally, it holds whenever the
observed data form a monotone pattern as described in Section
6.5. Suppose that the observed data are monotone in the sense
that if Yj is missing for a unit, then Yj+1,..., Yp are missing as
well (Figure 6.8). By essentially the same argument as was
given in Section 6.5.1, the observed-data likelihood for φ
given Yobs can be factored as

L Y L zobs j j
j

p

φ φ| | ,*( ) = ( )
=

∏
1

where z j
*  is the contingency table that cross classifies all the

units for which Yj is observed by their values of Y1,..., Yj. If we
denote a cell of this table by zF yj ( )

*  and let

z z y dj F y j F y j j
j j;

*
;

* : , , ...,
− ( ) ( )= ={ }1

1 2

be a subvector within this table, L zj jφ | *( ) will be the

likelihood that arises from the product-multinomial
distribution

z z M zj F y j j F y j F yj j j:
* *

;| , ~ ,
− − −( ) − ( ) ( )





1 1 11 φ φ

for all F y jj F− ( ) ∈ −1 1. Combining this new likelihood with the

prior (7.49) leads to the observed-data posterior

P Y P zobs j j
j

p

φ φ| | ,*( ) = ( )
=

∏
1

(7.53)

where P zj jφ | *( )  is given by

φ βj F y j j F y j F yj j j
z D z;

*
; ;

*| ~
− − −( ) ( ) ( )+



1 1 1

(7.54)
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for all F Fj y j− ( ) ∈ −1 1.

Monotone data augmentation capitalizes on (7.53) to create
an efficient simulation algorithm for situations where Yobs is
non-monotone. Suppose that Yobs is no longer monotone, but
we have identified a subset Ymis* of Ymis, such that (Yobs, Ymis*)
is monotone. The monotone data augmentation algorithm
alternates between the following two steps.

1. I-step: Simulate a value of Ymis* from its predictive
distribution given the current value of θ,

Y P Y Ymis
t

mis obs
t

* *~ | , .+( ) ( )( )1 θ

2. P-step: Draw a new value of θ from its posterior distribution

given Yobs and the new value of Ymis*,

θ θt
obs mis

tP Y Y+( ) +( )( )1 1~ | , .*

In practice, the I-step is identical to that of ordinary data
augmentation (Section 7.3.3) except that we need only draw
the elements of Ymis* rather than the full Ymis. The P-step is
carried out by drawing φ1, ...,φp from the factored posterior

(7.53), and then numerically transforming the resulting value
of φ = (φ1, ...,φp) back to the θ-scale using (7.47).

Interleaving the I- and P-steps

Notice that the simulation of φj within a P-step does not

require knowledge of the most recent simulated value of the
entire Ymis* rather, it requires only the most recent value of the
j-dimensional table z j

* . This allows us to interleave portions

of the I- and P-steps in the following manner. Suppose that the
data are grouped by missingness pattern and sorted as shown
in Figure 6.10. Let sj denote the last pattern for which variable
Yj may need to be filled in to complete the overall monotone

©1997 CRC Press LLC



 

pattern, so that sp ≤ sp−1 ≤⋅⋅⋅≤ s1, and for convenience define

sp+1 = 0. Let T1, T2 and T3 be three workspace arrays, each of
dimension d1×d2× d p. Initialize T1 and T2 to be equal to the

current parameter value θ(t) and α , respectively, and initialize

all the elements of T3 to one. Then, for j: =p, p −  1,...,1,

perform the following steps:

1. If sj > sj+1, impute the missing data for variables Y1,..., Yj

within patterns sj+1 + 1 up to sj. These data should be drawn
from their predictive distribution given the observed data
and the parameters stored in T1.

2. Cross-classify the units in patterns sj + 1 + 1 up to sj by their
observed or imputed values for Y1,..., Yj, and add the
resulting counts into the corresponding cells of the
workspace T2. Upon completion of this step, T2 will contain
βj plus the simulated value of z j

* .

3. Draw a value of φj from its product-multinomial posterior

distribution (7.54) given the value of β j jz+ *  in T 2.

Multiply the elements of the array T3 by the corresponding
elements of this simulated φj.

4. If j > 1, collapse T1 by summing along its jth dimension,

thereby reducing its size to d1 ×⋅⋅⋅× dj−1. Now T1 contains

the current value of ξ j−1 (the parameters of the joint

distribution of Y1,..., Yj - 1) which will be necessary for the
next Step 1. Perform this same collapsing operation for T2,
preparing it for the next Step 2.

After all p-cycles of Steps 1-4 have been completed, the
workspace T3 will contain the updated parameter θ(t+1).

Running this algorithm from a starting value θ(0) generates

a sequence of parameter values {θ(t):t = 1,2, ... } which
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converges in distribution to the correct observed-data
posterior,

P Y P Y tt
obs obsθ θ θ( ) ( )( ) → ( ) → ∞| , |0  as 

Convergence tends to be faster than for the ordinary data
augmentation algorithm described in Section 7.3, because Ymis*

contains less information about the parameter than does Ymis.
The most dramatic improvements are seen when Yobs is nearly
monotone, because then Ymis* is only a small subset of Ymis.
When the observed data happen to be monotone, Ymis* is empty
and the algorithm converges from any starting value in a
single step.

This algorithm can be used to generate proper multiple
imputations of the missing data Ymis as follows. First, simulate
a small number of independent draws of θ from P(θ|Yobs),

either by running multiple chains or subsampling a single
chain. Then, under each of these θ values, impute the full set

of missing data Ymis using the ordinary data augmentation I-
step (Figure 7.5).

7.4.3 Example: driver injury and seatbelt use

The data in Tables 7.4 and 7.5, previously analyzed by
Hochberg (1977) and Chen (1989), concern the effectiveness
of seatbelts in reducing the risk of driver injury in automobile
accidents. Table 7.4 classifies 80 084 automobile accidents
according to four variables obtained from police reports:
driver’s sex, car damage (low, high), belt use (no, yes) and
injury (no, yes). At first glance, these data suggest that the use
of seatbelts substantially reduces the risk of injury. The
estimated odds of injury are

199 117 583 297
3006 1262 2155 728

0 167
+ + +
+ + +

= .

for belted drivers and
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1687 1422 6746 3707
22536 11199 17476 6964

0 233
+ + +
+ + +

= .

Table 7.4. Classification of accidents by police reports of driver’s sex, car
damage, injury and belt use

for unbelted drivers, giving an odds ratio of 0.717; an
approximate 95% confidence interval for this ratio is
(0.673,0.765). This simple analysis is unconvincing, however,
for a number of reasons. First, the belted and unbelted groups
tend to differ with respect to a variety of characteristics (e.g.
sex), and to the extent that these characteristics may be related
to the risk of injury, our estimate of the effectiveness of
seatbelts may be biased upward or downward.

Another difficulty with this analysis is that the data
provided by the police reports are not always accurate,
especially with respect to belt use and injury. Experience has
shown that the police were prone to overestimate the
proportion of drivers who were not injured and unbelted, and
that the biases toward not injured were especially severe for
low-damage accidents. Even small rates of misclassification
with respect to belt use and injury can have a large impact on
the estimated effect of wearing a seatbelt.

To examine the effect of misclassification errors, followup
data were collected for an additional sample of 1796
accidents. Subsequent to the police reports, investigators
obtained more reliable data on belt use and injury from
hospital records and personal interviews. We will assume that
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the information obtained in this followup effort is correct.
Data from the followup study are shown in Table 7.5, with the
police-reported and followup values of belt use and injury
indicated by (p) and (f), respectively.

The followup data in Table 7.5 may be used in a variety of
ways. For example, we may ignore the police reports entirely
and estimate the seatbelt effect from the followup data alone.
Presumably, such estimates would be less biased than those
we obtained from

Table 7.5. Classification of accidents by driver’s sex, car damage, injury and
belt use obtained from police reports (p), and injury and belt use obtained
from followup (f)

Table 7.4, because they would be less prone to
misclassification error. On the other hand, they would have
greater variability because they would be based on a much
smaller sample. A more effective approach would be to
combine the data from Tables 7.4 and 7.5 and analyze them as
a six-variable dataset with two of the variables partially
missing. Combining the two sources would allow us to make
use of the police-report data for all 81880 accidents, but would
calibrate them to correct for occasional misclassification errors
in keeping with the error rates seen in the followup study. In
other words, a combined analysis would allow the police-
report data to serve as a proxy for the followup data among the
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initial 80084 cases, taking into account the fact that the
correlation between the two data sources is less than perfect.

The six-variable combined dataset has a monotone pattern,
with followup belt use and injury missing for 97.8% of the
cases. Because of the high rate of missingness for these two
variables, the EM and ordinary data augmentation algorithms
described in Section 7.3 converge very slowly. To illustrate,
we ran a single chain of ordinary data augmentation for 5000
steps beginning from the

Figure 7.8. Sample ACFs for the worst linear function of θ, estimated from

5000 iterations of ordinary data augmentation, with dashed lines indicating
approximate critical values for testing ρk=ρk+1=⋅⋅⋅=0.

ML estimate using the Jeffreys prior (all hyperparameters
equal to 1/2), and monitored the worst linear function of θ as

estimated from the trajectory of EM (Section 4.4.3). The
sample autocorrelation function for this parameter, plotted in
Figure 7.8, reveals extreme long-range dependence. Monotone
data augmentation, however, converges in a single step
because the observed data are precisely monotone. A sequence
of 0 values generated by monotone data augmentation will be
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an actual independent sample from the observed-data posterior
P(θ|Yobs).

Using monotone data augmentation, we simulated 1000
independent draws of θ from the observed-data posterior

under the Jeffreys prior, and calculated the odds ratios relating
seatbelt use to driver injury (both from the police reports and
from the followup reports) within each of the four sex-by-
damage cells. Boxplots of these simulated odds ratios are
shown in Figure 7.9. The odds ratios based on the police
reports are highly concentrated to the left of one; the
beneficial effects of seatbelts thus appear to be ’statistically
significant’ if we ignore the problem of misclassification. The
odds ratios based on followup data, however, are much more
dispersed, with all of the distributions straddling one; when
misclassification errors are taken into account, the evidence
that seatbelts reduce the risk of injury is no longer
overwhelming. Simulated posterior means, 95% interval
estimates and p-values for these odds ratios are shown in
Table 7.6. The p-values are simply the proportions of
simulated odds ratios exceeding one; they are appropriate for
testing whether a given odds ratio is one, versus the one-sided
alternative that it is less than one.

