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Abstract— Further utilization of ageing fleet of power system 

assets can be enhanced by acquiring better knowledge of life-

threatening factors. In this paper, further exploration of power 

transformer residual life estimation is articulated. Previously, 

focus has been on diagnostic capabilities and degradation 

agencies in forecasting the remnant life of a power transformer. 

In this study, a weighting factor approach cascaded with fuzzy 

inference system was adopted in realizing the residual life of a 

power transformer. Instead of using individual attributes, the 

proposed model utilizes the grouping factor of technical life 

threatening agencies. A multi-criteria analysis was employed in 

developing the model, whereby the outcome of the model is 

accomplished by including the collective effect of distinct sub 

outcomes using fuzzification of all the active grouping attributes. 

Assessment of the developed residual life model was confirmed 

by utilization of data set attained from several in-service mineral 

oil immersed transformers. The simulation results were 

comparable with utility expert’s outcome, thus confirming the 

applicability of the proposed model.  

Keywords— End of technical life, insulation degradation, 

remnant life estimation, life mapping, weighting factor 

I. INTRODUCTION  

The most critical development that led to the widespread 
supply and limitless use of electric energy is the invention of 
power transformer. Ideally, the power transformers serve as the 
fulcrum between the energy sources and the grid. Their great 
importance is only equalled by their high costs incurred in 
purchasing and maintaining them [1]. This makes power 
transformer failure a subject of great concern in electrical 
engineering. However, like other machines and equipment, 
transformers are not expandable. Without proper maintenance 
or if subjected to strenuous conditions (electrical, thermal, 
chemical or mechanical) which are out of the design 
characteristic, they are prone to failure. Their failures are 
especially detrimental as they cripple electric grid systems and 
the dependent faculties with unexpected outages which are 
usually indefinitely long. Consequently, it is vital to pay 
necessary attention to their maintenance, diagnostic and 
prognosis of life span issues [2].  

A power transformer is designed to have a technical life of 
at least 40 years. However, this is not the ultimatum life, since 
life is dependent on numerous variables. The back bone of 
transformer life is its insulation life. However, being a function 
of voluminous divergent attributes, the design feature, varying 

operational conditions, and diverse maintenance policies and 
approach, a perfect assertion of the criteria governing the 
residual power transformer life estimation remains a complex 
phenomenon. Nevertheless, this intricate situation does not call 
off model estimation of residual life of transformers. 
Consequently, more variables that can affect life estimation 
models need more exploration.  

 Owing to hitches in diagnosis and prognosis, a noteworthy 
number of transformers are not meeting the probable technical 
life. Additionally, as power transformer ages, they are prone to 
fatigue leading to frequent failure rates thus; calling for 
untimely maintenance and repair till it reaches its end of life 
[3]. Though conditioned based maintenance approaches can 
extend equipment residual life, it can be monetary intensive for 
assets approaching their end of life. This has called for 
strategies to project the remaining useful life of power system 
assets. The transformer insulation failure has been the indicator 
of diminishing life of a transformer, thus models based on 
insulation conditions have been developed to map the 
transformer remnant life [3], [5]-[11]. Extreme, insulation 
stress levels, ageing and degradation, premature and poor asset 
management approaches and severe environments can lead to 
transformer catastrophe. Furthermore, agents like excessive 
moisture content, high oxygen levels, heat, and incipient faults 
can expedite the ageing and degradation of transformer 
insulation system [4].   

In literature, the subject of transformer life estimation 
issues centered on different approaches not limited to 
mathematical and soft-computing based models linking some 
condition monitoring attributes and parameter lab tests (gases 
and oil quality lab tests) [3], [5]-[13] have been addressed.  The 
degree of complexity for mathematical based model scales up 
as number of attributes considered increases. Thus, most of 
mathematical models are limited to few parameters 
overlooking some accelerating ageing and degradation factors 
which may lead to inaccurate prognosis of the transformer 
residual life [3], [11]. Consequently, intelligent based remnant 
life models managed to produce peculiar and interesting results 
that have managed to overcome some shortfalls of 
mathematical based models. 

In [11], [13], a comprehensive multi-attribute remnant life 
estimation model based on fuzzy logic was established. 
However, some factors inclusive of failure history, 
maintenance data, loading regimes have been overlooked in 
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establishing the remnant life of a power transformer. 
Subsequently, the underlying factors utilized in life estimation 
was taken at individual basis which might compromise the 
outcome since there parameters are correlated. Therefore, there 
is still room to improve the existing models to enable a 
probable true reflection of transformer residual life.   

