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ABSTRACT

Groundwater recharge plays a vital role in replenishing aquifers, sustaining demand, and reducing adverse effects (e.g. land subsidence). In

order to manage climate change-induced effects on groundwater dynamics, climate models are increasingly being used to predict current

and future recharges. Even though there has been a number of hydrological studies that have averaged climate models’ predictions in a Baye-

sian framework, few studies have been related to the groundwater recharge. In this study, groundwater recharge estimates from 10 regional

climate models (RCMs) are averaged in 12 different Bayesian frameworks with variations of priors. A recession-curve-displacement method

was used to compute recharge from measured streamflow data. Two basins of different sizes located in the same water resource region in

the USA, the Cedar River Basin and the Rainy River Basin, are selected to illustrate the approach and conduct quantitative analysis. It has been

shown that groundwater recharge prediction is affected by the Bayesian priors. The non-Empirical Bayes g-Local-based Bayesian priors result

in posterior inclusion probability values that are consistent with the performance of the climate models outside the Bayesian framework. With

the proper choice of priors, the Bayesian frameworks can produce good results of groundwater recharge with R2, percent bias error, and

Willmott’s index of agreement of .0.97, ,2%, and .0.97, respectively, in the two basins. The Bayesian framework with an appropriate

prior provides opportunity to estimate recharge from multiple climate models.
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HIGHLIGHTS

• The choice of prior affects the suitability of Bayesian formulation for averaging recharge.

• All RCMs tend to underestimate groundwater recharge.

• Non-EBL-based priors result in posterior inclusion probabilities consistent with the RCM performance.

• Bayesian frameworks produce a better recharge estimate than individual RCMs.
1. INTRODUCTION

Globally, groundwater supplies 70% of water needs for irrigation (Rosegrant et al. 2009; Siebert et al. 2010; Long et al. 2020).
About 25% of total freshwater consumption in the USA comes from groundwater (Meixner et al. 2016). Besides, groundwater

is a source of safe drinking water to 90% of the US rural population (Niraula et al. 2017).
To assess the effect of potential climate change on groundwater resources, groundwater recharge is increasingly being mod-

eled using climate models (Risser et al. 2005; Allen et al. 2010; Crosbie et al. 2010). The regional climate models (RCMs) use

land surface models (LSMs) to partition precipitation from GCMs to surface runoff, evapotranspiration, and drainage
(Mearns et al. 2012). These hydrological variables are often archived in databases such as North American Regional Climate
Change Assessment Program (NARCCAP 2007; Mearns et al. 2013). Most LSMs are one-dimensional (1-D) vertical soil col-

umns that partition precipitation to various hydrological outputs at relatively smaller spatial scales. Previous studies have
successfully used RCMs and/or LSMs hydrological products to simulate the groundwater recharge. AWater Atmosphere Veg-
etation Energy and Solutes (WAVES) model (Zhang & Dawes 1998) is a 1-D soil water balance model and has been often and
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successfully used to simulate recharge by equating recharge to deep drainage below the rooting depth, assuming that soil

evaporation and transpiration are negligible below the rooting depth (Crosbie et al. 2013; Xie et al. 2018). Hydrologic Evalu-
ation of Landfill Performance (HELP) (Berger 2000, 2015) is a 1-D model, driven by daily precipitation, daily temperature,
and daily solar radiation, which has been successfully used in numerous studies to simulate recharge based on deep drainage

through and below the vertical soil column model (Woyshner & Yanful 1995; Berger 2000, 2015; Risser et al. 2005; Scibek &
Allen 2006; Jyrkama & Sykes 2007; Allen et al. 2010). Soil Vegetation Atmosphere Transfer (SVAT) is a class of 1-D LSM that
takes rainfall as input and partitions it into ET, runoff, and drainage below the soil column (recharge). SVAT has been used in
multiple recharge studies such as in the Okavango River Basin and the Chobe-Zambezi River system (Brunner et al. 2004).

Combining multiple climate models’ hydrological predictions in a Bayesian framework (Sloughter et al. 2007; Duan &
Phillips 2010) has been found to provide better predictions than the individual climate models (Ma et al. 2016). Some of
the hydrological studies based on the Bayesian framework include: the streamflow study on Mississippi’s Leaf River Basin

(Ajami et al. 2007) and French Broad watersheds in the USA (Vrugt et al. 2008); Yellow River Basin, China (Zhang et al. 2018);
Irish river catchments (Bastola et al. 2011); and Bayesian-based precipitation and sea surface temperature studies (Luo
et al. 2007). However, there are limited recharge studies, if any, that have averaged recharge prediction from multiple climate

models in a Bayesian framework. In addition, most previous hydrological studies were based on an assumed single Bayesian
prior. However, due to subjectivity, an assumed single Bayesian prior may have a potential of an ill-posed posterior model
probability (PMP; Kavetski et al. 2006) potentially due to drastic changes in posterior probability because of small errors

in the observation. Bayesian model averaging (BMA) has been used to quantify groundwater model uncertainty, with
model parameters being assumed to follow a uniform prior distribution (Mustafa et al. 2020). In a study conducted in the
San Joaquin River Basin, BMA was successfully used to estimate the uncertainty of aquifer storage from the machine lean-
ing-based groundwater model (Yin et al. 2021). Plausible recharge estimates were obtained in Central America using a

combination of stable isotopes and the BMA framework with an assumed uniform prior distribution (Arellano et al. 2020).
Groundwater storage across the contiguous USAwas reliably estimated using a combination of Gravity Recovery and Climate
Experiment (GRACE) satellite data and the water balance model within the Bayesian framework (Mehrnegar et al. 2021).
The Bayesian framework, with an assumed uniform distribution, was used to establish interactions of climate with ground-
water and food within Louisiana, USA (Singh et al. 2020). Groundwater age-dating within the Bayesian framework (with
an assumed log-normal prior distribution) was used to better understand the irregular mixing at the seawater intrusion

zones of groundwater aquifer that exist along the shorelines of Yellow Sea, South Korea (Ju et al. 2021). In a study conducted
in the Yixunhe watershed, China, non-point source pollution was reliably modeled in the BMA framework (Wang et al. 2020).
Other studies have also investigated Bayesian-based integrated management of stressed hydrological systems (Molina et al.
2010) and the impact of climate change on stressed groundwater (Molina et al. 2013). Therefore, there is no study that

has investigated the influence of Bayesian priors on groundwater recharge estimation to the best of our knowledge.
Based on the above discussion, the objectives of this study are to (1) average recharge predictions from 10 RCMs in 12

different Bayesian frameworks; (2) find a suitable Bayesian framework for averaging multiple climate-based recharge predic-

tion; (3) evaluate the relative importance of climate models in predicting recharge inside and outside the Bayesian framework.
To calculate posterior model probabilities, which are used to average recharge prediction from the climate models, a known
actual/observed recharge is required. In this study, a recession-curve-displacement method, which is also called RORA

method (Rorabaugh 1964; Rorabaugh & Simons 1966), is used to estimate groundwater recharge from historical daily stream-
flow measurement. The RORA method has been proven to provide reliable recharge estimates from historical streamflow
measurements (Daniel 1976; Delin et al. 2007; Lorenz & Delin 2007; Rutledge 2007).
2. METHODS