Because the police-report versions of belt use and injury are
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Figure 7.9. Boxplots of 1000 simulated odds ratios showing the relationship of
seatbelt use and injury within classes of damage and sex, both from police
reports and from followup data.

highly correlated with the followup versions, one might think
that the rates of missing information for the followup variables
should be much smaller than their actual missingness rates
(98%). The fact that the followup-based intervals are so much
wider than the police-based intervals, however, indicates that
rates of missing information for these variables are still quite
high. The main reason for this is the complexity of the
saturated multinomial model. The saturated model allows for a
full six-way association among the variables. The
misclassification mechanism is described by the four-way
table that relates the followup versions of belt-use and injury
to the police versions. The saturated model estimates a full
four-way association in this table; moreover, it allows the
four-way association to vary freely across the four sex-by-
damage cells. It is apparent that some of these high-order
associations are poorly estimated, because the data in some
parts of Table 7.5 are sparse. We will address this issue in
Chapter 8 by applying models that are more parsimonious.
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Table 7.6. Simulated posterior means, 95% intervals and p-values for odds
ratios from 1000 iterations of monotone data augmentation
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CHAPTER 8

Loglinear Models

8.1 Introduction

In Chapter 7 we examined methods based on the saturated
multinomial model. That model was quite general, allowing
the associations among the categorical variables to be
arbitrarily complex. In many realistic examples, however,
unless the number of variables is very small, the observed data
cannot support such complexity. This chapter presents
methods for a flexible class of models which allows the
associations among variables to be simplified.

Loglinear models have been used extensively, particularly
in the social sciences, for almost two decades. In loglinear
models, the cell probabilities for the cross-classified
contingency table are decomposed into multiplicative effects
for each variable and for the associations among them.
Eliminating certain terms from this decomposition imposes
equality constraints on odds ratios in the cross-classified table.
A large part of this chapter is devoted to loglinear modeling
with complete data, in particular, to the classical estimation
technique of iterative proportional fitting (IPF) and a new
simulation algorithm known as Bayesian IPF. These methods,
which will be unfamiliar to many readers, are easily extended
to calculate ML estimates and simulate posterior draws of
parameters and missing data. Sections 8.3 and 8.4 concentrate
on IPF and Bayesian IPF, respectively, and extensions to
incomplete-data problems are presented in Section 8.5.
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8.2 Overview of loglinear models

8.2.1 Definition

Suppose x = (x1, x2,..., xD) is a contingency table having a
multinomial distribution,

χ | θ ~ M (n, θ), (8.1)

where the cell probabilities θ θ θ θ= ( )1 2, , ..., D  lie within the

simplex

Θ = :   for all  and dθ θ θ≥ ∑ ={ }=d d
D

d1 1 .

A loglinear model does not alter the distributional assumption
(8.1), but imposes further constraints on the elements of θ. Let

ηd = logθd,  d=1, 2,..., D

and

η = (η1, η2, .......................,ηD)T .

In the most general sense, a loglinear model is any constraint
of the form

η = Mλ (8.2)

where λ  is an r ×  1 parameter vector and M  is a fixed and

known D × r design matrix. Thus, in addition to requiring that

the elements of θ sum to one, we also require η=log θ to lie in

the linear subspace spanned by the columns of M . The
meaning of the elements of λ will depend on the coding

method used in M . In typical applications of loglinear
modeling, x represents a cross-classification of sample units
by categorical variables Y1, Y2,..., Yp, and M is a design matrix
of the type used in the analysis of variance (ANOVA) for
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factorial experiments; each variable Yj represents a ’factor,’ and
the elements of λ represent the ’main effects’ and ’interactions’

associated with the factors.

Models for three categorical variables

For expository purposes, let us temporarily assume that there
are only three categorical variables (p = 3). This assumption is
purely a matter of convenience, and all results will
immediately generalize to any number of variables. Also, we
will temporarily switch to a notation more consistent with that
of standard texts on categorical data (e.g. Agresti, 1990); in
later sections, we will return to the notation developed in
Chapter 7. Suppose we have three categorical variables:

A with levels i = 1, 2,..., I;
B with levels j = 1, 2,..., J;
C with levels k = 1, 2,..., K.

Let xijk denote the number of sample units for which we
observe A = i, B  = j, C  = k. Let θijk P A i B j C k= = = =( ), ,

and η θijk ijk= log . Finally, let ’+’ in place of a subscript

denote summation over that subscript, as in

x xjk ijk
i

I

+
=

= ∑
1

 and θ θi ijk
k

K

j

J

++
==

= ∑∑
11

.

The total sample size is n=x+++.
As in a factorial ANOVA model, we can decompose nijk

into additive terms corresponding to the ’main effects’ and
’interactions’ of A, B, and C,

η λ λ λ λ λ λ λ λijk i
A

j
B

k
C

ij
AB

ik
AC

jk
BC

ijk
ABC= + + + + + + +0 , (8.3)

where for identifiably the λ  terms are constrained to sum to

zero over any subscript,
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λ i
A

i

I

=
=
∑ 0

1

, λ λij
AB

ij
AB

j

J

i

I

= =
==
∑∑ 0

11

, (8.4)

and so on. To see how this relates to the general specification
(8.2), consider the special case where I = J = K =2; taking

η

η
η
η
η
η
η
η
η

=



























=

− − − −
− − − −

− − − −
− − − −

− − − −
− − −

111
211
121
221
112
212
122
222

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1

, M

11 1 1 1
1 1 1 1 1 1 1 1

−
− − − −

























yields

λ λ λ λ λ λ λ λ λ= [ ]0 1 1 1 11 11 11 111, , , , , , ,A B C AB AC BC ABC T
,

and the other λ terms follow from the identifiably constraints,

λ λ1 2
A A= − , λ λ λ λ11 12 21 22

AB AB AB AB= − = − = ,

and so on.
In many respects the loglinear model (8.3) is like the

classical linear model for a factorial experiment. There are two
important differences, however, that distinguish the loglinear
model from its linear counterpart. First, the term λ0, which

appears to be like the ’grand mean,’ is not a free parameter but
a normalizing constant chosen to make the cell probabilities
sum to one,

λ λ λ λ0 = − + + +( ){ }log expΣ ijk i
A

j
B

ijk
ABCL .

Second, the linear equation (8.3) does riot represent the mean
of a response variable given A  = i, B  = j, C  = k; rather, it
represents the log-probability of the event A = i, B  = j, C  = k
itself. The loglinear model is not a regression model
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describing the effects of A, B and C on an additional response
variable, but a true multivariate model describing the
relationships among the variables A , B  and C . Thus the
meaning of the λ  terms is quite different from the usual

interpretation of main effects and interactions in a linear

model. For example, the set of terms λ λAB
ij
AB= { }  describes

the association between A and B , not their interaction with
respect to a third variable. The terms in λAB are essentially the

log-odds ratios describing the association between A  and B ,

and the terms λ λABC
ijk
ABC= { }  are the differences in log-odds

ratios describing how the association between any two
variables varies across levels of the third. For details on the
exact correspondence between the λ terms and log-odds ratios,

see Bishop, Fienberg and Holland (1975) or Agresti (1990).

8.2.2 Eliminating associations

The number of free parameters in the loglinear model (8.3)
can be counted in the same manner as the number of degrees
of freedom in a factorial ANOVA.

Notice that the total number of free parameters in (8.3), IJK-1,
is the same as in the saturated multinomial; hence (8.3) is
nothing more than a re-parameterization of the saturated
model, with the cell probabilities θ re-expressed in terms of

the loglinear coefficients λ. The loglinear representation has a

great advantage, however, in that it allows us to selectively
eliminate associations among variables by setting groups of λ
terms to zero. Suppose we set all the terms in

λ λ λ λ λ λAB
ij
AB AC

ik
AC BC

jk
BC= { } = { } = { }, , ,  a n d
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λ λABC
ijk
ABC= { }  to zero. The loglinear model can then be

written as

θ λ λ λijk i
A

j
B

k
C∝ + +( )exp ,

which implies that A, B and C are mutually independent,

θijk P A i P B j P C k= =( ) =( ) =( )

Setting λ λ λBC AC ABC= = =0 but allowing λAB to vary leads

to

θijk P A i B j P C k= = =( ) =, ( ) ,

which means that A and B may be related but requires them to
be jointly independent of C. Setting λ λAB ABC= = 0 gives

θijk P A i C k P B j C k P C k= = =( ) = =( ) =( )| | ,

which means that A and B are conditionally independent given
C. Finally, setting λABC=0 results in a model of homogeneous

association. This model does not imply any form of
independence or conditional independence, but has the
property that the association between any two variables (in
terms of odds ratios) is constant across levels of the third.

Hierarchical models

In most applications of loglinear modeling, it would not make
sense to specify a model that contains an association but omits
a main effect. A model that includes λAB but omits λA allows A

to be related to B, but requires the average log-probability
across levels of B  to be the same within every level of A.
Under ordinary circumstances one would not expect this to
happen except by chance. Similarly, it would rarely make
sense to fit a model that contains the three-way association
λABC but omits one or more of the two-way associations λAB,

λAC or λBC.
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A loglinear model is said to be hierarchical if omitting a λ
term implies that all higher-order associations containing that
term are omitted as well; for example, if setting λAB=0 requires

that we also set λABC = 0. Putting it another way, a model is

hierarchical if no association is present unless all lower-order
terms within that association are also present. Thus a
hierarchical model containing λABC must also contain λA, λB,

λC, λAB, λAC and λBC. The class of hierarchical models includes

models of independence and conditional independence, as
well as some other models that may be of interest, e.g. the
model of homogeneous association in a three-way table
(λABC=0). Non-hierarchical models, however, rarely

correspond to sensible hypotheses about the underlying
categorical variables. For the remainder of this book, we will
restrict our attention to hierarchical models only.

8.2.3 Sufficient statistics

The loglikelihood for the saturated model in terms of the cell
probabilities θ is

l x xijk ijk ijkθ θ| log( ) = Σ .

When expressed in terms of the loglinear coefficients, the
loglikelihood becomes

l x x

n x x j

x x x

x x

ijk ijk i
A

ijk
ABC

i i i
A

j j
B

k k k
C

ij ij ij
AB

ik i k ik
AC

jk jk jk
BC

ijk ijk i

λ λ λ λ

λ λ λ
λ λ λ
λ λ

|( ) = + + +( )
= + + + +

+ + + +
+ +

++

++ +

+

Σ

Σ Σ
Σ Σ Σ
Σ Σ

0

0

L

jjk
ABC

We will use x x x x x xA
i

AB
ij

ABC
ijk= { } = { } = { }++ +, ,  and so

on to denote the marginal frequencies that result when units
are cross-classified by subsets of variables. Following Bishop,
Fienberg and Holland (1975), we will call these marginal
tables configurations. Because the configurations xA , xB , xC,
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xAB, xAC, and xBC can be obtained by summing the elements of
xABC the loglikelihood for the saturated model is a linear
function of the configuration xABC.

