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1. Abstract  
This report outlines the development of an IoT sensor system (Project Ewaso), capable of 
water-level monitoring in rivers channels, with an aim of ensuring equitable distribution of 
water and sourcing of data to quantify unsustainable water usage and catchment area 
destruction. The paper also defines an application scenario in a specific hydrological region of 
the Ewaso Nyiro basin in Kenya, highlighting the characteristics of data collection and 
processing used. Fixed position node systems are described along with web-based data 
acquisition platform developments integrated with IoT techniques to retrieve data. The 
developed architecture utilizes the LoRaWAN - LoRa protocol to send real-time data packets 
from nodes deployed to a server that displays, decodes and stores the data. From the server, 
data can be transferred to a time series database, where it can be accessed and displayed through 
different customizable queries and graphical representation allowing future use in prediction 
machine learning systems. All these characteristics are presented along with evidence of the 
deployment of different devices and of the IoT network infrastructure.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

2. Introduction 
Competition for clean and safe water has, to a great extent, contributed to water 

management difficulties around the globe. Overexploitation of water resources is a 
considerable constraint on sustainable and safe agricultural development practices. Agriculture 
is one of the main economic activities practised by various communities around the world, 
hence water resources are an essential factor to the alleviation of poverty. There has been a 
recognition of water as an essential component of food security [1], with more attention being 
drawn on the significance of management of water by the United Nations Conference on 
Sustainable Development 2012, in an attempt to meet the sustainable development goals 
(SDGs). 

The upper Ewaso Nyiro (Ngare Ngiro), found in the Ewaso Nyiro basin, is one of the major 
rivers in Kenya. The Mt Kenya and Aberdare regions, also found in Kenya and are the main 
contributors to the Ewaso Nyiro river, have for a long time been the focus areas for water 
resource management and conservation practises. However, in recent years, there has been an 
experience of water crises of unknown extent in lower catchments and other areas along the 
rivers path [2] [3]. 

The water crises have been brought about by the intensified agriculture, reduced rainfall 
due to climate change and catchment degradation. These crises, in turn, cause conflicts between 
water-user communities along the river Ewaso Nyiro path in the lower catchment areas [4]. 

To ensure equitable distribution and sustainable usage of water available in river channels, 
effective monitoring is essential. River catchment area degradation in recent years has been 
severe due to encroachment by people. It is altering run-off and infiltration rates, accelerating 
soil erosion and increasing sediment transport and deposition. In a quest to protect the 
catchment from encroachment, monitoring water level can be an important source of data 
which can be used to quantify the rate of catchment degradation [4]. 

This report describes the development of a water-level monitoring system for the Ewaso-
Nyiro lower catchment that will be the first step in quantifying and discovering the justification 
statements stated. 

 
 

3. Objectives 
The main objectives of this work are: 

1. To design a sensor system to monitor water-level in a river channel. 
2. To deploy the LoRaWAN IoT network at Ol-Pejeta conservancy to facilitate data 

transmission. 
3. To integrate the sensor system and the LoRaWAN Radio for long range low power data 

transmission. 
4. To develop web infrastructure to visualize and store sensor data. 
5. To utilize machine learning models/algorithms in performing anomaly detection on the 

water level data collected 
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4. Methodology 
4.1 Development of the system 

The IoT sensor system design is based on the Multitech mDot which is an Arm®1 Mbed™ 
programmable LoRa module from Multitech2 which is ideal for rapid prototyping. The modules 
are programmed using the mbed3 platform (mbed cli – mbed command line programming tool) 
which allow development of software in C/C++ and provide drivers/libraries for the peripheral 
devices connected to the MCU. The design also incorporates a Maxbotix4 MB1010 ultrasonic 
sensor for river water-level measurement and a custom PCB designed and etched to house all 
the components. 

Data transmission relies on a LoRa network server able to decode LoRa data packets from 
fixed position nodes and relay them to a database for storage, awaiting processing. The network 
server we used is provided by The Things Network5 (TTN). Through the utilization of a Python-
MQTT (Message Queuing Telemetry Transport), data is transferred from TTN to an InfluxDB 
database located in a Google Cloud7 (GCP) virtual machine instance (Compute Engine) for 
storage. From there, data is then visualized on a Plotly-Dash6 web application https://water-
monitoring-258811.wl.r.appspot.com Figure 3 shows a schematic diagram of the system.  