2.1. Study area and data sources

In this study, two case-study basins located in Minnesota, USA are selected. The Cedar River Basin (near Austin, Minnesota)
and the Rainy River Basin at Manitou Rapids have drainage area of 1,500 and 30,000 km2, respectively. The gauging station

for the Cedar River Basin is located at [�92.97°, 43.64°], whereas for the Rainy River Basin it is located at [�95.54°, 44.72°].
The Cedar Basin receives relatively higher rainfall (of 834 mm/year) than the Rainy Basin which receives 671 mm/year on
average (Achieng & Zhu 2019).
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The estimation of actual groundwater recharge using the RORA method requires continuous data of historical streamflow

measurement. Both Cedar and Rainy River Basins’ streamflow dataset was obtained from the United States Geological Survey
(USGS). The climate model’s water balance dataset is freely available from the North American Regional Climate Change
Assessment Program (NARCCAP) (Mearns et al. 2012). The NARCCAP project has downscaled the general circulation

models (GCMs) to the RCMs’ relatively smaller spatial and temporal resolutions of 50 km and 3 h, respectively. The
RCMs have LSMs that partition the precipitation input into various hydrological outputs at RCMs’ spatial and temporal
scales. Comparison of the climate models requires use of a common time-frame; therefore, the RCM datasets of
1968–1998 are used in this study. The same 10 NARCCAP RCM–GCM combinations as the study of Achieng & Zhu

(2019) are used in this study. It should be noted, however, that any number of RCMs can be included in the proposed frame-
work. Table 1 summarizes the RCMs and their corresponding LSMs.

For the RCMs, CRCM is the Canadian RCM (Caya & Laprise 1999; Music & Caya 2007), ECP2 is the Scripps Experimental

Climate Prediction Center/Regional Spectral Model (Juang et al. 1997), MM5I is the Fifth-generation Pennsylvania State Uni-
versity /NCAR Mesoscale Model (Grell et al. 1994), RCM3 is the RCM, version 3 (Pal et al. 2007), and WRFG is the Weather
Research and Forecasting Grell (Skamarock et al. 2005) model. For the GCMs, ccsm is the Community Climate System

Model (Collins et al. 2006), cgcm3 is the Third Generation Coupled Global Climate Model (Flato et al. 2000), gfdl is the Geo-
physical Fluid Dynamics Laboratory (GFDL) model (Delworth et al. 2006), and hadcm3 is the Hadley Climate Model
(Pope et al. 2000).

2.2. RCM-based recharge estimate

Since the RCMs use the 1-D vertical column LSMs to partition precipitation from GCMs, the drainage below the soil column
is assumed to be recharge based on the following three assumptions: (1) the downward flux is not blocked by impermeable
layer, and thus the lateral flow is assumed to be negligible, and (2) the lag-time between drainage and recharge is relatively

short (i.e. hours to a few days to reduce losses such as evapotranspiration – which would reduce the amount of recharge), and
(3) climate and land use/land cover do not change during the period when drainage leaves the bottom of the soil column and
when drainage reaches thewater table. RCMs’LSMs have been used to estimate recharge from point scales (Zhang&Dawes 1998;
Crosbie et al. 2013) to regional scales (Risser et al. 2005; Scibek&Allen 2006; Allen et al. 2010). Based on these assumptions, the

water balance for the 10 NRCCAP RCMs (i.e. CRCM_ccsm, CRCM_cgcm3, ECP2_gfdl, ECP2_hadcm3, MM5I_ccsm,
MM5I_hadcm3, WRFG_ccsm, and WRFG_cgcm3) is expressed as:

R ¼ [ pr þ snm]� evps�mrros+ DS (1)

where R is the recharge (mm), pr is the rainfall (mm), snm is the snowmelt (mm), evps is the evapotranspiration (mm); mrros
is the surface runoff (mm), and DS is the change in water storage (mm). The NARCCAP models provide the water balance
Table 1 | NARCCAP RCMs and corresponding LSMs

NARCCAP RCMs LSMs

1. CRCM_ccsm Canadian Land Surface Scheme (CLASS) (Verseghy; Verseghy et al. 1993).

2. CRCM_cgcm3

3. ECP2_ gfdl NOAH (N: National Centers for Environmental Prediction (NCEP); O: Oregon State University (Department of
Atmospheric Sciences); A: Air Force (both Air Force Weather Agency and Air Force Research Laboratory); H:
Hydrology Lab – National Weather Service, NWS) (Ek et al. 2003).

4. ECP2_hadcm3

5. MM5I_ccsm

6. MM5I_hadcm3

7. WRFG_ccsm

8. WRFG_cgcm3

9. RCM3_cgcm3 Biosphere-Atmosphere Transfer Scheme (BATS) (Dickinson et al. 1986; Yang & Dickinson 1996).

10. RCM3_gfdl
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variables on 3-hourly intervals. The 3-hourly values are summed up into monthly values because recharge values are at

monthly time-steps. Therefore, the terms in Equation (1) are on a monthly time-step. Note that in 2 of the 10 RCMs,
RCM3_ cgcm3 and RCM3_ gfdl, the rainfall and snowmelt were combined as one variable.

To calculate the average recharge for the basin, recharge estimates from the RCM grid cells that cover the basin are aver-

aged using the grid cells areas as the weights. Since the studied basins have irregular shapes and the RCM grids are regular in
shape, only the portions of the RCM grids that cover the basins are considered.