If we simplify the model by eliminating some of the λ
terms, the corresponding configurations drop out of the
loglikelihood. For example, if we set λ λBC ABC= = 0  the
loglikelihood becomes

l x n x x

x x x
i i i

A
j j j

B

k k k
C

ij ij ij
AB

ik i k ik
AC

λ λ λ λ
λ λ λ

|( ) = + +
+ + +

++ + +

++ + +

0 Σ Σ
Σ Σ Σ

Because xA, xB and xC follow from xAB and xAC, the latter two
configurations constitute a minimal set of sufficient statistics
for this model. If a model is hierarchical, then the
configuration for any set of variables present in the model can
be derived from the highest-order configuration containing
that set. Consequently, the configurations for these highest-
order terms form a minimal set of sufficient statistics. We will
call these the sufficient configurations. It has become standard
practice to identify loglinear models by their sufficient
configurations. For example, the model

Table 8.1. Hierarchical loglinear models for three categorical variables

λABC=0 can be denoted by (xAB, xAC, xBC) or, more simply, (AB,

AC, BC).
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8.2.4 Model interpretation

The hierarchical models that can be fitted to a three-variable
dataset are listed in Table 8.1, along with their sufficient
configurations. This list does not include any model that omits
one or more of the main effects λA, λ B , λC. Setting a main

effect to zero is equivalent to saying that the marginal
distribution of the corresponding variable is uniform across its
levels, a hypothesis which is rarely of interest.

Models in four or more dimensions are interpreted in a
similar fashion. For example: (AB, CD) means that A and B
are jointly independent of C and D; (ABC, BCD) means that A
and D are conditionally independent given (B, C); (AB, AC,
AD, BC, BD, CD) means that the odds ratios for any two
variables are constant across levels of the other two; and
(ABC, ABD, ACD, BCD) means that the associations among
any three variables are constant across levels of the fourth.

Correspondence to logit models

If one of the variables is regarded as a response and the others
are regarded as potential predictors, then certain loglinear
models are equivalent to standard logistic regression or logit
models (Goodman, 1970). Consider the saturated model for A,
B  and C , where C  is a binary variable considered to be a
response, and let

πij P C A i B j= = = =( )1 | , .

The logit model for predicting the probability of C = 1 from A
and B can be written as

log log
|

|
,

π
π

θ θ
θ θ

η η

ij

ij

ij ij

ij ij

ij ij

1
1

2

1 2

−








 =











= −

+

+ ,

where nijk ijk= logθ . But notice that
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η η λ λ λ λ

λ λ λ λ

λ λ λ λ

ij ij
C C

i
AC

i
AC

j
BC

j
BC

ij
ABC

ij
ABC

C
i
AC

j
BC

ij
ABC

1 2 1 2 1 2

1 2 1 2

1 1 1 12 2 2 2

− = −( ) + −( )
+ −( ) + −( )

= + + +

so this logit model is of the form

log
π

π
β β β βij

ij
i
A

j
B

ij
AB

1 0−








 = + + + , (8.5)

where the coefficients satisfy

Σ Σ Σ Σi i
A

j j
B

i ij
AB

j ij
ABβ β β β= = = =0.

Thus, the saturated model (ABC) implies a standard logit
model for C that includes main effects for A and B as well as
the AB interaction.

Notice that if we set λABC = 0  in the loglinear model, (8.5)
becomes

log
π

π
β β βij

ij
i
A

j
B

1 0−








 = + +

a logit model with main effects only. Setting λ λABC AC= = 0
and λ λABC BC= = 0  removes the effects of A  and B,
respectively, and λ λ λABC AC BC= = =0 produces the null
model

log
π

π
βij

ij1 0−








 =

Omitting λAB, however, would require A  and B  to be

conditionally independent, an assumption not found in the
standard logit model. The standard logit model, like other
regression models, makes no assumptions about the
predictors; it allows their joint distribution to be arbitrary.
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The relationships between loglinear models and logit
models for three categorical variables are summarized in
Table 8.2. In general,

Table 8.2. Loglinear and corresponding logit models for three categorical
variables

a loglinear model is equivalent to a standard logit model
provided that it includes all potential associations among the
variables considered to be predictors. A two-way association
between a response and a predictor in the loglinear model
introduces a main effect for that predictor in the logit model; a
three-way association between a response and two predictors
introduces an interaction between the two predictors; and so
on. The response variable need not be binary; if it has more
than two categories, the loglinear model implies a generalized
logit model for an unordered multinomial response (e.g.
Agresti, 1990).

8.3 Likelihood-based inference with complete data

8.3.1 Maximum-likelihood estimation

To derive the ML estimates for a loglinear model, we could
try to differentiate the loglikelihood with respect to some set
of free parameters and set the resulting expressions to zero.
However, as demonstrated by Birch (1963), we may also
apply the method that leads to ML estimates for any regular
exponential family model: solve the system of equations that
results when the minimal sufficient statistics are set equal to
their expectations (Section 3.2.1). In many cases, this system
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can be solved immediately to yield the ML estimates for the
cell probabilities θ.

For example, consider the saturated model (ABC). Setting
the elements of the sufficient configuration xABC equal to their

expectations E x nijk ijk| θ θ( ) =  produces

ˆ /θijk ijkx n=

for all i, j and k. For the model (AB, C), the moment equations
are

x nij ij+ += θ̂ ,

x nk k++ ++= θ̂ .

But because this model implies θ θ θijk ij k= + ++ , we obtain

ˆ /θijk ij kx x n= ( )+ ++
2 .

The model (AB, BC) gives

x nij ij+ += θ̂ ,

x njk jk+ += θ̂ ,

and because this model implies

θ θ
θ
θ

θ
θijk j

ij

j

jk

j
=


















+ +

+

+ +

+

+ +
,

The model (AB, AC, AC), however, produces
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x n

x n
x n

ij ij

i k i k

jk jk

+ +

+ +

+ +

=
=
=

ˆ ,
ˆ ,
ˆ ,

θ
θ
θ

a system for which there is no closed-form solution.
It turns out that (AB, AC, BC) is the only hierarchical

model in three dimensions for which the ML estimates cannot
be written in closed form. In four or more dimensions,
however, there are many more models for which this is so.
When the moment equations do not yield explicit ML
estimates for θ, they may be solved numerically by the method

of iterative proportional fitting.

8.3.2 Iterative proportional fitting

Iterative proportional fitting (IPF) is a simple and intuitive
method for solving the moment equations. First, start with an
arbitrary value of θ that satisfies the loglinear constraints,

typically a uniform table (all cell probabilities equal). Then
proportionately adjust the elements of θ to satisfy the moment

equations for a single configuration. Do this for each sufficient
configuration in turn, and repeat the entire process until the
elements of θ stabilize.

For example, consider the model (AB, AC, BC). Given the
current estimate θ(τ), IPF updates it as follows:

θ θ
θ

ijk
t

ijk
t ij

ij
t

x n+( ) +( ) +

+
+( )=













1 3 0 3
0 3

/ /
/

/
 for all i, j, k; (8.6)

θ θ
θ

ijk
t

ijk
t i k

i k
t

x n+( ) +( ) +

+
+( )=











2 3 1 3
1 3

/ /
/

/
 for all i, j, k; (8.7)
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θ θ
θ

ijk
t

ijk
t jk

jk
t

x n+( ) +( ) +

+
+( )=













3 3 2 3
2 3

/ /
/

/
 for all i, j, k. (8.8)

Notice that θ(τ+1/3) satisfies the required conditions for xAB but

not necessarily those for xAC or xBC. Similarly, θ(τ+2/3) satisfies

those for xA C but not necessarily for xAB or xB C, and θ(τ+3/3)

satisfies those for xBC but not necessarily xAB or xBC. Repeating
the cycle (8.6)-(8.8) produces a sequence θ(1) θ(2) which

converges to a value θ θ∞( ) = ˆ  satisfying all three sets of
moment equations simultaneously; this is the unique ML
estimate of θ.

This IPF algorithm immediately generalizes to loglinear
models of any dimension. When the moment equations can be
solved in closed form, IPF may still be used, and it typically
converges to the correct ML estimates in a single cycle. In
other cases, IPF exhibits linear convergence near the mode.
Proofs of the convergence of IPF are given by Bishop,
Fienberg and Holland (1975) and their references. Because
IPF operates on the cell probabilities θ , it does not

automatically yield explicit estimates of the loglinear
coefficients λ. Estimates of λ may be obtained in a variety of

ways. One simple way is to define a full-rank design matrix M
such that log log θ=Μλ , and calculate the ordinary least-

squares estimates

ˆ log ˆλ θ= ( )−
M M MT T1

using standard regression software. Except for rounding
errors, the regression model will have perfect fit because

logθ̂  is required to lie in the space spanned by the columns of

M. Another way to obtain the elements of λ is to express them

as linear contrasts of the elements of logθ; see Bishop,

Fienberg and Holland (1975) for details.
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Comparison with other methods

IPF has been in existence for more than half a century.
Deming and Stephan (1940) discussed raking, a method of
proportionately adjusting survey data to make the observed
distributions of certain variables agree with census totals; their
algorithm is essentially equivalent to IPF. Early work on
loglinear modeling (e.g. Bishop, Fienberg and Holland, 1975)
relied almost exclusively on IPF, but more recent books
emphasize other methods. Software packages capable of
fitting loglinear models typically use Newton-Raphson or
Fisher scoring (e.g. Agresti, 1990). These methods tend to be
quicker than IPF because their convergence behavior is
quadratic; moreover, they provide asymptotic standard errors
as an automatic by-product, because they make use of the
loglikelihood function’s second derivatives. Standard errors
can be obtained with IPF, but computing them requires
additional formulas that are not an integral part of the fitting
algorithm. Yet IPF maintains some advantages because of its
simplicity and computational stability. In this text, we focus
on IPF because of its intimate relationships to ECM and the
simulation algorithms described later in this chapter.

Random and structural zeroes

If the contingency table contains random zeroes, θ̂  may lie on
the boundary of its parameter space with estimated
probabilities of zero in one or more cells. When this occurs,

some of the IPF equations may be undefined at θ̂  because
they may involve division by zero. This difficulty is easily
overcome by the following modification: if any probability
falls below a small positive constant c, set it to zero and omit
that cell from further iterations.

Structural zeroes, whose cell probabilities are taken to be
zero a priori, can also be handled quite easily. The usual way
of handling them is to omit them from the model and assume
that the loglinear specification (8.2) holds for the remaining

cells. With IPF, we simply choose a starting value of θ̂  that
has zeroes in the structural-zero cells and uniform values
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elsewhere. Because 0 < ∈ , the estimated probabilities for
these cells will remain at zero for all iterations.

An implementation in pseudocode

Returning now to the general notation of Chapter 7, suppose
that Y1, Y2,..., Yp are categorical variables recorded for a
sample of n units, where Yj takes values 1, 2,..., dj. Let y =

(y1,..., yp) denote a generic realization of (Y1,..., Yp); let y be

the set of all possible values of y; and let xy and θy be the

frequency and cell probability, respectively, associated with
cell y of the p-dimensional

Figure 8.1. Single cycle of iterative proportional fitting.

cross-classified table. Let C  be a subset of {1, 2,..., p}
identifying a generic configuration; for example, C  = {1, 3}
indicates the configuration Y1Y3. For brevity, we will also use
C to denote the function that extracts from y = (y1,..., yp) the
elements corresponding to the configuration C, for example, if
C = {2, 4} then C = (y2, y4). Finally, a generic marginal count
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within C and its corresponding marginal probability will be
denoted by

x xC y y
C y

( )
′( )

= ∑  and θ θC y y
C y

( )
′( )

= ∑ ,

respectively, where C  is the complement of C.