This paper aims to explore avenues of improving the 
existing methodologies on estimation of residual life of new 
and aged transformers through linking transformer oil and 
paper attesting results. Additionally, some maintenance data 
and winding temperature profile are also considered in this 
study.  The weighting factor method of data extracted from 
insulation system attesting results, maintenance data and 
degradation accelerating agents are merged with a fuzzy logic 
inference system so as to compute the residual life for a power 
transformer.  However, weighting factor technique depends on 
the designer’s subjective reasoning. The overall outcome of the 
estimation depends on all considered features and variables as 
a whole, but not on any solitary parameter. The fuzzy logic-
based residual life estimation value is established upon the 
dissolved gas factor (DGAF), oil quality factor (OQF), 
maintenance data factor (MF), degradation accelerants 
(ACCF), contaminants factor (CONTF) and degree of 
polymerization factor (DPF). Having a practical remaining 
useful life value can facilitate power utilities to enhance their 
asset management criterion, thus planning strategies to retire or 
shuffle transformers to less loading factors before end life can 
be realized. 

II.  TRANSFORMER RESIDUAL LIFE ESTIMATION 

The life estimation model is established on the fuzzy 
inference tool initiated upon the calculation of seven 
integrated cumulative factors that indicate the transformer 
status and degradation state. The variables are categorized into 
different classifications namely, dissolved gas (DGAF), oil 
quality (OQF), furans, (FF), maintenance data (MF), 
degradation accelerants (ACCF), contaminants (CONTF) and 
degree of polymerization factor (DPF).  The DGAF, OQF, FF, 
and MF are utilized in mapping the transformer status whilst 
ACCF, CONTF and DPF are indicators of transformer life 
mappers. The DGAF involves seven attributes, OQF consists 
of five attributes, MF entails five attributes, FF represents 
furans whilst ACCF contains three variables and CONTF has 
two variables. The final residual life estimation value is the 
linguistic output of the fuzzy logic model. The allocated inputs 
are based on the combination of each of the sub-model factor 
with respect to scores, weights, and influence on the 
transformer’s performance. 

IEEE, IEC, Dornenburg, California State University 
Sacramento, and Bureau of Reclamation [14]-[16] have 
articulated the parameter ranges that can be acceptably utilized 
by power utilities. With that same notion, remnant life 
predication or transformer health condition can vary depending 
on the standards followed [16]. To achieved a practical residual 
life value from a fuzzy logic inference system, normalization 
of inputs was attained by using parameter limits that signifies 
normal and extreme ranges obtained from [14]-[17]. 

Furthermore, the variables ranges have been divided into four 
groups and conditions. Consequently, by subjective reasoning, 
the four settings of respective parameter are assigned 
appropriate weights (w) on a scale ranging from 0 to 10, as 
shown in Table 1.  

Table 1: Parameter weights assigning. 

Description Condition  Weights (w) 

Group A Good [w ≤ 2.5] 

Group B Okay [2.5 < w ≤ 5.0] 

Group C Poor [5.0 < w ≤ 7.5] 

Group D Critical [7.5 < w  ≤ 10] 

A.  Parameter Score and Weight Determination 

 The weight and score assigned to each variable was 
calculated based on the quantified value from the experiments 
and observation data and inputted in expression highlighted in 
equations (i) [16], [17] and (ii) [16]:  

�������� 	
��� = � + �������
�����

� × 2.5�  (i) 

Rearranging equation (i) gives an expression in (ii) to cater for 
variables whose higher values are preferred rather than lower 
values:  

�������� 	
��� = � + �������
�����

� × 2.5�  (ii) 

where, � indicates the minimum weight in the four settings 

of the variables, ��  is the present quantified value of the 

variable measured (��, is signified by ��
� for DGAF variables, 

��
� for FF,  ��

  for OQF variables, ��
! for MF variables, ��

" for 

DPF,  ��
#

 for CONF variables and,  ��
$

 for ACCF 

variables), %� and &�  are the lower and the upper limits of the 

matching group of the variables, ������
�����

�  symbolizes 

normalization expression of assigned inputs governed by 
equation (i), whilst normalization of BDV, IFT and Core to 

ground resistance was accomplished through ������
�����

�. 

B. Translation of model inputs into fuzzy variables 

The principal inputs to the fuzzy logic model were attained 
from the summed scores for seven transformer variable 
groupings obtained from expressions (i) and (ii). However, the 
two sub-models (transformer status model and life mapping 
model) were initially developed, then their outputs were 
integrated to map the transformer residual life. The related 
membership function range and assigned linguistic indications 
for the totaled inputs are summarized in Table 2. Additionally, 
the partitioned ranges also represent the ranges for the 
membership functions for the fuzzy logic inputs for different 
factors. Computation of these membership ranges was 
achieved by multiplying the lower and upper limits of weights 
of the four settings by number of attributes in each grouping. 
For both inputs and outputs, the trapezoidal membership 
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functions were of choice and the centroid defuzzification 
method was used to map the residual transformer life. 