2.3. Observed groundwater recharge estimation: recession-curve-displacement method

The climate models’ recharges are averaged in a Bayesian framework based on a known actual recharge. The observed
recharge is estimated from the USGS continuous historical daily streamflow measurements using the RORA method
(Rorabaugh et al. 1966; Rorabaugh 1964). The RORA method assumes that recharge events only occur in the aquifer and
instantaneously cause the groundwater level to rise, while the rest of the basin does not experience any net gain or loss.

Therefore, the rise in the groundwater level causes groundwater discharge into the stream. The Cedar Basin has sand/
gravel aquifer that is about 30 m thick. The Rainy Basin has igneous and metamorphic rock-based aquifer that stores
water in fractures and faults. The Cedar Basin is most likely to uphold the homogeneity/isotropy assumption because its aqui-

fer is made of coarse sediment. Since the Rainy Basin’s aquifer is composed of rock fractures and faults, it may violate the
homogeneity/isotropy assumption if these cracks are not uniformly distributed throughout the aquifer. This assumption is
appropriate for the two basins because both basins experience humid climate. Therefore, it is possible for the basins to

have zero net loss (e.g. due to evapotranspiration) or net gain (e.g. from irrigation). The time period between the peak stream-
flow discharge and the stabilized streamflow is called the critical time. It is used in this study because it has been found to
provide groundwater recharge that is representative of the entire river basin (Delin et al. 2007; Lorenz & Delin 2007) unlike

the point-scale methods. Besides, the RORA method only needs streamflow dataset in order to determine the recharge
(Busenberg & Plummer 1992).

A recession index that is related to the aquifer hydrogeological properties is determined as the time interval after the critical
time, which is required for the groundwater discharge to recede by 1 log-cycle. The recession index is computed from the

recession curve, which is a semi-log plot of groundwater discharge after the critical time versus time. After identifying the
peak discharge and the critical time, the discharge at the start of the critical time is extrapolated to give the pre-event and
that at the end of the critical time is extrapolated to give the post-event discharge. Both the recession index and the critical

time can be computed as a function of distance between the stream and the groundwater divide, aquifer transmissivity, and
aquifer storativity (Rorabaugh 1964; Delin et al. 2007). Groundwater recharge associated with each peak event is analytically
calculated from the recession-curve-displacement as function of the difference between the pre-event and post-event dis-

charges as follows (Rorabaugh 1964; Rorabaugh & Simons 1966; Daniel 1976; Arnold & Allen 1999; Rutledge 2000,
2004; Delin et al. 2007; Lorenz & Delin 2007):

R ¼ 2(Q2 �Q1)
2:3026A

K ¼ (Q2 �Q1)
1:1513A

K (2)

where R is the daily groundwater recharge (mm); A is the area of the basin (km2); Q1 is the groundwater discharge at the
critical time that is extrapolated from the pre-event streamflow recession (m3/s); Q2 is the groundwater discharge at the criti-
cal time that is extrapolated from the post-event streamflow recession (m3/s); K is the recession index (days/log-cycle) which

is either obtained as the slope of the recession curve after critical time or computed as a function of aquifer properties as
shown in the Appendix.

2.4. Bayesian frameworks for averaging RCMs’ recharge

Regression models are developed between the actual recharge and the RCMs’ recharge in the 2k model space, where k is the
total number of regressors (RCMs), i.e. 10. The actual recharge YO is regressed onto each of the possible combinations of the
10 regressors to produce a total of 210 (i.e. 1,024) regression models. A normal regression model Mj of actual recharge onto kj

regressors (where 0 � kj � k) that contains n observations is expressed as:

YO ¼ Inmþ Zjbj þ s1 (3)
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where m is the intercept, In is the n-dimensional vector of 1’s, Zj is an n� kj matrix that contains kj columns of regressors and

n rows of observations of the respective regressors, bj is the kj-dimensional vector of relevant regression coefficients, s is the
residual standard deviation, 1 is the identically and normally distributed ratio of residual to error that results from fitting all
the k regressors to YO.

Twelve Bayesian frameworks, which are used in the study by Achieng & Zhu (2019), were implemented as the Bayesian
recharge models. These Bayesian frameworks are developed by combining prior distribution of the Bayesian regression
models (MPrior) and the prior distribution of the regression coefficients (g-prior). Both prior distributions are vital in comput-
ing PMP, which is then used to compute both the Bayesian regression coefficients and the posterior inclusion probability

(PIP) of the individual covariates (i.e. the RCMs).
The PMP of the regression model j is computed, based on Bayes theorem, as follows:

P(MjjYO) ¼
P(YOjMj)� P(Mj)

X2k
h¼1

P(YOjMh)� P(Mh)

(4)

where P(YOjMj) is the likelihood of regression model Mj that is computed based on the g-prior,
P2k

h¼1 P(YOjMh)� P(Mh) is the
normalizing constant of the PMP, P(Mj) is the prior probability distribution of the regression model Mj, which is the MPrior,
YO is the actual recharge, and k is the number of RCMs, i.e. 10.

The PIP of regressor (i.e. RCM) j is computed as the sum of PMPs of regression models that contain the regressor j:

PIP ¼ P(bj = 0jYO) ¼
X
bj=0

P(MjjYO) (5)

where bj is the regression coefficient. PIP is used because it has been found to be useful performance indicator in evaluating

the relative importance of the explanatory variables within the Bayesian framework (Fernández et al. 2002; Zeugner 2011;
Ley et al. 2012; Steel 2013; Zeugner & Feldkircher 2015).

The likelihood of regression model is computed by integrating, with respect to the regression coefficients, the joint prob-

ability density functions of the regression models, and regression coefficients (m, s2, bj) as (Fernández et al. 2001a, 2001b):

P(YOjMj) ¼
ð ð ð

P(YOjm, bj, s
2, Mj)P(m, s2)P(bjjm, s2, Mj)dmds2dbj (6)

Three MPriors were used in this study including (1) the discrete uniform distribution (Liang et al. 2008; Ley & Steel 2012),

(2) the fixed model prior (Ley & Steel 2008), and (3) the random model prior (Zeugner 2011; Zeugner & Feldkircher 2015).
Along with the three MPriors, four g-priors were used in this study which includes: (1) the uniform information prior (UIP)
(Kass & Wasserman 1995), (2) the Bayesian Risk Information Criterion (BRIC) (Fernández et al. 2001a), (3) hyper-UIP
(Liang et al. 2008), and (4) the Empirical Bayes g-Local (EBL) (George & Foster 2000; Cui & George 2004) g-priors. A

total of 12 Bayesian frameworks were formulated based on these MPriors and g-priors. Further details about these Bayesian
frameworks can be found in Achieng & Zhu (2019).