Pseudocode for a general implementation of IPF is shown
in Figure 8.1. Given the observed counts in the workspace x
and the current parameter θ(t) in θ, this code performs one

cycle of IPF, overwriting θ(t) with the updated cell means

nθ(t+1). Prior to execution, the values stored in θ need not sum

to one; we will obtain the same result if this workspace
contains c θ   (t) for any constant c. Therefore, the updated cell

means nθ(t+1) from one cycle may be used directly as input to

the next cycle; there is no need to rescale them to sum to one
at each cycle.

8.3.3 Hypothesis testing and goodness of fit

A loglinear model’s quality of fit may be assessed by its
deviance. The deviance, typically denoted by G2, is the
likelihood-ratio statistic for testing the current model against
the alternative of a saturated model,

G x
x

ny
y

y

yy

2 2=
∈

∑ log
θ̂

(8.9)

where ˆ : *θ θ= ∈{ }y y y  is the maximizer of the likelihood

under the current model, and y * is the set of all cells
excluding structural zeroes. The deviance is asymptotically
equivalent to the well-known goodness-of-fit statistic due to
Pearson,
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X
x n

ny

y y

yy

2

2

=
−( )

∈
∑

ˆ

ˆ

θ

θ
(8.10)

If the sample size is sufficiently large, G2 and X 2  are
distributed approximately as xdf

2  under the null hypothesis

that the current model is true, where df is equal to the
difference in the number of free parameters in the saturated
and current models. An approximate p-value for testing the
current model against a general alternative is thus

P x Gdf
2 2≥( )  or P x Xdf

2 2≥( ) . The chisquare approximation

for these goodness-of-fit tests is traditionally regarded as

accurate if n yθ̂ ≥ 5 for all y y∈ * ; in addition, some

empirical studies have shown that it may be reasonably

accurate if a small proportion of the cells have n yθ̂  as small

as 2 or even 1; see Agresti (1990, pp. 246-247) for further
details.
The G 2 and X2 statistics also provide a basis for general
comparisons between models that are nested. Suppose we
want to test the null hypothesis that Model A is true against the
alternative that Model B is true, where Model A is a special
case of Model B. Then

∆G2 = G2 for Model A — G      2 for Model B

and

∆X2 = X2 for Model A — X 2   for Model B

are distributed approximately as chisquare with degrees of
freedom equal to

∆df = df for Model A — df for Model B

Large values of ∆G2 or ∆X2 indicate that Model B fits the data

substantially better than Model A. Asymptotic arguments
suggest that the chisquare approximations for ∆G2 and ∆X2
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may be quite accurate even when the approximations for the
individual goodness-of-fit statistics for Model A and Model B
are poor. Consequently, for ∆G2 and ∆X2 can be useful even

with sparse tables, provided that (a) the number of
observations is large relative to ∆df, and (b) the observed

frequencies are of approximately the same order of magnitude
(Haberman, 1977).

Effects of random zeroes and boundary estimates

Notice that the presence of a random zero (xy = 0) will cause
G2 to be undefined. This problem can be overcome by taking 0
log 0 to be 0. When a pattern of random zeroes causes the ML
estimate to lie on the boundary (θy = 0 for some y), however,

neither G 2 nor X 2  can be calculated directly. In these
situations, it is customary to omit the cells with zero estimates
from consideration and adjust the degrees of freedom to reflect
the fact that some parameters may not be estimable. Rules for
adjusting the degrees of freedom (e.g. Bishop, Fienberg and
Holland, 1975) are quite complicated and are difficult to
implement in general-purpose computer code. Users of
general-purpose software for loglinear modeling should be
wary of these adjustments, because situations exist for which
nearly every popular software package gives misleading
results (Clogg et al., 1991). When sparseness in the data table
x leads to boundary estimates, a simpler and more reliable
procedure is to introduce a small amount of prior information

to smooth the data and move θ̂  away from the boundary; see
Clogg et al. (1991) and Section 8.4.2 below.

8.3.4 Example: misclassification of seatbelt use and injury

Recall the data of Table 7.5 from a followup study on
misclassification error in seatbelt use and injury in automobile
accidents. Hochberg (1977) and Chen (1989) investigated
loglinear models for the six dichotomous variables:

Code Variable
D car damage (1=low, 2=high)
S driver's sex (1=male, 2=female)
B1 belt use, police report (1=no, 2=yes)
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I1 injury, police report (1=no, 2=yes)
B2 belt use, followup study (1=no, 2=yes)
I2 injury, followup study (1=no, 2=yes)

Table 8.3. Goodness-of-fit statistics for nine loglinear models fitted to the
automobile accident followup data

Instead of working with these six variables directly, let us
consider models for D, S, B2, I2 and the two error indicators

EB = 1 if B1 = B2, 0 otherwise;
E1 = 1 if I1 = I2, 0 otherwise.

Working with D , S, B2, I2, E B  and EI rather than the six
original variables may result in a model for the
misclassification mechanism that is easier to interpret, because
the associations between the underlying ’true’ state of an
accident DSB2I2 and the error indicators EBEI may be
somewhat simpler than the associations between DSB2I2 and
the police report B1I1. Regarding E B  and EI as response
variables and D, S, B2, and I2 as potential predictors, perhaps
the simplest loglinear model worth considering is (DSB2I2,
EBEI), which states that the bivariate response is unrelated to
the predictors. Goodness-of-fit statistics for this model and
eight other loglinear models are shown in Table 8.3.

None of the nine models shown in Table 8.3 produced ML
estimates on the boundary of the parameter space, but all of
them had estimated expected counts falling below 1.0 for
some cells; p-values based on the chisquare approximations
for G2 and X2 are not shown because they are not trustworthy.
Chisquare approximations for comparisons among these
models are probably more accurate, however, and results from
hypothesis tests for various pairs of nested models are shown
in Table 8.4. Model 1, the null model of no relationships
between the response and predictors, appears to fit the data
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very poorly. The fit improves dramatically when the actual
belt use/injury status B2I2 is allowed to influ

Table 8.4. Hypothesis tests for various pairs of nested models

ence the response (Model 2). In addition, the data provide
fairly strong evidence for the associations DEB, DEI, and
perhaps SEI. Among these nine, the simplest models that
capture the essential relationships between the response and
the predictors appear to be Models 5 and 8.

8.4 Bayesian inference with complete data

8.4.1 Prior distributions for loglinear models

In our work with the saturated multinomial model in the last
chapter, we adopted the simple Dirichlet prior distribution
θ α~ D( ), with the elements of a typically chosen to be equal.
This prior is ’naive’ in the sense that it treats the cell
probabilities in an unordered fashion, i.e. it does not describe
the special structure that exists in a cross-classified
contingency table. This was not regarded as a serious
drawback, because the saturated multinomial model does not
make use of this cross-classified structure either. The
fundamental quality of loglinear models, however, is that they
take this structure into account.

Many alternative types of prior distributions have been
proposed to sensibly incorporate prior information about the
structure of a loglinear model. Bishop, Fienberg and Holland
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(1975) decomposed the Dirichlet hyperparameters a into ’main
effects’ and ’associations’ in a loglinear fashion. Good (1967)
proposed a second-stage prior distribution on a, resulting in a
mixture of Dirichlet priors that can potentially reflect a cross-
classified structure. Several authors have applied normal prior
distributions to the loglinear coefficients λ; variations of this

approach are discussed by Good (1956), Leonard (1975),
Laird (1978), and Knuiman and Speed (1988). The normal
priors, although conceptually attractive, lead to nonnormal
posteriors that are computationally more difficult to handle
than the Dirichlet.

The constrained Dirichlet prior

For our purposes, it will be convenient to adopt a prior
distribution that has the same functional form as the Dirichlet,
but which requires the parameters to satisfy the constraints
imposed by a loglinear model. Let M denote the design matrix
for a loglinear model

logθ λ= M (8.11)

and let ΘM  denote the set of all parameters θ θ= ∈{ }y y y:

that lie in the simplex and satisfy (8.11) for some λ . Let us

take the prior density for θ to be

π θ θα( ) ∝ −

∈
∏ y
y

y

y

1

for θ ∈Θ M  and zero elsewhere. We will call this the
constrained Dirichlet prior with hyperparameter

α α= ∈{ }y y y: . This is not a Dirichlet distribution per se,

but the conditional distribution of θ α~ D( ) given that the
event θ ∈Θ M  has occurred. The normalizing constant

θ θα
y

y

y

M

d
y

−

∈
∏∫ 1

Θ
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is not generally tractable, but this will not be a problem
because in the algorithms to follow this integral will not be
explicitly evaluated.

The advantage of the constrained Dirichlet prior is that it
retains the same functional form as the multinomial likelihood
and thus forms a conjugate class; the posterior distribution of
θ given the contingency table x  is another constrained

Dirichlet with updated hyperparameters ′ = +α α x . A
potential disadvantage is that this prior makes the strong
assumption that the given loglinear model is true; it assigns
zero probability to values of θ not satisfying (8.11). Just as in

likelihood-based inference, however, it will be possible to
examine the adequacy of a model by performing goodness-of-
fit tests against alternative models that are more general.

8.4.2 Inference using posterior modes

Under the constrained Dirichlet prior, the complete-data
posterior density for θ is

P x
x

yy

y y

y

θ θ
α

|( ) ∝
+ −

∈
∏ 1

(8.12)

for θ ∈Θ M  and zero elsewhere. Notice that this is equivalent

to the likelihood function for θ given a modified contingency

table with cell counts ′ = + −x xy y yα 1. Any algorithm that

computes ML estimates for loglinear models can thus be
trivially modified to find posterior modes for θ as well; all we

need to do is to augment each cell count xy by the amount
α y −1. In particular, the IPF algorithm of Section 8.3.2 will

find posterior modes if we simply replace each xy by
′ = + −x xy y yα 1.

It might seem natural to call this modified IPF algorithm
’Bayesian IPF.’ However, we will reserve that name for
another algorithm, to be discussed shortly, for simulating
random draws from a constrained Dirichlet distribution.

©1997 CRC Press LLC



 

Notice that the posterior mode for θ is identical to the ML

estimate under the uniform prior α = (1, 1,..., 1). A prior α =

(c, c,..., c) for some c > 1 has a ’flattening’ effect; the posterior
mode under this prior will represent a compromise between
the ML estimate and a uniform table in which all cell
probabilities are equal (Section 7.2.5). Flattening priors can be
especially useful for ensuring that the mode lies within the
interior of the parameter space ΘM, avoiding complications

that arise with sparse data when ML estimates lie on the
boundary.