 
Figure 1: Multitech mDot (left), Maxbotix MB1010 ultrasonic sensor (middle), Kerlink outdoor LoRa gateway 

(right) 

 

Figure 2: Prototype ready for deployment 
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Figure 3: System schematic diagram 

The system was deployed along River Ewaso Nyiro at Ol-Pejeta conservancy which is also 
home to a Wildlife Techlab which was setup to develop and test conservation technology. To 
avoid damage by primates in the conservancy, we designed a metallic cage, shown on Figure 
2 and 4, to house and secure the prototype and we have been receiving river water-level data 
since June 2020. 

 

Figure 4:  Deployment (Prototype on the Left was destroyed by Baboons and the One on the Right has a primate 
proof cage) 

1      https://developer.arm.com 
2      https://www.multitech.com 
3      https://www.mbed.com/en/ 
4      https://www.maxbotix.com/Ultrasonic_Sensors/MB1010.htm 
5      https://www.thethingsnetwork.org/ 
6      https://plotly.com/dash/ 
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5. Radio Mapping  
The LoRaWAN gateway, also known as the concentrator, is used to relay data packets 

between the end devices (nodes) and the network server via the internet. It communicates over 
multi-channels with multi-spreading factors. With this technique, nodes communicate with the 
gateway using different channels and data-rates without pre-negotiation and enables the 
gateway to accommodate about 10000 end devices at a go. To facilitate data transmission at 
Ol-Pejeta, a Kerlink Outdoor gateway was configured and installed on a WIFI tower at a height 
of approximately 16 meters above the ground. The height provided adequate radio coverage of 
a large section of the upper Ewaso Nyiro River running through the conservancy.  

The robust operation and efficient deployment of many IoT systems rely on the deployment 
of gateways and relays to ensure quality wireless coverage. Radio mapping aims to predict 
network coverage extent based on a small number of link measurements from sampled 
locations [6]. 
      We conducted radio mapping at Ol-Pejeta conservancy8 to determine transmission range 
of LoRa9 enabled prototypes developed, and also to test the deployment along river Ewaso 
Nyiro within the conservancy. We mounted two LoRaWAN gateways at Ol-Pejeta house, a 
Kerlink Gateway at approximately 16 meters and LoRix One Gateway at approximately 13 
meters. 
      We deployed 3 devices at various points within the conservancy. The devices and gateways 
were already connected to The Things Network and the network server was relaying radio 
propagation data to an InfluxDB10 database for storage, awaiting processing. 

 
Figure 5: Map of Ol-Pejeta conservancy showing radio mapping test points 
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Table 1: The LoRix One and Kerlink Lora Gateways Specifications and Operations (subject 
to environmental factors and placement of nodes/sensors and gateways). 
 LORIX ONE KERLINK LORA 

Antenna 
Indoor 20cm Inclinable Antenna,  
2dBi, 27dBm max output 

Indoor 20cm Inclinable 
Antenna,  2dBi, 28dBm max 
output 

Receiver Sensitivity -140dBm -141dBm 
Operating 
Temperature 

Min: -30 °C; Max: +55 ℃ Min: -20 °C; Max: +55 ℃ 

Communicating 
Range 

Line of sight(*Antenna): +10kms 
Urban: up to 1km 

Line of sight(*Antenna): 
+15kms 
Urban: up to 2kms 

Installation 
Wall or Pole mounting 
Metallic Strapping 

Wall or Pole mounting 
Metallic Strapping 

 
5.1 Radio Mapping Results 
The Received Signal Strength Indication (RSSI). 

This refers to the signal power that is received in mill watts (mW), and it is measured in 
dBm. How clear a receiver can “hear” from a sender can be measured using this value. 
Received signal strength indication, i.e., RSSI, is usually a negative value; hence, the signal is 
better when it is more positive (closer to 0). The value ranges of typical LoRa RSSI is -140 
dBm to -30dBm. 

 
 

Figure 6: The Received Strength Plots for the 5 Test Locations. 
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For our radio mapping experiments, we computed the mean RSSI for each of the 5 test locations 
that were used.  At approximately 150m away from the gateway, the LORIX One gateway 
outperformed the Kerlink gateway by a margin of 10dBm as well as at the furthest distance 
(approximately 7.5km) by 13dBm. The best strength was realized at the nearest test location 
and reduced as we moved to test locations far away from the gateway, as depicted by Figure 
6. Plots in Figure 6 provides a quick graphical examination of the RSSI for each of five (5) 
test locations for each gateway. Outlier RSSIs were highly realized in test location 2 and they 
are plotted as individual points, while none were realized at location 1 (nearest to the gateways). 
However, location 1 depicts the highest notable degree of dispersion (spread) and skewness for 
both gateways. There is a general non-linear variation of the median positions of the RSSI, 
usually determined by various parameters, which include free space loss, shadowing, reflection 
and transmission, diffraction, among others. 