PMP is used to compute the Bayesian regression coefficient as follows:

E(bjjMj, Z) ¼
X2k
j¼1

E(bjjYO, Mj, Z)� P(MjjYO) (7)

where E(bjjMj, Z) is the posterior mean expected value of the Bayesian regression coefficient, E(bjjYO, Mj, Z) is the esti-

mated coefficient bj from the model Mj, P(MjjYO) is the PMP of the model j, and Z [ {x1, x2, . . . , xk} is the covariates
matrix. Using Equation (7), the Bayesian averaged coefficients are computed for each of the k regressors. The Bayesian
recharge model is comprised of these k regressors with their corresponding computed regression coefficients.

2.5. Evaluation of the performance of the climate models and Bayesian recharge models

The evaluation of the performance of the climate models and the Bayesian frameworks is performed to understand the
strength of the respective models in simulating recharge, inform parameter tuning of the climate models, and evaluate the
://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2021.345/931432/jwc2021345.pdf
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advancement of the current versions of the climate models compared with the previous versions. In this study, four widely

used classical performance indices are used to assess the performance of the RCMs and the Bayesian recharge models: the
coefficient of determination (R2) (Gupta et al. 1998; Dawson et al. 2002), the root mean square error (RMSE) (Legates &
McCabe 1999), the Willmott’s index of agreement (d1) (Willmott 1982; Willmott et al. 1985), and the percent bias error

(PBIAS) (Gupta et al. 1998). The RMSE is used because it is a measure of goodness of fit between observation and modeled
recharge values. The PBIAS gives us the deviation of the modeled recharge values from the observation. The index of agree-
ment d1 characterizes how well the modeled recharge is in agreement with the observation.

The relative importance of the 10 climate models is evaluated both before (outside the Bayesian framework) and after

(inside the Bayesian framework) the climate models are averaged in a Bayesian framework. Evaluating the relative impor-
tance outside the Bayesian framework is done to ensure that Bayesian prior probability results into PMP values that are
consistent with the performance indices of the climate models that are obtained outside the Bayesian framework (Achieng

et al. 2019).

2.6. Sensitivity analysis of Bayesian recharge models

Bayesian recharge models are formulated by regressing the actual recharge on to the 10 RCMs’ predicted recharge. Sensitivity
of these recharge models, to the covariates, is assessed based on a leave-one-out approach. A climate model is left out of the
trained Bayesian recharge regression equation, and the recharge prediction of the resulting model is compared with the pre-

diction of the full model. The magnitude and direction of the change in recharge prediction, when one of the climate models
is left out, give an indication of the sensitivity of the trained Bayesian recharge model to the climate model in question. The
climate model which leads to the greatest change in recharge is the most important model in the Bayesian regression model.
Since averaging of the climate models within the Bayesian framework aims to use the relative importance of the climate

models in predicting the Bayesian-based recharge, the climate model that results in a relatively big change in predicted
recharge when left out of the Bayesian recharge model is the climate model that the recharge model is most sensitive to.

3. RESULTS AND DISCUSSION

3.1. Historical recharge

The results of historical annual recharge for both basins are shown in Figure 1. Recharge estimation with this method involves

the determination of both the recession index and the critical time for each basin. The recession index values for Cedar and
Rainy Basins were 19.78 and 73.94 days/log-cycle, respectively. Whereas the critical time values for Cedar and Rainy Basins
were 4.24 and 15.9 days, respectively. The Cedar River Basin seems to have a positive trend in annual recharge (of 3.4 mm/
year) over the 30 years, whereas the Rainy Basin has a negative trend in annual recharge (of �3.4 mm/year) over the same

period. This signifies an increase and a decline in annual recharge in Cedar and Rainy River Basins, respectively, during the
1968–1998 time period. Note that the long trend in an annual recharge observed in these basins is fairly weak since both
basins have a low R2 term value of 0.15. The Rainy River Basin has a long-term mean annual recharge of 225 mm, which

is larger than that of the Cedar River Basin of 191 mm. The relatively larger mean annual recharge in the Rainy River
Basin can be explained by the fact that this basin lies in the northern Minnesota – a region that receives relatively higher pre-
cipitation than the southern region where the Cedar River Basin is located. These recharge values are similar those obtained

in previous studies (Delin et al. 2007; Lorenz et al. 2007).

3.2. Recharge estimation from climate models

The scatterplots of monthly recharge for each RCM and observed data are plotted as shown in Figure 2 for both Cedar and
Rainy River Basins. Most RCMs (e.g. WRFG_ccsm, WRFG_cgcm3, and MM5I_ccsm) underestimated recharge, whereas a
few RCMs (e.g. ECP2_hadcm3and RCM3_cgcm3) overestimated recharge in both basins. Due to variability in partitioning
of the precipitation, the RCMs’ LSMs provide different values of the water balance components. As a result, there exists varia-

bility in recharge prediction among the RCMs as shown in Figure 2. For example, studies have found that NOAH LSM that is
used by most of the NARCCAP RCMs (such as ECP2_ gfdl, ECP2_hadcm3, MM5I_ccsm, MM5I_hadcm3, WRFG_ccsm, and
WRFG_cgcm3) underestimates evapotranspiration (Yang et al. 2011) and overestimates surface runoff (Niu et al. 2011)
because the frozen top soil layer in the NOAH model is relatively more impermeable than its counterpart LSMs, thus block-
ing infiltration and deep drainage while promoting soil evaporation. Other studies have found out that the Canadian Land
Surface Scheme (CLASS) (which is used by CRCM_ccsm and CRCM_cgcm3 climate models) has been found to
om http://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2021.345/931432/jwc2021345.pdf
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Figure 1 | Historical annual groundwater recharge in (a) Cedar and (b) Rainy Basins.
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underestimate surface runoff and drainage (Lohmann et al. 1998) and overestimates evapotranspiration (Liang et al. 1998).
On the other hand, the Biosphere-Atmosphere Transfer Scheme (BATS) is prone to overestimating surface runoff (Yang et al.
2011) and underestimating evapotranspiration (Dickinson & Henderson-Sellers 1988). The BATS is used by RCM3_cgcm3

and RCM3_gfdl RCMs.