Posterior modes and goodness of fit

The goodness-of-fit statistics G2 and X2 defined in Section
8.3.3 can be used with posterior modes. One possibility is to
use the same expressions (8.9)-(8. 10) and simply replace the

ML estimate θ̂  with a posterior mode. In many situations,
however, it will be more natural to work with statistics that are
based on the augmented cell counts ′ = + −x xy y yα 1. For a

given loglinear model, let ˜ ˜ : *θ θ= ∈{ }y y y  represent the

posterior mode under the constrained Dirichlet prior with

hyperparameter α where y* is the set of all cells excluding

structural zeroes. The posterior mode under the saturated
model and the unrestricted D(α) prior occurs at

θ y
yx

n
=

′
′

, ′ = ′
∈
∑n x

y
y

y *

. (8.13)

The statistic

G x
x

ny
y

y

yy

2 2= ′
′

′∈
∑ log ˆ

*
θ

(8.14)

represents twice the increase in the log-posterior density as we
move from the mode under the current model to the mode
under the saturated model. Like its likelihood-based
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counterpart, the modified statistic (8.14) is approximately
distributed as xdf

2  over repeated samples, where df is the

difference in the number of free parameters under the two
models. This result holds because as the sample size grows,
the cell counts x y become appreciably larger than the
hyperparameters αy, and the influence of the prior becomes

negligible. The analogue of (8.14) corresponding to Pearson’s
goodness-of-fit statistic is

X
x n

ny

y y

yy

2

2

=
′ − ′( )

′∈
∑

˜

˜
*

θ

θ
(8.15)

One attractive feature of (8.14) and (8.15) is that these two
statistics are easy to calculate; they will be generated
automatically by standard software for loglinear modeling if
the cell counts xy are replaced by ′xy . Moreover, if all the

hyperparameters αy are greater than one, both θ̂  and the

unrestricted mode (8.13) are guaranteed to lie in the interior of
the parameter space, and there is no need to worry about
adjusting df for estimates on the boundary (Clogg et al., 1991).

8.4.3 Inference by Bayesian IPF

Here we present a clever but still relatively unknown
technique for simulating random draws from a constrained
Dirichlet posterior (8.12). This iterative method, first
presented by Gelman et al. (1995), bears a striking
resemblance to iterative proportional fitting and has thus been
named Bayesian IPF. For simplicity, we describe Bayesian
IPF for three categorical variables A, B and C under the model
of homogeneous association (AB, AC, BC). Following the
notation of Section 8.2, let xijk, θijk and α ijk denote the observed

frequency, probability and prior hyperparameter, respectively,
corresponding to the event (A = i, B = j, C = k). Let θ(t) denote

the simulated value of the parameter θ θ= { }ijk  at cycle t.

Bayesian IPF updates the parameter in three steps: first,
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+
+( )=










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1 3 0 3
0 3

/ /
/

/
 for all i, j, k, (8.16)

where the gij+ are independent random variates drawn from
standard gamma distributions with shape parameters

′ = +( )+ ∑α αij ijk ijk
k

x

(Section 7.2.3), and g gij ij+++ += Σ  is their sum; second,

θ θ
θ

ijk
t

ijk
t i k

i k
t

g g+( ) +( ) + +++

+
+( )=











2 3 1 3
1 3

/ /
/

/
 for all i, j, k, (8.17)

where the g i+k are standard gamma variates with shape
parameters

′ = +( )+ ∑α αi k ijk ijk
j

x

drawn independently of those in (8.16), and g gik i k+++ += Σ
is the new sum; and third,

θ θ
θ

ijk
t

ijk
t jk

jk
t

g g+( ) +( ) + +++

+
+( )=













3 3 2 3
2 3

/ /
/

/
 for all i, j, k, (8.18)

where the g+jk are standard gamma variates with shape
parameters

′ = +( )+ ∑α αjk ijk ijk
i

x

drawn independently of those in the first two steps, and
g gjk jk+++ += Σ  is the new sum. Given any starting value

that satisfies the constraints of the loglinear model (AB, AC,
BC), these three steps (8.16)-(8.18) define a Markov chain
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θ t t( ) ={ }: , , ...1 2  which converges in distribution to the

constrained Dirichlet posterior with hyperparameters
′ = +α αijk ijk ijkx ; a heuristic argument for this result will be

given below. Thus, for a suitably large value of t, we can
regard θ(t) as a random draw from the correct posterior P(θ | x).

The subsequent output stream θ θt t+( ) +( )1 2, , ...  represents a
dependent sample from P(θ | x) which can be summarized by

any of the methods described in Chapter 4.

Relationship to conventional IPF

It is easy to see the relationship between this algorithm and
conventional IPF. Consider the first step of conventional IPF
under the constrained Dirichlet prior,

θ
θ

θ
ijk
t ijk

t

ij
t

ijx

n
+( )

+( )

+
+( )

+=












′
′







1 3
0 3

0 3
/

/

/
 for all i, j, k, (8.19)

where ′ = + −x xijk ijk ijkα 1 and ′ = ′n xijk ijkΣ . The first term in

parentheses on the right-hand side of (8.19) is the estimate of
the conditional probability of C = k given (A  = i, B  = j) from
the previous step. The second term in parentheses is the
posterior mode of the marginal probability of (A = i, B  = j).
Thus (8.19) represents the marriage between an old estimate
of P C k A i B j= = =( )| ,  and a new estimate of P(A  = i, B =
j). Now consider the first step of Bayesian IPF,

θ
θ

θ
ijk
t ijk

t

ij
t

ijg

g
+( )

+( )

+
+( )

+

+++
=


















1 3
0 3

0 3
/

/

/
 for all i, j, k. (8.20)

The first term in (8.20) is the old simulated value of
P C k A i B j= = =( )| , . The second term, gij+/g+++, simulates
new values of the marginal probabilities θ θij k ijk+Σ  from the

Dirichlet distribution with parameters ′{ }+α ij , the marginal
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posterior distribution of θij+  given the data. Thus (8.19)

represents the marriage between an old draw of
P C k A i B j= = =( )| ,  and a new draw of P A i B J= =( ), .
The second and third steps of Bayesian IPF continue in a
similar vein, updating the parameters by taking new random
draws of the marginal probabilities P A i C k= =( ),  and

P B j C k= =( ), , respectively.

An implementation in pseudocode

Like its conventional counterpart, Bayesian IPF generalizes
immediately to hierarchical loglinear models for any number
of variables. Pseudocode for a general implementation of
Bayesian IPF is shown in Figure 8.2. This code, which uses
the same notation as that of Figure 8.1, performs one cycle of
Bayesian IPF and overwrites θ with its updated value. The

starting value of θ must lie in the interior of the parameter

space; in particular, it must satisfy the following requirements.
(a) If any structural zeroes are present, the starting value must
have zeroes in those positions. (b) All other elements of the
starting value must be nonzero. (c) The starting
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Figure 8.2. Single cycle of Bayesian iterative proportional fitting
.
value must satisfy the constraints of the loglinear model. One
way to create a starting value with these properties is to fill θ
with zeroes corresponding to the structural zeroes and uniform
values elsewhere. Another good choice is a posterior mode
under a constrained Dirichlet prior with all hyperparameters
α(y)> 1, which can be obtained from conventional IPF.

One unusual feature of Bayesian IPF is that if a cell
probability θ(y) ever becomes zero, it remains at zero for all

subsequent iterations. In theory, this should never happen for a
non-structural-zero cell, because true gamma random variates
are always positive. In practice, however, if the prior
hyperparameters αy are close to zero and the observed

contingency table contains random zeroes, the pseudorandom
number generator used in

draw g ~ G(sum2) (8.21)
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may occasionally produce a value with a floating-point
representation of zero. The resulting value of θ will then fall

on the boundary and remain trapped there for all future
iterations, and the Markov chain will fail to converge to the
correct posterior distribution. The problem is that boundary
values are absorbing states, whose presence violates the
regularity conditions necessary for an iterative simulation
algorithm to converge (Section 3.5.2). In principle the
probability of ever reaching the boundary should be zero, but
due to the limitations of computer arithmetic, the chance of
falling within machine precision of the boundary might be
non-negligible. This difficulty is easily overcome by adding a
very small positive constant (say 10-20) to the value of g in
(8.21), the effect of which will be imperceptible in the
statistical inference.

8.4.4 Why Bayesian IPF works

Here we present heuristic arguments to establish that Bayesian
IPF does indeed converge to the constrained Dirichlet
posterior for the given loglinear model. For simplicity, let us
consider the homogeneous-association model for three
variables, (AB, AC, BC), where each of the variables A, B and
C  is binary; extensions to other loglinear models will be
immediate. The relationships among the log-cell probabilities
η = logθ can be expressed as η = Mλ, where

η

η
η
η
η
η
η
η
η

=



























=

− − −
− − −

− − − −
− − −

− − − −
− − − −

− −

111
211
121
221
112
212
122
222

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1

, M

−− −























1 1 1 1

,

and

λ λ λ λ λ λ λ λ= [ ]0 1 1 1 11 11 11, , , , , ,A B C AB AC BC T
.
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The remaining loglinear coefficients follow from the
identifiability constraints

λ λ1 2
A A= − , λ λ λ λ11 12 21 22

AB AB AB AB= − = − = ,

and so on.
Until now we have been assuming that the cell frequencies

x follow a multinomial distribution,

x M n| ~ ,θ θ( ),

where the sample size n = x+++ is considered fixed, and the

cell probabilities θ θ= { }ijk  follow a Dirichlet distribution

with hyperparameters α α= { }ijk . With the restrictions

imposed by the loglinear model, η logθ must lie in R(M), the

seven-dimensional linear space spanned by the columns of M;
in addition, θ must satisfy θ+++ = 1. This combination of linear

and loglinear constraints on the elements of θ makes the

parameter space somewhat difficult to visualize and
understand. The geometric features can be simplified,
however, if we expand the model by allowing the total sample
size n to vary.

The Poisson/gamma representation

Consider an expanded model in which the cell counts are
Poisson,

xijk | ~µ µPoisson ijk( ) (8.22)

independently for all i, j, k, and the cell means µ µ= { }ijk  are

a priori distributed as independent gamma variates

µ αijk ijkcG~ ( ) (8.23)

with a common scaling factor c. By well-known properties of
the Poisson model, (8.22) implies that
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η µ µ| ~ Poisson +++( )
and

x n M| , ~ ,µ η θ( ) ,

where µ µ+++ = Σijk ijk  and θ µ µijk ijk= +++/  (e.g. Agresti,

1990). Moreover, it can be shown that the product-gamma
prior (8.23) implies that µ+++ and θ  are independently

distributed as

µ α+++ +++( )~ cG
and

θ α~ D( ),
respectively; the proof is a standard exercise in transformation
and will be left to the reader.
Thus the expanded model (8.22)-(8.23) for x and µ implies our

usual multinomial-Dirichlet model for x  and µ; the only

difference is that the expanded model allows estimation of an
overall intensity parameter µ+++ which is independent of θ in

both the prior and the posterior distributions. By standard
Bayesian arguments, the posterior distributions of the cell
means µ are

µ αijk ijkx c G| ~ ′ ′( ) (8.24)

where ′ = +α αijk ijk ijkx  and ′ = +( )c c c/ 1 , and the posterior

distribution of the intensity parameter is
µ α+++ +++′ ′( )| ~x c G

where ′ = ++++α αΣ ijk ijk n . As before, the posterior

distribution of θ is D x′( ) ′ = +α α α, .