6. Sensor Calibration 

 
Figure 7: MB1010 Ultrasonic sensor location 

The MB1010 was calibrated with the help of the MB1010 datasheet7. With 2.5V-5.5V power, 
the MB1010 provides very short to long range detection and ranging in a very small package. 
The MB1010 detects objects from 0 inches to 254 inches (6.45 meters) and provides sonar 
information from 6 inches out to 254 inches with an inch resolution. The output formats 
included are pulse width output, analog voltage output and RS232 serial output. According 
to the datasheet, the analog pin (pin 3-AN) outputs analog voltage with a scaling factor of 
(Vcc/512) per inch. 

We utilized the Analog Voltage Output as the interface output format in Project Ewaso. In 
this format, distance / detection range is converted to a voltage signal that can be read by a 
microcontroller and calibrated later. The MB1010 Pin3: AN - outputs an analog voltage signal 
with a scaling factor of (VCC/512) V per Inch. A supply of 5V yields ~ 9.8mV/inch and a 3.3V 
yields ~ 6.4mV/inch. The output is buffered and corresponds to the most recent range data. 
Example: Assuming the payload (HEX: 16E1) is in hexadecimal form sent to TTN as an 
unsigned 16-bit integer so we have to convert it to decimal form to get (DEC: 5857). The 
system runs on a VCC of about 3.7V hence, if 3.3V yields 6.4mV/Inch, 3.7V should yield 
7.2mV/Inch or (2.834mV/Cm). 
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3.7(System Vcc value)
(1) According to the datasheet: Voltage per Inch(V/In) =  =  = 7.2mV/in

512 512
7.2 /

(2) Voltage per inch - conversion - to voltage per cm(V/cm) = (1 inch = 2.54cm) =  = 2.
2.54

VCC

mV In

16

16

8mV/cm

5857
(3) Converting the payload back to the analog pin voltage  = 3.0 0.26811

2 1

(i) 2 1  Unsigned 16 bit integer limit

(ii) 3.0V =  Multitech Mdot analog input pin voltage limit

(4) payload 

V V 


 

Payload to voltage 0.26811
to distance (cm) conversion = 95.75

Voltage per centimeters 2.8 /

(5) Hence 16E1(HEX)  represents or is equal to = 95.75cm

V
cm

mV cm
 

We also carried out a preliminary experiment to verify the outlined MB1010 detection range 
and also to establish the precision and accuracy of the sensor. In the experiment, we measured 
several sets of distances using the sensor and produced plots to showcase the results. 
 

 
Figure 8: Measured values for every test distance 

Tabulated values on Figure 8 provides a quick graphical examination of the accuracy of the 
sensor for each actual distance measured. The precision and accuracy were found to be high 
for the short distances but a little lower for the longer measurements. Accuracy is basically 
how close the measured value is to the actual distance coincided to what is stated on the 
datasheet. The small deviation from the actual measurement could have also been brought 
about by the calibration process and human error. Precision is the measure of reproducibility – 
how close the measured values are to the actual value - at long distances, the sensor precision 
was impressive as shown on Figure 8.The longest distance measured was 647.53cm. River 
Ewaso Nyiro channel, at the point of deployment, is 4.9 meters, hence, the channel depth was 
within the sensor range.  

7. PCB Design 
Since the components needed could not be soldered directly onto the Multitech mDot pins, we 
developed an etched circuit to harbour all the components and also facilitate deployment. The 
circuit design was developed using the KICAD PCB development and design software. The 
circuit consisted of the battery/power socket, a socket to harbour the Multitech mDot and an 
ultrasonic sensor socket. The mDot is powered by a lithium 4400mAH rechargeable battery 
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which is charged by a 150mAh Solar panel through a diode. The analog pin of the MB1010 is 
connected to one of the analog pins on the mDot to facilitate data collection. 