Table 2:  Summed parameter ranges 
Totalized 

variables 

Input category ranges 

Safe (S) Moderate(M) High(H) Critical (C) 

DGAF 0 ≤ 17.5 17.5 < M ≤ 35 35 < H ≤ 52.5 52.5 < C ≤ 70 

OQF 0 ≤ 15 15 < M ≤ 30 30 < H ≤ 45 45 < C ≤ 60 

FF 0 ≤ 2.5 2.5 < M ≤ 5 5 < H ≤ 7.5 7.5 < C ≤ 10 

MF 0 ≤ 10 10 < M ≤ 20 20< H ≤ 30 30 < C ≤ 40 

DP 0 ≤ 2.5 2.5 < M ≤ 5 5 < H ≤ 7.5 7.5 < C ≤ 10 

CONF 0 ≤ 5 5 < M ≤ 10 10 < H ≤ 15 15 < C ≤ 20 

ACCF 0 ≤ 7.5 7.5 < M ≤ 15 15 < H ≤ 22.5 22.5 < C ≤ 30 

The proposed sub-models for fuzzy logic transformer status 
condition and transformer degradation state are portrayed in 
Fig. 1. The prognosis of transformer residual life was 
accomplished after cascading transformer condition status 
factor with life mapping factor model. The output (estimated 
transformer residual life) membership functions were 
normalized on a scale of 0-1. The projected transformer 

residual life spans on a scale of 0% (end-of-life) to 100% 
(excellent) of its technical in-service life span which is 
typically 40 years.  Thus, the results are based on a 40-year 
projection timeline. Henceforth, this model can be applied to 
different transformer design life time. The overall residual life 
estimation Simulink generated model is depicted in Fig. 2. 

 

Fig. 2: Residual life estimation model 

 

 

 
Fig 1: Proposed Fuzzy logic model for Residual transformer life estimation status

III. MODEL VALIDATION RESULTS AND DISCUSSION 

Validation of the designed model was conveyed through 
use of test data (Table 3) attained from different in-service 
power transformers. In Table 4, the corresponding scores 
calculated as per the individual transformer attributes are 

highlighted. Henceforth, Table 5 represents totalized scores 
for the different groupings and residual useful life (RUL) 
simulation results for the sampled transformers. The totalized 
scores were used as inputs to the model. Additionally, 
comparisons between different remnant life estimation model 
outputs and utility life estimated values for the different 
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transformers are tabulated in Table 5. The model considered in 
[18], had a relative low accuracy compared to other models 
because it was based on single attribute (DP) thereby 
overlooking other relevant life-threatening factors. Based on 
this single variable, the results obtained were an 
overestimation of the transformer remaining life. As noted in 
[19] wet insulation paper exposed to high oxygen levels may 
degrade 37 times faster than when dry paper was aged in low 
oxygen. 

The proposed model results and those of fuzzy logic in [8], 
[11] were in the boundaries of the life estimated by the power 
utility experts. These models considered the ageing 
accelerants and contaminants. However, the model in [11] 
further considered the transformer condition determined by 
fault and ageing stress criticality in life estimation as 
compared to paper criticality (mapped by furans factor) in [8]. 
Accordingly, in the proposed model, the factor of solely 
depending on individual variables in life estimation was 
removed, thus the grouping and weighting factor which maps 
the reality of transformer functionality was realised. 

IV. CONCLUSIONS 

As the ageing fleet of power system equipment approaches 
the ending timeline of their technical usefulness, malfunctions 
and sometimes catastrophic failures often emerges. However, 
knowledge of remaining useful life of these assets can avert 
these technicalities from happening. In this paper, a power 
transformer residual life estimation model was established 
based on groupings of the life-threatening agencies. A 
weighting factor approach cascaded with a fuzzy logic 
inference system was utilized in formulating the model. Based 
on a 40-year technical life span, simulation results of the 
model were comparable with utility expert results. It was 
observed that the grouping of attributes that mirrors the 
performance and condition of the transformer merged with 
maintenance data can lead to apt prognosis of the remaining 
useful technical life of a power transformer. Henceforth, 
results presented direct a trend towards achieving a feasible 
life estimation model for power transformers. 

Table 3: Test Data  

 

Table 4: Corresponding scores obtained as per the values of the test data 
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Table 5: Summed scores and Simulation Results 

 
 

 The empirical remnant useful life model of the mineral oil-
immersed could be enhanced by including the aspect of the 
transformer failure statistics and considering the effects from 
other ageing failure mechanisms, for example the transformer 
electromagnetic degradation due to geomagnetic disturbances.  
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