The Poisson/gamma representation is geometrically
convenient because, unlike θ, the cell means µ are not required

to sum to any particular value. The loglinear model for the cell
probabilities, logθ=Mλ implies a similar model for the cell

means,
logµ=Μλ∗, (8.25)
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where

λ λ λ λ λ λ λ λ* , , , , , ,*= [ ]0 1 1 1 11 11 11
A B C AB AC BC T

and λ λ µ0 0
* log= + +++. Unlike λ0 the new intercept λ0

*  is a

free parameter that can take any value on the real line. Thus
the parameter space for p is simpler than the space for θ,

because logµ is allowed to lie anywhere in R(M).

The cell-means version of Bayesian IPF

Under the expanded model, we can define a version of
Bayesian IPF that operates on the cell means µ. It is similar to

the version for θ except that we do not rescale the parameters

to sum to one at every step. The cell-means version is

µ µ
µ

ijk
t

ijk
t ij

ij
t

c g+( ) +( ) +

+
+( )=
′











1 3 0 3
0 3

/ /
/

 for all i, j, k, (8.26)

µ µ
µ

ijk
t

ijk
t i k

i k
t

c g+( ) +( ) +

+
+( )= ′









2 3 1 3
1 3

/ /
/

 for all i, j, k, (8.27)

µ µ
µ

ijk
t

ijk
t jk

ijk
t

c g+( ) +( )
+( )=
′











3 3 2 3
2 3

/ /
/

 for all i, j, k, (8.28)

where the gij+, gi+k and g+jk are independent gamma variates as
before. To see the relationship to the previous version, notice
that we can rewrite the first step as

µ
θ

θ

θ

ijk
t ijk

t

ij
t

ij

ijk
t

g

g
c g

c g

+( )
+( )

+
+( )

+

+++
+++

+( )
+++

=

















′

= ′

1 3
0 3

0 3

1 3

/
/

/

/ ,

and similarly for the second and third steps. The value of θ at

every step is the same under the new version; the only
difference is that the intensity parameter
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µ θ+++ +++ +++= ′ = ′∑ ijk
i j k

c g c g
, ,

is updated at every step to be a random draw from
′ ′( )+++c G α .

Without constraints, the product-gamma posterior (8.24) for µ
implies that the posterior distribution of θ  is D ′( )α .

Constraining µ and θ  to lie in R(M ) does not change the

functional form of the densities for µ or θ, but only their

normalizing constants; so if we are able to show that the cell-
means version of Bayesian IPF converges to the constrained
product-gamma posterior over R(M ), then we have
successfully shown that the original version converges to the
constrained Dirichlet posterior over R(M).

Heuristic argument for convergence

The three steps (8.26)-(8.28) define the transition rule of a
Markov chain for µ. To show that a particular distribution F is

the stationary distribution for this chain, one must establish
two facts. First, one must show that the chain ’maps F onto

itself,’ in other words, that µ t F( ) ~  implies µ t F+( )1 ~ .
Second, one must show that the chain is ergodic, containing
no periodicities or absorbing states: it must be possible for

µ t( )  to reach any value in the support of F for a sufficiently
large t, and for every step thereafter, from any starting value

µ 0( )  within the support.
To establish the first condition, notice that the first step

( 8 . 2 6 )  c o m b i n e s  c o n d i t i o n a l  p r o b a b i l i t i e s
P C k A i B j= = =( )| ,  from the previous cycle with updated

values for the A i B j= =( ),  marginal rates,

µ θ µijk
t

ij k
t

ij
t+( )

( )
+( )

+
+( )=1 3 0 3 1 3/ / / ,

where
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θ
θ

θ

µ

µij k
t ijk

t

ij
t

ijk
t

ij
t( )

+( )
+( )

+
+( )

+( )

+
+( )= =0 3

0 3

0 3

0 3

0 3
/

/

/

/

/

and

µ αij
t

ijc G+
+( )

+′ ′( )1 3/ ~ (8.29)

independently for all i , j. Because (8.29) is the marginal

distribution of µij+{ }  implied by (8.24), this first step

represents a draw from the conditional posterior of µ with

θ ij k( ){ }  fixed at its previous value,

µ µ θ θt
ij k ij k

tP x+( )
( ) ( )

+( ){ } = { }





1 3 0 3/ /~ | , .

Now if the old value of µ is drawn from the actual posterior

distribution,

µ µt P x+( ) ( )0 3/ ~ | ,

then the old values of θ ij k( )  are drawn from their actual

posterior as well,

θ θij k
t

ij kP x( )
+( )

( ){ } { }





0 3/ ~ |

which implies

µ µt P x+( ) ( )1 3/ ~ |

Thus we have established that the first step (8.26) maps P(µ|x)

onto itself. By similar arguments this result holds for the
second and third steps (8.27)-(8.28) as well.

To establish ergodicity, we must examine the structure of
the design matrix M in the loglinear model (8.25) for µ. Let
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M M1 2

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

=

− −
− −

− −

− −
− −

− −

























=

− −

− −
− −

− −
− −

− −








, 

















and

M3

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

=
− −
− −

− −
− −

− −
− −

























denote the portions of M corresponding to the AB, AC and BC
effects, respectively. The space spanned by the columns of M1

is the same as that of

M1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

* =

























Similarly, the range spaces of M2 and M3 are the same as those
of

M M2 3

1 0 0 0
0 1 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 1 0
0 0 0 1

1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1

* *,=

























=

























respectively. Notice that the first step of Bayesian IPF
represents a proportionate adjustment for each group of cells
that contributes to a mean µij+  for the AB marginal table.
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This first step can thus be written in terms of the log-cell
means as

log log log/ / *µ µ γt t M+( ) +( )= +1 3 0 3
1 1

where γ1 is a vector of four gamma variates. Similarly, the

second and third steps can be written

log log log/ / *µ µ γt t M+( ) +( )= +2 3 1 3
2 2

log log log/ / *µ µ γt t M+( ) +( )= +2 3 2 3
3 3

The complete cycle consisting of all three steps is thus

log log log/ / *µ µ γt t M+( ) +( )= +3 3 2 3
3 3 (8.30)

where M M M M* , ,* * *= ( )1 2 3  and γ γ γ γ= ( )1 2 3
T T T T

, , . Because

the columns of M* span the same space as those of M, and the
elements of γ are random gamma variates whose logarithms

can lie anywhere on the real line, (8.30) ensures that µ(t+1) has

a nonzero chance of falling anywhere in R(M) provided that

µ t R M( ) ∈ ( ). Thus it follows that this Markov chain can reach
any state in a single cycle from any state in the parameter
space of µ, and ergodicity is established.

Further notes

Bayesian IPF was first presented by Gelman et al. (1995) who
gave brief arguments for convergence under a Poisson/gamma
loglinear model. Our version (8.26)-(8.28) differs from theirs
in that we have included a factor ′c  arising from the scaling
parameter in the prior distribution (8.23). Without this factor,
the resulting posterior could give misleading inferences about
the overall intensity µ+++. Inferences about the cell

probabilities θ µ µijk ijk= +++/ , however, will be the same

under both versions.
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Bayesian IPF bears an interesting relationship to Gibbs
sampling (Section 3.4.1). In Gibbs sampling, we partition a
random vector Z into non-overlapping subvectors (Z1, Z2,...,

ZJ) and draw from the full conditionals P Z Z k jj k| : ≠{ }( )
for j = 1,..., J in turn. In Bayesian IPF, however, the vector is
partitioned differently at each step of the cycle; in our example
we partition µ as

µ µ µij ijk ij{ } { }( )+, /  at Step 1,

µ µ µi k ijk i k+ +{ } { }( ), /  at Step 2,

µ µ µ+ +{ } { }( )jk ijk jk, /  at Step 3.

As noted by several authors (e.g. Gelfand and Smith, 1990),
any partitioning scheme will work provided that the complete
cycle is ergodic, allowing the random vector to eventually
reach any state from any other state.

8.4.5 Example: misclassification of seatbelt use and injury

In Section 8.3.4 we examined loglinear models pertaining to
errors in police reporting of seatbelt use and injury in
automobile accidents. Regarding the error indicators EB and
EI, as response variables and D, S, B2 and I2 as predictors, we
found convincing evidence for the associations B2I2EBEI, DEB,
DEI and mild evidence for SEI. This evidence was based on p-
values from chisquare approximations for the test statistics
∆G2 and ∆X2. Using Bayesian IPF, we can make Bayesian

inferences about these associations directly without large-
sample approximations. To illustrate, we ran Bayesian IPF
under Model 8,

DSB I B I E E DE DE SEB I B I I2 2 2 2, , , ,( ) (8.31)

Recall that the ML estimate for this model lies in the interior
of the parameter space. Taking the ML estimate from IPF as a
starting value, we ran 5100 cycles of Bayesian IPF under the
Jeffreys
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Figure 8.3. Histograms of 5000 simulated values of (a) λ11
DEB  (b)  λ11

DEI

and (c) λ11
SEI , respectively, from Bayesian IPF.

prior with hyperparameters 0.5; ignoring the first 100 cycles,
we stored the results of the remaining 5000. Bayesian IPF
appears to converge very quickly in this example;
autocorrelation plots of a variety of parameters revealed no
significant correlations beyond lag 5. This behavior is
consistent with that of ordinary IPF, which converged in only
11 cycles.