 

Figure 9: (Left) PCB design & (Right) Finished product 

 

Figure 10: (LEFT) Complete system, (RIGHT) Circuit diagram of the system 

8. Power Analysis/Management Sensors 
To conserve the power in the battery, we took advantage of the power management scheme 
available in mbed OS which allows devices to be placed in a low power sleep mode between 
data acquisitions. In the setup, we acquire data at 30 minute intervals and put the device to 
sleep in between these sampling times. In particular, the board draws 0.2mA when in sleep 
mode and 68mA when taking measurements and transmitting data. The data acquisition period 
lasts for between 1-3 seconds. Also, to analyse (keep track of) the amount of power being 
generated by the solar, we developed Project Ewaso Prototype 2 shown on Figure 11. 
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Figure 11: Power Analysis prototype 

Apart from the main (data collection circuit), the prototype also included: 

Solar Voltage Sensor: This was basically a voltage divider circuit that could lower the solar 
voltage to a level that could be fed to the Multitech mDot analog pin for conversion and 
measurement. 

Solar Current Sensor: The solar current sensor was based on a current sense resistor and a 
differential amplifier. The amplifier amplifies the voltage drop across the resistor, which is 
dependent on the amount of current passing through the resistor. The voltage signal produced 
by the amplifier is therefore directly proportional to the amount of current from the solar panel 
through the resistor. The current sensor circuit is as shown on Figure 12. Additional design 
information and circuit details can be found at: https://www.allaboutcircuits.com/technical-
articles/how-to-monitor-current-with-an-op-amp-a-bjt-and-three-resistors/. 

 

Figure 12: Solar current sensor 
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Battery voltage sensor: This was also a voltage divider circuit that could lower the battery 
voltage to a level that could be fed to the Multitech mDot analog pin for conversion and 
measurement.  

Using the data collected by the solar sensors we were able to measure and keep track of the 
amount of power coming in from the solar as shown by Figure 13. The battery voltage sensor 
data plot helps in keeping track of the amount of power available in the 4400mAh Lithium ion 
battery (Figure 14). The data also served as evidence that the charging system was operating 
as desired. 

 
Figure 13: Solar current plot on 3rd January 2021 

 

Figure 14: Battery voltage data showing the evidence of charging 

8.1 Evidence of charging 
Using the battery voltage sensor on PROTOTYPE 2 (Figure 11), we were able to discover 
some evidence of charging of the lithium ion battery. On 22th October 2020, the battery voltage 
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level was 3.66V at 9.00am (EAT) and after 9hrs of being charged by the solar panel installed, 
the battery voltage level went up to 3.79V at 6.00pm(EAT) as shown on Figure 14. 

8.2 Comparing the Solar current data to the short- wave radiation. 
We acquired access to the short radiation data from TAHMO (Trans-African Hydro-
Meteorological Observatory) and managed to compare it to our solar current data. The 
similarity was striking as shown on Figure 13 and Figure 15.  

 

Figure 15: TAHMO short wave radiation data on 3rd January 2021 

9. Programming the Multitech mDot  
Mbed enabled modules such as the Multitech mDot used in this work can be programmed in 
various ways including using an online program compiler and the offline mbed command line 
interface (CLI). I used the CLI to compile the program used. Code used in this can be accessed 
at https://github.com/ciiram/mdot-maji. The program to collect power analysis data (solar 
current, solar voltage and battery voltage) can be accessed at https://github.com/ciiram/mdot-
maji. The power analysis parameters were sampled at intervals of 30 minutes, just like the 
water level data, and relayed to the network servers and database. The data collected provided 
a clear picture of how the system was utilizing the power available and how much was coming 
in from the solar panel. 

10. Results and Discussion 
10.1 Machine Learning (Anomaly Detection) 
Sensor prototypes deployed under potentially harsh weather conditions for tasks like 
environmental forecasting are prone to breakage and damage. The high probability of 
erroneous readings or data corruption during transmission brings up the problem of ensuring 
quality of the data collected by sensor. Since WSNs (wireless sensor networks) have to operate 
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continuously and therefore generate very large volumes of data every day, the data quality 
process has to be automated, scalable and fast enough to be applicable to streaming data. The 
most common approach to ensure quality of data is anomaly detection. It consists of automatic 
detection of erroneous readings or anomalous behaviour of sensors. From a high level and in 
generic way, anomaly detection can be done by three main ways 

By predictive confidence approach:  this method involves using historical data to train a 
model that can predict the value of the next measurement, if the actual measurement is far from 
the predicted it is labelled anomalous. We carried out some preliminary experiments using 
FacebookProphet (at its core it is an additive regression model) and we were able to get rid of 
the anomalies in the data stream. As we proceed with the project, we aim to implement a neural 
network predictive model in the anomaly detection phase. For building a predictive anomaly 
detection model, popular time series modelling like ARIMA, SARIMA, VAR or any regression 
or machine learning and deep learning based algorithm like LSTM can also be used effectively. 