3.3. Performance of the individual RCMs

Table 2 summarizes the performance indices of climate models in simulating the groundwater recharge. In the Cedar River
Basin, RCM3_gfdl is the best performing RCM with R2, RMSE, d1, and PBIAS of 0.98, 3.12 mm, 0.92, and 0.29%, respect-
ively. In the Rainy River Basin, RCM3_cgcm3 is the best performing RCM with R2, RMSE, d1, and PBIAS of 0.98,

4.04 mm, 0.93, and �8.79%, respectively. In both basins, CRCM_ccsm is the worst performing model. The poor performance
of the CRCM_ccsm model can be attributed to the fact that it uses the CLASS LSM which has been found to overestimate
both evapotranspiration (Yang et al. 2011) and surface runoff (Niu et al. 2011) and therefore to underestimate aquifer
recharge. Both evapotranspiration and surface runoff are key components of the water balance-based recharge estimation.

The value of R2 of the remaining RCMs ranges from 0.55 to 0.98, for the Cedar Basin, and 0.22 to 0.99, for the Rainy
Basin. The bias of the remaining climate models, which is represented with RMSE, is in the range of 4.5–19.1 mm in the
Cedar River Basin and 4.0–35.6 mm in the Rainy River Basin. The remaining RCMs predicted recharge with d1 values of

0.50–0.92 and 0.26–0.90 in Cedar and Rainy River Basins, respectively. Whereas the PBIAS values with which the remaining
RCMs predicted recharge range from �7.41 to þ1.09% in the Cedar Basin and �14.77 to �1.13% in the Rainy Basin. The
RCMs driven by ‘gfdl’ and ‘cgcm3’ GCMs (e.g. RCM3_cgcm3, RCM3_gfdl, and ECP2_gfdl) seem to perform better in
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Figure 2 | RCM predicted recharge for (a) Cedar and (b) Rainy Basins for 1968–1998.

Table 2 | Performance of the climate models at simulating groundwater recharge

Cedar Rainy

Climate models R2 (–) PBIAS (%) d1 (–) RMSE (mm) R2 (–) PBIAS (%) d1 (–) RMSE (mm)

CRCM_ccsm 0.552 �7.41 0.539 19.1 0.27 �14.8 0.353 43.2

CRCM_cgcm3 0.849 �3.48 0.841 9.64 0.46 �9.99 0.615 32.1

ECP2_gfdl 0.984 �0.82 0.921 2.61 0.91 �2.23 0.902 9.42

ECP2_hadcm3 0.879 �1.10 0.743 7.29 0.82 �1.13 0.814 12.9

MM5I_ccsm 0.888 �0.73 0.823 7.35 0.67 �6.50 0.776 22.2

MM5I_hadcm3 0.949 �0.14 0.848 4.52 0.86 �2.77 0.826 11.5

RCM3_cgcm3 0.924 1.09 0.887 5.52 0.99 �8.79 0.928 4.05

RCM3_gfdl 0.976 0.29 0.921 3.13 0.99 �7.82 0.939 3.58

WRFG_ccsm 0.569 �4.44 0.536 16.7 0.22 �6.79 0.266 35.6

WRFG_cgcm3 0.524 �1.66 0.504 16.6 0.37 �4.96 0.415 29.5
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estimating recharge in both basins. On the other hand, the RCMs driven by ‘ccsm’ GCMs (such as CRCM_ccsm and

WRFG_ccsm) have poor performance in recharge estimation.
3.4. Calibration/training of the Bayesian recharge models

The calibration of the Bayesian regression model is done by determining the optimal values of regression coefficients of each
of the 10 regressors. Each of the regression coefficient (of the calibrated Bayesian model) is obtained by averaging the values
of the regression coefficient of all the regression models that contain the regressor in question (within the 1,024 regression

model space) using the corresponding PMP values of the regression models. A total of 12 Bayesian recharge models are cali-
brated using a subset of 23-year data from the 31-year dataset from 1968 to 1990. Calibration is undertaken using monthly
data for the 1968–1990 period. Using the calibration dataset, the recharge predictions from the 10 climate models are aver-
aged in the Bayesian framework with the RORA-based recharge being used as the observed recharge. Once the optimal

Bayesian regression coefficients for the 10 RCMs are obtained, the calibrated Bayesian recharge model predictions are plotted
versus the measured recharge as shown in Figure 3. Results suggest a strong correlation between the calibrated recharge
models and the measured recharge. Nearly all the Bayesian recharge models have good performance with an R2 value of

0.998, an RMSE value of ,2 mm, d1 of .0.97, and PBIAS of ,|1%| in both Cedar and Rainy River Basins, as shown in
Figure 3 | Trained Bayesian models for (a) Cedar and (b) Rainy Basins using (1968–1990) data.
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Table 3 | Performance of the trained Bayesian recharge models (using 1968–1990 calibration data)

Cedar Rainy

Bayesian models R2 (–) RMSE (mm) d1 (–) PBIAS (%) R2 (–) RMSE (mm) d1 (–) PBIAS (%)

m.fixed_g.BRIC 0.998 0.858 0.974 �2.06� 10�10 0.996 1.64 0.974 �0.169

m.fixed_g.EBL 0.998 0.749 0.977 �2.75� 10�10 0.996 1.60 0.974 �0.363

m.fixed_g.hyper.UIP 0.997 0.926 0.970 �1.03� 10�9 0.996 1.66 0.973 �0.595

m.fixed_g.UIP 0.998 0.858 0.974 3.58� 10�9 0.996 1.64 0.974 �0.169

m.random_g.BRIC 0.998 0.898 0.972 2.06� 10�9 0.996 1.65 0.973 �0.195

m.random_g.EBL 0.998 0.749 0.977 1.10� 10�9 0.996 1.61 0.974 �0.364

m.random_g.hyper.UIP 0.998 0.898 0.972 �1.10� 10�9 0.996 1.71 0.972 �0.703

m.random_g.UIP 0.998 0.898 0.972 �1.10� 10�9 0.996 1.65 0.973 �0.195

m.uniform_g.BRIC 0.998 0.858 0.974 1.45� 10�9 0.996 1.64 0.974 �0.169

m.uniform_g.EBL 0.998 0.749 0.977 �1.45� 10�9 0.996 1.60 0.974 �0.363

m.uniform_g.hyper.UIP 0.997 0.926 0.970 3.92� 10�9 0.996 1.66 0.973 �0.595

m.uniform_g.UIP 0.998 0.858 0.974 2.68� 10�9 0.996 1.64 0.974 �0.169
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Table 3. The monthly recharge of the remaining 2-year dataset for 1991–1998 is used to validate the 12 Bayesian recharge
models.