Let us consider how to draw inferences about the
coefficients λ of the loglinear model. The output of each cycle

of Bayesian IPF is a table of simulated cell probabilities θ, and

each coefficient in λ is a linear contrast among the elements of

log θ. Consider the terms in λDEB , which pertain to the effect

of damage on errors in the police report of belt use. If we
average the elements of the 26 array log θ over the dimensions

corresponding to S, B2, I2 and EI, all the coefficients pertaining
to these variables drop out due to the linear constraints
imposed on them. The result of this averaging is a 2 × 2 table

with elements

γ λ λ λ λij
DE

i
D

j
E

ij
DEB B B= + + +0

for i, j = 1, 2. The loglinear coefficients can then be obtained
as

λ γ0
1
4= Σij ij

DEB ,

λ γ λi
D

j ij
DEB= −1

2 0Σ ,

λ γ λj
E

i ij
DEB B= −1

2 0Σ ,

λ γ λ λ λij
DE

ij
DE

i
D

j
EB B B= − − − 0 .
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By similar manipulations of the elements of log θ we can

derive any coefficient in the loglinear model. Histograms of

the 5000 simulated values of λ11
DEB , λ11

DEI  and λ11
SEI  are

shown in Figure 8.3 (a), (b) and (c), respectively.
Notice that the distribution in Figure 8.3 (a) is located

primarily to the left of zero, providing evidence that errors in
reporting of belt use (EB = 2) tend to occur more frequently for
accidents with low damage (D = 1) than those with high

damage (D = 2). Among the 5000 simulated values of λ11
DEB

fell above zero, so a two-tailed Bayesian p-value for testing
the current model (8-31) against the reduced model that sets

λDEB = 0 is 2 × 182/5000. Similarly, Figures 8.3 (b) and (c)

show that low damage (D = 1) and female drivers (S = 2) are
associated with higher rates of reporting errors for injury (EI =

2); two-tailed Bayesian p-values for testing λDEI  and λSEI

are 0.03 and 0.13, respectively.

8.5 Loglinear modeling with incomplete data

8.5. 1 ML estimates and posterior modes

The two algorithms we have discussed thus far, IPF and
Bayesian IPF, can be extended quite easily to handle missing
values in the original data matrix. With conventional IPF, the
extension is an example of the ECM algorithm, a
generalization of EM discussed briefly in Chapter 3.

EM for loglinear models

Let us now return to our general notation, with Y1, Y2,..., Yp

representing categorical variables, and x x yy y= ∈{ }:  and

θ θ= ∈{ }y y y:  the cell counts and probabilities,

respectively, in the p-dimensional cross-classified contingency
table. As described in Section 7.3, the actual cell counts x are
not observed when the data are incomplete; rather, we observe
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a table z(s) of potentially smaller dimension for each
missingness pattern s = 1, 2,..., S where z(s) contains marginal
frequencies for the variables observed in pattern s. The basic
EM algorithm (Section 7.3.2) updates the estimate of θ in two

steps: the E-step, in which we calculate the predicted mean of
x given z(1),..., z(S) under the current estimate of θ; and the M-

step, in which we re-estimate θ from the predicted mean of x.

Under the saturated multinomial model, the M-step has a
particularly simple form because the complete-data ML

estimates are ˆ /θ = x ny  for all y y∈ .

Now consider what happens to EM when we move from the
saturated model to a loglinear model, which requires the
parameter θ to lie in a restricted space ΘM. The E-step, which

is performed under an assumed value of θ, does not change at

all, because the conditional expectation of x given z(1),..., z(S)

and θ has the same form whether θ ∈Θ M  or θ ∉Θ M . The M-

step, however, becomes a constrained maximization of the
(expected) complete-data loglikelihood or log-posterior over
ΘM. For loglinear models, this maximization cannot in general

be carried out in closed form, but requires an iterative
technique such as IPF. A general EM algorithm for loglinear
models would thus be doubly iterative, requiring iteration to
convergence within each M-step.

The ECM algorithm

In many situations, EM for loglinear models is not unduly
cumbersome, especially in modern computing environments.
Several authors speculated, however, that it might not be
necessary to iterate until full convergence at each M-step;
rather, running only a single cycle of IPF might be enough
(e.g. Fuchs, 1982). As shown by Meng and Rubin (1993), this
modification produces an example of an algorithm called
Expectation-Conditional Maximization or ECM. ECM
possesses the same reliable convergence properties as EM,
increasing the observed-data loglikelihood at each step. The
key idea of ECM is that the full M-step is replaced by a
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quicker CM-step, a single cycle of constrained maximizations
which, if repeated over and over, would eventually result in a
maximization over the full parameter space ΘM .

Each step in a cycle of IPF is a constrained maximization.
Consider the three steps of IPF for the model (AB, AC, BC).
The first step (8.6) is based on a factorization of the complete-
data likelihood for the cell probabilities θ 

ijk = P(A= i, B = j, C

= k) into independent factors corresponding to the conditional
probabilities for C given A and B,

P C k A i B j ijk ij= = =( ) = +| , /θ θ ,

and the marginal probabilities for A and B,

P A i B j ij= =( ) = +, θ .

The first step fixes θ θijk i k/ +{ }  at its previous value but

replaces θij+{ }  by an ML estimate or posterior mode; thus it

represents a constrained maximization of the likelihood or
posterior density for θ. Similarly, the second and third steps

(8.7)-(8.8) represent maximizations subject to fixed values of

θ θijk i k/ +{ }  and θ θijk jk/ +{ } , respectively.

For a cycle of constrained maximizations to form a valid
CM step, it must satisfy a set of technical requirements known
as the space-filling conditions (Meng and Rubin, 1993). These
conditions, which have been demonstrated to hold for a single
cycle of IPF (Meng and Rubin, 1991b), are similar to those
needed to establish ergodicity in a Markov chain (Section
8.4.4). The fact that IPF can reach any point in ΘM  from any
other point in a single cycle ensures that the ECM algorithm
will eventually converge to an unconstrained maximum rather
than a constrained one.

To obtain a general ECM algorithm for loglinear models,
we only need to replace the M-step of the basic EM (the last
line of pseudocode in Figure 7.2) by a single call to the IPF
algorithm presented in Figure 8.1. As in ordinary IPF, the
starting value for θ should lie in the interior of the parameter
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space; one choice that always works is to assign zeroes to the
structural-zero cells and uniform values elsewhere.

8.5.2 Goodness-of-fit statistics

The goodness-of-fit statistics G2 and X 2  can be readily
extended to handle incomplete data. Using the notation of
Section 7.3, let y = (y1, y2,..., yp) denote a generic realization of
the variables (Y1, Y2,..., Yp), and let O s(y ) and M s(y),
respectively, denote the subvectors of y corresponding to the
variables that are observed and missing in pattern s. Let Os and
Ms denote the sets over which O s(y ) and Ms(y) can vary,
excluding structural zeroes. The marginal table z(s) that we
observe for pattern s has counts

z xO y
s

y
s

M y M
s

s s

( )
( ) ( )

( )∈
= ∑  for all O y Os s( ) ∈ (8.32)

and the marginal probabilities corresponding to these counts
are

β θo y y
M y M

s

s s

( )
( )∈

= ∑ . (8.33)

The most obvious way to extend G2 is to take

G z
z

nraw O y
s

O y Os

S
O y
s

s O y
s

s s

s

s

2

1

2= ( )
( )

( )∈=

( )
( )

( )
∑∑ log

β
, (8.34)

where ns represents the total sample size in pattern s. This

statistic, when evaluated at an ML estimate θ̂ , increases as the
observed frequencies deviate from their estimated expected
values. The corresponding extension of Pearson’s X2 is
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As noted by Fuchs (1982) and Little and Rubin (1987),
these statistics differ from their complete-data counterparts in
that they are typically nonzero even when evaluated at the ML
estimate for the saturated model. The reason, which is
somewhat technical, is buried in the definition of the
observed-data likelihood in Chapter 2. The marginal
probabilities (8.33) are not really the expected proportions for
the observed counts (8.32) within each missingness pattern,
unless the missingness happens to be MCAR. Under the less
restrictive assumption of MAR, the true expected proportions
may differ from (8.33), because MAR does not require the
distribution of observed data to be identical across patterns.
Using the same cell probabilities θ in the calculation of (8.33)

for all patterns is merely a matter of convenience, because, as
argued in Section 2.3, likelihood-based inferences for
parameters of the complete-data model are identical under any
ignorable mechanism.

The practical effect of using a common θ for all patterns is

that Graw
2  and X raw

2  as defined above may be drastically
different from zero even when evaluated at the ML estimate
for the saturated model. In fact, if the sample is large enough,
these statistics can be used to test the null hypothesis that the
missingness data are MCAR against the alternative of MAR.
In most situations, such a test will not be of great interest,
because we are concerned primarily with the parameters of the
complete-data model; the parameters of the missingness
mechanism are a nuisance. Moreover, in all but the most
trivial real data examples, the expected cell counts within
missingness patterns are rarely large enough for the chisquare
approximation to work well. For these reasons, we will not
attempt to interpret a value of Graw

2  or X raw
2  from the

saturated model, except as a baseline for assessing the fit of a
smaller model.
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Adjusted goodness-of-fit statistics

Let G0
2  denote the value of (8.34) evaluated at the ML

estimate for the saturated model. Consider the adjusted
goodness-of-fit measure
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regarded as a function of θ. This represents twice the

difference in the observed-data loglikelihood evaluated at the
current value of θ and at the global maximum over the entire

simplex Θ . When evaluated at the ML estimate for the

saturated model, (8.36) is zero. When evaluated at the ML
estimate for a non-saturated loglinear model, it becomes the
likelihood-ratio statistic for testing the fit of the model against
the saturated alternative. Because this statistic behaves in
much the same manner as the deviance (8.9) for complete
data, we will adopt (8.36) as our definition for the deviance
with incomplete data. The Pearson counterpart to (8.36) is
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where X0
2 represents the raw version (8.35) evaluated at the

MLE for the saturated model.
Just as in the complete-data case, the chisquare

approximation for the distributions of G2 and X2 may be poor
when the data are sparse. Even with sparse data, however,
chisquare approximations for the differences ∆G2 and ∆X2 can

be quite reliable for nested model comparisons, particularly
when ∆df is small. Finally, just as with complete data, G2 and

X2 become problematic when ML estimates lie on the
boundary. The easiest way to handle such situations is to add a
small amount of prior information, e.g. in the form of a
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Dirichlet prior with all hyperparameters greater than one, to
smooth the posterior mode away from the boundary.

8.5.3 Data augmentation and Bayesian IPF

We have seen that IPF can be extended in a straightforward
way to handle missing data, resulting in an ECM algorithm. In
a similar fashion, we can extend Bayesian IPF to create an
algorithm for parameter simulation and multiple imputation.

Recall the basic data augmentation procedure for the
saturated multinomial model (Section 7.3.3). In this algorithm,
the observed marginal counts z(s) for missingness patterns s =
1, 2,..., S are randomly allocated to the cells of the full p-
dimensional table x under an assumed value for θ (the I-step).

Then a new value of θ is drawn from its complete-data

Dirichlet posterior given the simulated version of x (the P-
step). Repeating the I- and P-steps a large number of times
eventually produces a draw of θ from its observed-data

posterior P Yobsθ |( ).
As we move from the saturated model to a loglinear model,

the I-step remains unchanged, because the random allocation
procedure has the same form regardless of the value of θ. The

P-step, however, must in general be carried out iteratively,
because creating posterior draws of θ under a loglinear model

requires multiple cycles of Bayesian IPF. True data
augmentation, like a true EM algorithm, would thus require
undesirable nested iterations.