The clustering based unsupervised approach: this method involves clustering the data using 
various clustering techniques like K-means and DBSCAN. If new measurements are assigned 
to small clusters very far from the big cluster centroid they are labelled as anomalies. We used 
this approach to detect and eliminate anomalies from our time series, water level data. KMeans 
is able to cluster correct data points and anomalies in different clusters and with a few python 
operations we eliminate the anomalies.  

 

Figure 16: How the data is clustered by the KMeans clustering algorithm 

Since Purple Cluster 1 on figure 16 (cluster 1 between the 3 and 4 meter mark) has the 
accurate and highest number of data points it is retained by executing simple Python 
operations7 and the points (anomalies), in the other clusters, Cluster 2, Cluster 3 and Cluster 4 
are scrapped off the dataset.  

Cluster 1 
 

Cluster 4 

Cluster 2 

Cluster 3 
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Statistical profiling approach: this is done by calculating the statistical profile of the historical 
data and using a standard deviation to come up with a band of statistical values which can 
define the boundaries and anything falling outside these boundaries is regarded as anomalous. 
Following the preliminary experiment using IQR (interquartile range) analysis, we aim to test 
and implement other statistical based methods in anomaly detection. 

10.2 Anomaly Detection Results  
We used anomaly detection to generate a data frame of daily water level figures. Figure 17 
shows the daily water level figure from 12th May 2020 to 9th January 2021. The plot on Figure 
17 is also available on a visualization dash web application to display the water level data from 
the database. (DASH web app  

Link: (https://water-monitoring-258811.wl.r.appspot.com). 

 

Figure 17: water level plot 

 

11. Catchment Analysis. 
Analysis of a river catchment is an efficient method to process our understanding of how 
varying climatic conditions and catchment parameters/characteristics (vegetation, soils, and 
topography) interact to define hydrological response. The hydrological response and status of 
catchment can be quantified by means of specific signatures of catchment behaviours like water 
flow rate, run-off co-efficient, water level, water capacity in the channels and flow duration 
curve. Quantifying the mentioned signatures is the main way to accomplish catchment analysis 
and classification [8] [9]. To analyse the catchment, we decide to check how long a spike in 
water level takes to appear after a spike in rainfall occurs. According to the test part we 
considered on Figure 18, the spike in water level occurred two days after a spike in rainfall. 
This shows the catchment area is possibly not degraded to a large extent. If the spike in water 
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level was picked up by the sensor hours after the spike in rainfall, it would have meant that the 
catchment is possibly degraded to a large extent and the water runoff had nothing to obstruct 
it. In the future we aim to develop prediction machine learning models for the water level 
profile with the help of the rainfall data from TAHMO. By predicting and collecting water 
level data various aspects of the river and the basin can be quantified. 

 

 

Figure 18: Water Level -Rainfall Comparison 

12. Conclusion 
      
This report has outlined the real-time monitoring of water-level in rivers by leveraging Internet 
of Things (IoT) and Machine Learning. We collected useful data from the prototypes deployed 
and in turn we were able to track water levels in the River Ewaso Nyiro channel. This data can 
be used by other governmental or non-governmental bodies to predict the future behaviour of 
the river, if some climatic and human conservation factors are considered. In the study, we 
learnt that small and cheap sensor systems can be used to quantify various natural phenomena. 
The initial cost of setting up the networks to handle data transfer is high but long term benefits 
of data collections and analysis can be very crucial in the making of various environment 
related decisions. Apart from the IoT network blackouts and very little vandalism cases, our 
systems were able to collect data for a long stretch of time. This fact means our system is 
capable of large scale deployment.         
      In the near future, we aim to incorporate multiple data sources such as weather data from 
TAHMO to build water level - machine learning prediction models and use other machine 
learning algorithms in anomaly detection. Also, we plan to expand our sensor network by 
deploying more water level monitoring devices, turbidity monitoring devices and flow rate 
monitoring devices.  

Catchment test 
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The long term vision of this project is to collect enough data that can be used in the development 
of inundation models. Inundation models are used in flood forecasting in a river basin. The 
main input of inundations models is river water-level data collected over a long period of time. 
The other vital input is high resolution elevation maps (depth maps) of the river basin terrain. 
This means that work in water-level data collection is the first key step in the development of 
accurate inundation models for the Ewaso Nyiro River basin. 
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