3.5. Validation of the Bayesian recharge models

To ensure that the calibration of the Bayesian recharge models works effectively, the calibrated Bayesian recharge models
were validated. The monthly recharge of the 1991–1998 dataset is used to validate the 12 calibrated Bayesian recharge
models. The modeled recharge is plotted versus the RORA recharge as shown in Figure 4. Results suggest a strong agreement

between the Bayesian recharge models and the measured recharge at low recharge values and a weaker agreement at high
recharge values as shown in Figure 4. Overall, the validated recharge models have a good performance. The validated
Bayesian recharge models in the Cedar Basin have R2 of 0.62–0.68, RMSE of 10.1–11.1 mm, d1 of 0.70–0.72, and PBIAS

of 33–49% as shown in Table 4. On the other hand, the River Basin’s recharge models have relatively better performance
in the validation phase, with R2 of 0.66–0.76, RMSE of 8.7–10.3 mm, d1 of 0.81–0.83, and PBIAS of 12–25% as shown in
Table 4.

Even though there is no significant difference in performance among the 12 Bayesian recharge models, the EBL-based

Bayesian models (i.e. m.fixed_g.EBL, m.random_g.EBL, and m.uniform_g.EBL) performed slightly better than the rest of
the models in simulating recharge in the Cedar Basin during the validation phase, as shown in Table 4 and Figure 4(a). How-
ever, in the Rainy Basin, the hyper.UIP-based Bayesian models (i.e. m.fixed_g.hyper.UIP, m.random_g.hyper.UIP, and

m.uniform_g.hyper.UIP) seem to have slightly outperformed the rest of the Bayesian recharge models in the validation
phase, as shown in Table 4 and Figure 4(b). There is no significant difference in the Bayesian recharge models’ RMSE
values between Cedar and Rainy River Basins, as shown in Table 4. Therefore, the average deviation in Bayesian models

recharge estimation seems to be uniform.

3.6. Relative importance of the climate models outside and inside the Bayesian framework

The performance indices of the 10 climate models outside the Bayesian framework are summarized in Table 2. The models
with the strongest agreement with the observed recharge have the highest importance during averaging in the Bayesian frame-

work. As found earlier, RCM3_gfdl has the best performance indices outside the Bayesian framework for the Cedar River
Basin, and RCM3_cgcm3 is the best model for the Rainy River Basin. On the other hand, CRCM_ccsm performs the
worst for both Cedar and Rainy Basins.

After averaging the climate models within the Bayesian frameworks, the relative importance of the models (within the
framework) is evaluated based on their PIPs. The PIP values of the 10 RCMs are shown in Figure 5. The results suggest
that MM5I_ccsm and RCM3_gfdl are the most important RCMs in the Cedar Basin since these RCMs have PIP values
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Figure 4 | Validated Bayesian recharge models for (a) Cedar and (b) Rainy River Basins using 1991 and 1998 data.

Table 4 | Performance of the validated Bayesian recharge models using 1991–1998 data

Cedar Rainy

Bayesian models R2 RMSE (mm) d1 (–) PBIAS (%) R2 (–) RMSE (mm) d1 (–) PBIAS (%)

m.fixed_g.BRIC 0.941 11.6 0.680 44.6 0.933 13.7 0.794 13.3

m.fixed_g.EBL 0.917 9.01 0.757 34.0 0.937 14.9 0.783 25.2

m.fixed_g.hyper.UIP 0.943 13.0 0.647 49.0 0.917 14.1 0.801 12.9

m.fixed_g.UIP 0.941 11.6 0.680 44.6 0.933 13.7 0.794 13.3

m.random_g.BRIC 0.942 12.4 0.661 47.0 0.930 13.8 0.795 13.2

m.random_g.EBL 0.917 9.01 0.757 33.9 0.937 14.9 0.784 25.3

m.random_g.hyper.UIP 0.942 12.4 0.661 47.0 0.903 14.6 0.800 14.0

m.random_g.UIP 0.942 12.4 0.661 47.0 0.930 13.8 0.795 13.2

m.uniform_g.BRIC 0.941 11.6 0.680 44.6 0.933 13.7 0.794 13.3

m.uniform_g.EBL 0.917 9.01 0.757 34.0 0.937 14.9 0.783 25.2

m.uniform_g.hyper.UIP 0.943 12.953 0.647 49.0 0.917 14.1 0.801 12.9

m.uniform_g.UIP 0.941 11.636 0.680 44.6 0.933 13.7 0.794 13.3
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Figure 5 | PIP of trained Bayesian models for (a) Cedar and (b) Rainy Basins using (1968–1996) data.
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of close to 1 in nearly all the 12 Bayesian recharge models, as shown in Figure 5(a). Note that even though the MM5I_ccsm

does not have the strongest agreement with observed recharge outside the Bayesian framework, its performance indices
values suggest a good performance based on R2, RMSE, and d1. Beside the two best performing RCMs, WRFG_cgcm3
also has a good performance in the Cedar Basin with PIP values of 0.8–1 across the 12 Bayesian models, as shown in

Figure 5(a). The remaining seven RCMs for the Cedar Basin have a weak performance with PIP values of less than 0.5,
as shown in Figure 5(a). High variability of PIP values is also observed among the weak performing RCMs since the
PIP values are in the range of 0–0.25 across the 12 Bayesian recharge models for each of the weak performing RCMs.

CRCM_ccsm is also categorized as a weak performing model in the Cedar Basin since its PIP values from 7 of the 12 Baye-
sian models are less than 0.5. This is consistent with its performance indices values outside the Bayesian framework.
However, the EBL-based Bayesian models (i.e. m.fixed_g.EBL, m.random_g.EBL, and m.uniform_g.EBL) assign PIP
values of 1 to the weak performing CRCM_ccsm. This is due to the fact that EBL g-prior uses a local approach to compute

g-prior based on the F-statistics of the individual regression models within the Bayesian regression model space of 210 since
there are 10 RCMs. The rest of the Bayesian models use a global approach in which a common g-value across all the
regression models within the model space is applied.