Suppose, however, that instead of iterating to full
convergence within each P-step, we perform only a single
cycle of Bayesian IPF. The resulting algorithm, which we call
data augmentation-Bayesian IPF (DABIPF), still converges to
the observed-data posterior under the constrained Dirichlet
prior. Although we are not drawing from the correct
conditional distribution P(θ | x) in this modified P-step, we are

simulating one step from the transition rule of a Markov chain
whose stationary distribution is P(θ | x). DABIPF is neither a

true data augmentation algorithm nor a Gibbs sampler, but a
hybrid algorithm of the type described in Section 3.4.5 with
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the same basic convergence properties. Combining the data
augmentation I-step (Section 7.3.3) with the implementation
of Bayesian IPF in Figure 8.2 produces a single iteration of
DABIPF. The algorithm may be used for parameter simulation
or (when combined with the imputation code in Figure 7.5) for
multiple imputation of the unit-level missing data.

Factorizations for near-monotone patterns

In the last chapter, we derived a monotone data augmentation
procedure for the saturated model that tends to converge faster
than ordinary data augmentation for near-monotone
missingness patterns (Section 7.4). The algorithm was based
on a factorization of the multinomial likelihood into a
sequence of multinomial likelihoods pertaining to the
distribution of each variable given the previous ones. For
loglinear models, we can again exploit factorizations of the
likelihood to improve the performance of DABIPF, but only in
certain special cases. For many loglinear models, the
parameters corresponding to the sequence of conditional
distributions are not distinct, due to the loglinear restrictions-,
we cannot always separate the complete-data inference into a
sequence of independent inferences corresponding to the near-
monotone pattern in the dataset. For this reason, we will not
consider further the possible monotone versions of DABIPF.

8.6 Examples

8.6.1 Protective Services Project for Older Persons

Recall the data introduced in the last chapter (Section 7.3.5)
regarding the impact of social services on elderly clients. In
this six
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Table 8.5. Parameters in the model (ASPMG, ASPMD, GD)

variable dataset, the main question of interest pertained to the
effect of the treatment-group indicator G on survival D ,
controlling for the possible confounding effects of the
covariates age A, sex S, physical status P and mental status M.
With only n = 164 clients in the study, some of whom had
missing values for P and M, the data were too sparse to allow
for estimation of individual GD associations within each of the
sixteen covariate patterns. Now we will fit a loglinear model
that constrains these associations to be the same.

Consider the model (ASPMG, ASPMD, GD). The presence
of the association ASPMG allows the distribution of G to vary
freely across the sixteen ASPM covariate patterns; similarly,
ASPMD allows the distribution of D to vary freely across the
covariate patterns. The GD association allows G to have a
direct influence on D beyond that provided by their mutual
associations with A , S, P  and M . The absence of any
association between GD and ASPM, however, requires the
conditional GD odds ratios within the sixteen covariate
patterns to be equal. The number of free parameters in this
model, 48, can be counted as shown in Table 8.5. Notice that
the saturated model has 26 −  1 = 63 free parameters; the

difference is 63 − 48 = 15 because the saturated model fits 16

conditional GD odds ratios rather than just one. By pooling
information across covariate patterns, the reduced model can
provide a stable estimate of a common GD effect even though
the information within any single pattern may be weak. With
complete data, inferences about the conditional GD
association under this model would be similar to those given
by the well known Mantel-Haenszel test (Mantel and
Haenszel, 1959; Agresti, 1990).

Using the tools of Section 8.5, we can draw inferences
about the effect of interest in two ways. First, we can perform
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Figure 8.4. Posterior draws of GD log-odds ratios under prior
hyperparameters of (a) 0.1 and (b) 1.5, simulated from 5000 cycles of
DABIPF.

a single degree-of-freedom test of the null model (ASPMG,
ASPMD) against the (ASPMG, ASPMD, GD) alternative
using a large-sample approximation to ∆X2 or ∆G2. Under

both of these models, the ECM algorithm converges to ML
estimates on the boundary. To move the estimates away from
the boundary, we re-ran ECM for each model using prior
hyperparameters of 1.1. Comparing the observed-data
loglikelihood at the two posterior modes, we find ∆G2 = 0.826.

The corresponding p-value is 0.36, so there is essentially no
evidence of any conditional GD association given A, S, P and
M.

A second method, which does not rely on large-sample
approximations, is to simulate posterior draws of the
parameters under the larger model (ASPMG, ASPMD, GD)
and examine the marginal distribution of the conditional GD
association. Starting from the posterior mode that we obtained
from ECM, we ran 5000 cycles of DABIPF after a burn-in
period of 100 cycles. We did this under two alternative priors,
setting the prior hyperparameters to 0. 1 and 1.5, respectively;
the first results in very little smoothing, whereas the second
pulls the estimates rather strongly toward a uniform table.
Boxplots of the simulated log-odds ratios under these two
priors are shown in Figure 8.4. Simulated posterior means and
interval estimates for the odds ratio in (a) are 1.74 and (0.68,
3.75), respectively; the corresponding estimates for (b) are
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1.50 and (0.82, 2.51). Thus there is no evidence to suggest that
enriched social services are beneficial to clients. On the
contrary, we find weak evidence that membership in the
experimental group (G = 1) is associated with an increased
rate of mortality (D = 1). The effects are not statistically
significant,’ however; simulated two-tailed Bayesian p-values
are 0.26 for (a) and 0.20 for (b).

Recall that when we tried to draw inferences about the
conditional G D  associations under the saturated model
(Section 7.3.5), we encountered difficulty because the
parameters were so poorly estimated. Comparing the new
boxplots in Figure 8.4 to the old ones in Figure 7.7, we see
that the new inferences are much more plausible, and also
much less sensitive to the choice of prior hyperparameters;
pooling across covariate patterns to estimate a common odds
ratio was indeed helpful.

8.6.2 Driver injury and seatbelt use

In the last chapter (Section 7.4.3) we examined data from a
large sample of 80 084 automobile accidents and found
apparently convincing evidence that seatbelt use reduces the
risk of injury. Those data, however, were marred by errors in
the police reports of injury and belt use. A followup study of
an additional 1796 accidents provided information on error
rates in the police reports. We attempted to use the followup
data to calibrate the larger dataset, correcting the inference for
potential biases due to misclassification. Those efforts were
hindered by the complexity of the saturated model, the only
model available to us at the time. Let us re-examine these data
by applying a more parsimonious loglinear model to the
combined sample of 81 880 accidents.

Our loglinear modeling of the 1796 followup cases (Section
8.3.4) provides some insight into the misclassification
mechanism. Among various models relating damage D, driver
sex S, true belt use B2 and true injury I2 to the error indicators
for belt use EB and injury EI, we found that

DSB I B I E E DE DE SEB I B I I2 2 2 2, , , ,( )
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seemed to provide a good fit. For modeling the combined
dataset of 81 880 cases, however, it is more convenient to
work with D, S, B2, I2 and the original police-report variables
B1 and I 1 because E B  and E I are not determined for the
accidents not included in the followup study. Because EB is a
function of B1 and B2, and EI is a function of I1 and I2, all the
associations in the above model are present in

DSB I B I B I DB B DI I SI I2 2 1 1 2 2 1 2 1 2 1 2, , ,( ) .

Furthermore, we expect the full four-way association DSB1I1

to be well estimated because these four variables are recorded
for all cases in the combined dataset. Therefore, we will fit the
model

DSB I DSB I B I B I DB B DI I SI I1 1 2 2 1 1 2 2 1 2 1 2 1 2, , , , ,( ) ,

which has a total of 39 free parameters.
Under this model, both ECM and DABIPF converge rather

slowly. This is not surprising, because B2 and I2 are missing
for about 98% of the cases in the combined dataset. Because
of the slow convergence, it would be difficult to draw
inferences by parameter simulation; consecutive draws from
DABIPF are so highly correlated that a very large number of
cycles would be needed to obtain good posterior summaries.
Instead of storing draws of parameters, we created ten
multiple imputations of the followup belt use B2 and injury
status I2. These imputations were created by running ten
parallel chains of DABIPF for 2500 cycles each, using the ML
estimate as a starting value and setting the prior
hyperparameters equal to 0.5. The ten imputations are shown
in Table 8.6. The imputed variables, denoted by B  and I
represent true belt use and injury, and the variation among the
ten imputations reflects the uncertainty due to
misclassification in the original data. After imputation the
followup cases were removed, so that only the original 80 084
accidents are represented in the imputed data.

Using these ten imputations, we calculated point and
interval estimates for the odds ratios relating seatbelt use to
injury. The estimation was carried out on the logarithmic
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scale, as described in Section 6.4.2. Results for the overall
odds ratio, and for the conditional odds ratios within each of
the four D × S cells, are summarized in Table 8.7. Over the

entire population, seatbelt use appears to reduce the odds of
injury by about 1 − 0.73 = 27%, and the effect is statistically

significant (p-value = 0.04). This marginal analysis, however,
ignores the possible confounding effects due to the covariates
D and S. Within the four D × S cells, the estimated odds ratios

are all less than one, but the interval estimates are very wide;
none of the effects is statistically significant. After controlling
for damage and sex of driver, the evidence for any beneficial
effect of seatbelt use is very weak.

The fact that all four of the conditional odds ratios are less
than one suggests that we may be able to strengthen our
conclusions by assuming a common odds ratio across the four
D × S cells; that is, by fitting the loglinear model (DSB, DSI,

BI), we may be able to find a significant BI association. The
loglinear model (DSB, DSI, BI) implies a logit model for I
that includes main effects for D and S, a D × S interaction and

a main effect
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Table 8.6. Multiple imputations of accident frequencies by damage D (1=low,
2=high), sex of driver S (1=male, 2=female), actual belt use B (1=no, 2=yes),
and actual injury (1=not injured, 2=injured), reflecting errors of
classification

©1997 CRC Press LLC



 

Table 8.7. Multiple-imputation inferences for odds ratios relating to belt use
to injury, overall and within cells of damage by sex of driver: estimates,
intervals, p-values and percent missing information

Table 8.8. Multiple-imputation inferences for logistic-regression coefficients
for predicting injury, assuming a common effect of belt use across classes of
damage and sex

for B. We fit this logit model to each of the imputed datasets,
coding dummy variables for the main effects of D (1 if high
damage, 0 otherwise), S (1 if female, 0 otherwise), B (1 if belt
used, 0 otherwise) and the D × S interaction (1 if high damage

and female, 0 otherwise). The results of the multiply-imputed
logit analysis are shown in Table 8.8. The estimate of the
common odds ratio is exp(-0.19) = 0.83 and the 95% interval
ranges from exp(-0.51) = 0.60 to exp(0.13) = 1.14, so the
evidence is still weak. Accounting for occasional errors in the
police reports greatly increases our uncertainty about the
relationship between belt use and injury. These results are
consistent with those of Chen (1989), who reached similar
conclusions using likelihood-based methods.
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