In the Rainy River Basin, the best performing climate model is RCM3_cgcm3 since it has the PIP values of 0.75–1 across
the 12 Bayesian recharge models, as shown in Figure 5(b). This is followed by MM5I_ccsm, MM5I_hadcm3, and
WRFG_ccsm, which have PIP values of 0.5–0.7, as shown in Figure 5(b). The worst performing RCMs outside the Bayesian
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Figure 6 | Sensitivity of Bayesian recharge models to the RCMs in the Cedar River Basin.
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framework, CRCM_ccsm, also has the smallest PIP values (PIP value of ,0.5), as shown in Figure 5(b). Therefore, the PIP
values of the poor performing RCMs seem to be consistent with the models performance outside the Bayesian framework.
The remaining RCMs have weak performance with PIP values of ,0.5, as shown in Figure 5(b). The EBL-based Bayesian

models seem to exaggerate the PIP values in both best and worst performing RCMs in the Rainy Basin, as shown in
Figure 5(b). As explained earlier, the slightly larger PIP values observed in the EBL-based Bayesian models are attributed
to the fact that the g-value of the EBL prior is computed locally for each regression model, unlike the non-Empirical

Bayes g-Local (non-EBL)-based Bayesian models. The recharge estimations are relatively more uncertain in the Rainy
River Basin than in the Cedar Basin. This is observed in the relatively high coefficient of variation of recharge prediction
in the Rainy Basin of 1.42 than in the Cedar Basin of 1.23. The relatively high recharge prediction variability among the cli-
mate models explains the observed variability of PIP values across the 12 Bayesian recharge models for almost every climate

model, as shown in Figure 5(b). Even though RCMs’ PIP values are highly variable in the Rainy Basin, the Bayesian models
still give a clear direction of the recharge prediction performance strength of the RCMs within the Bayesian framework.
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Figure 7 | Sensitivity of Bayesian recharge models to the RCMs in the Rainy River Basin.
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3.7. Sensitivity of Bayesian recharge models to the climate models

Based on a leave-one-out technique, recharge prediction of the Bayesian recharge models was computed by leaving out one of
the 10 RCMs. The sensitivity of the Bayesian recharge models was expressed as both scatter plots (Figures 6 and 7) and mean
percent change (Figures 8 and 9) of Bayesian recharge prediction between the Bayesian recharge prediction and the leave-
one-out-based Bayesian recharge prediction. The computation of the mean percent change of recharge is shown in equation

A4 in the Appendix.
Figures 6 and 7 are plots of modeled recharge with one climate model left out versus the observed recharge for Cedar and

Rainy River Basins, respectively. In the Cedar River Basin, the Bayesian recharge models are most sensitive to WRFG_ccsm

since the largest deviation of the modeled recharge from the observed recharge is observed when WRFG_ccsm is left out of
the calibrated Bayesian recharge models, as shown in Figures 6(i) and 8(b). It is also observed that the changes in recharge
when WRFG_ccsm is left out the Bayesian models lead to the overestimation of recharge in the Cedar River Basin. The worst

performing model inside and outside the Bayesian framework, CRCM_ccsm, seems to produce low-to-moderate sensitivity, as
om http://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2021.345/931432/jwc2021345.pdf

er 2021



Figure 8 | Mean percent change (%) of Bayesian recharge models due to leave-one-out of the RCMs in the Cedar River Basin. (a) RCMs that
produce low-to-moderate sensitivity and (b) RCM that produces the highest sensitivity.
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shown in Figures 8 and 9 when left out of the Bayesian recharge model. However, this model is still important within the
Bayesian framework since leaving CRCM_ccsm out of the calibrated Bayesian models causes underestimation of recharge
in the Cedar Basin, especially at high recharge values, as shown in Figure 6(a). The only climate model that results in over-

estimation in recharge in the Cedar Basin, when the model is left out, is WRFG_ccsm, as shown in Figures 6(i) and 8(b). Note
that the overestimation of recharge is mostly significant at high recharge values when the WRFG_ccsm model is left out. An
insignificant change in recharge occurs when CRCM_cgcm3, ECP2_gfdl, ECP2_hadcm3, MM5I_hadcm3, or RCM3_cgcm3 is

left out, as shown in Figure 6.
Like the Cedar River Basin, leaving out ECP2_gfdl does not cause any significant change in recharge prediction by Baye-

sian recharge models in the Rainy Basin, as shown in Figure 7(c). The largest underestimation in recharge in the Rainy River
Basin occurs when RCM3_cgcm3 is left out, as shown in Figure 7(g). However, this underestimation does not deviate much

from the original prediction (when none of the RCMs is left out). Leaving out CRCM_ccsm produces the largest mean percent
change in recharge prediction, in the Rainy Basin, as shown in Figure 9(b). Therefore, in the Rainy Basin, Bayesian recharge
models are most sensitive to CRCM_ccsm. A slight overestimation and underestimation of recharge, in the lower and upper

recharge values, respectively, is observed when ECP2_hadcm3 is left out of the Bayesian recharge models, as shown in
Figure 7(d). This is also supported by the relatively moderate mean percent change (less than �20%) as shown in Figure 9(a).
No significant change in recharge is observed when WRFG_cgcm3 is left out, as shown in Figures 7(j) and 9(a).
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Figure 9 | Mean percent change (%) of Bayesian recharge models due to leave-one-out of the RCMs in the Rainy River Basin. (a) RCMs that
produce low-to-moderate sensitivity and (b) RCM that produces the highest sensitivity.
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In the Cedar River Basin, the Bayesian recharge models are most sensitive to RCM3_gfdl because RCM3_gfdl has the lar-
gest Bayesian regression coefficient value of an average of 0.56 mm/month. Therefore, removing RCM3_gfdl from the

calibrated Bayesian recharge models leads to the greatest change in the modeled recharge. Unlike the RCM3_gfdl, leaving
out WRFG_ccsm only produces strong sensitivity in EBL-based recharge models depicted by the relatively large mean per-
cent change of recharge. On the other hand, ECP2_gfdl has the smallest Bayesian regression coefficient value of

0.01 mm/month and thus leads to the smallest deviation when being left out of the calibrated Bayesian recharge models.
Within the calibrated Bayesian regression model, RCM3_cgcm3 has the largest regression coefficient – an average of

0.55 mm/month – across all Bayesian recharge models. Therefore, removing RCM3_cgcm3 from the Bayesian recharge

models causes the greatest change in the predicted recharge in the Rainy Basin. This is followed closely by CRCM_ccsm
which, unlike the RCM3_cgcm3, only produces high sensitivity in the EBL-based recharge models of the Rainy Basin. Con-
versely, since ECP2_hadcm3 has the smallest Bayesian regression coefficient of �0.01 mm/month and leaving it out leads to
the smallest change in the Bayesian modeled recharge in the Rainy River Basin. Except for WRFG_ccsm and CRCM_ccsm

models, leaving out the climate models from the Bayesian recharge models mainly causes underestimation in the recharge in
the Rainy River Basin. In the Cedar Basin, leaving out WRFG_ccsm from the Bayesian models could cause overestimation in
the recharge because WRFG_ccsm has a negative effect due to the relatively larger negative PBIAS of �6.79%. Moreover,

WRFG_ccsm has the largest negative regression coefficient of �0.22 mm/month. Therefore, removing WRFG_ccsm removes
the negative effect on the Bayesian recharge models and thus overestimation of the recharge in the Rainy River Basin. The
negative bias in recharge prediction can be explained by the tendency of WRFG_ccsm’s LSM (NOAH) to overestimate
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surface runoff due to the assumed frozen top soil layer in model physics (Niu et al. 2011), which makes it more impermeable

than its counterpart LSMs.

3.8. Implication of averaging climate model-based recharge in the Bayesian framework

Groundwater recharge replenishes aquifer storage, thus sustaining demand from the ever-increasing global population, alle-
viating potential environmental impact like land subsidence, and dampening of draining of nearby rivers that are
hydraulically connected to the aquifer. Traditional methods of estimating recharge (e.g. lysimeters and isotope techniques)

are often expensive and not sustainable in long-term recharge monitoring, especially in the face of climate change. Therefore,
climate models come in handy in monitoring groundwater recharge, not only in the current climate scenario, but also in
future climate scenarios. However, individual climate models often produce different recharge predictions. As a result,

most recharge studies often use model selection to select climate model that provides the closest recharge prediction.
Model selection leads to the elimination of the climate models whose predictions are relatively over- and underestimations
of the actual recharge. Climate models are costly to develop with respect to time, knowledge, and labor. Eliminating climate
models that do not give predictions that are close to the measured recharge is merely a waste of resources. In this study, out of

the 10 climate models, ECP2_hadcm3 and RCM3_cgcm3 would be selected since they provide recharge that is closest to the
observations. However, this will mean that the rest of the models are discarded. To harness the potential relative importance
of all the 10 models, we averaged their recharge predictions in a Bayesian framework. However, because Bayesian priors have

been found to impact posterior and thus predictions (Kavetski et al. 2006; Bastola et al. 2011), it is important to identify the
prior combinations (MPrior and g-prior) that would best average recharge predictions from climate models in a Bayesian fra-
mework. Averaging the recharge predictions in the Bayesian framework also allows us to determine the relative contribution

of the climate models to the Bayesian recharge model. As a result, we not only used all the climate models in producing
superior recharge predictions by identifying the most suitable Bayesian prior combinations for recharge but also provided
opportunity for improving future versions of these climate models based on their relative contribution to the Bayesian

recharge model.

4. CONCLUSIONS

Our study suggests that non-EBL-based Bayesian frameworks are suitable for averaging recharge from climate models within

a Bayesian framework. The performance of the climate models (in modellng recharge) inside the non-EBL-based Bayesian
framework is consistent with their corresponding performance outside the Bayesian framework. Inconsistency between cli-
mate models’ performance inside and outside the Bayesian framework arising from the EBL-based Bayesian frameworks can
be attributed to the fact that their g-parameter is regression model-specific, whereas a constant g-parameter is used (for all the

1,024 regression models) in the non-EBL-based priors. These observations are consistent with previous studies (e.g. Achieng &
Zhu 2019). However, since the previous study was on different regimes of streamflow, EBL priors was found to be just as
suitable for estimating low flows as the non-EBL-based priors (Achieng & Zhu 2019). Note that the basin size does not

seem to affect the choice of Bayesian framework when estimating the recharge in the Bayesian framework – unlike the
basin size-effect on the choice of Bayesian framework for streamflow in the previous study (Achieng & Zhu 2019). This
could be attributed to the fact that, unlike streamflow which is a surface hydrological process, recharge is a process that

occurs much slower than streamflow and the recharge is relatively less affected than the streamflow by many hydro-topo-
climatological factors. Therefore, the recharge is much stable and thus even though there was uncertainty in the climate
model-based recharge prediction, all the climate models underestimated the recharge. Either way, the climate models’ uncer-

tainty is evident in both streamflow and recharge. This can be contributed to the different model physics and assumptions that
are applied on the LSMs of the respective climate models and the different spatial resolution GCMs that provide the input to
the corresponding RCMs. The RORA method has been found to provide reliable recharge values. However, previous studies
have also found that the RORA method has some uncertainty due to many assumptions that the method has been developed

under (Delin et al. 2007; Lorenz & Delin 2007). Future studies should focus on characterizing the uncertainties from the
‘reference recharge’ and the climate models themselves. The relative strength of climate models at predicting groundwater
recharge can be harnessed by averaging their predictions within a Bayesian framework. However, it is important to use

the Bayesian framework with priors that result into PIP consistent with the performance of the respective climate models
outside the Bayesian framework because of difference in Bayesian frameworks with respect to prior probability of both Baye-
sian regression models and regression coefficients. In this study, we comprehensively evaluate the performance of
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groundwater recharge predictions from 12 different Bayesian frameworks. EBL-based prior is found to overestimate PIP

values of the poor performing climate models. Non-EBL-based priors result in PIP values that are consistent with the per-
formance of the climate models outside the Bayesian framework in the two case-study basins. Therefore, we recommend
the use of non-EBL prior-based Bayesian frameworks when averaging recharge predictions from climate models within

the Bayesian framework. Other conclusions can be summarized as follows:

• The choice of prior affects the suitability of Bayesian framework for averaging recharge from multiple climate models in a

Bayesian framework.

• Averaging recharge predictions from climate models within the Bayesian framework results in better recharge prediction
than that from any of the individual climate models.

• Nearly all the NARCCAP RCMs underestimate groundwater recharge.
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