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Abstract 
There have been numerous efforts to generate freely available climatic data-
sets for use in species distribution models, the most popular being the global 
climatic dataset known as WorldClim. The availability of such datasets is in-
valuable to scientists as many studies are performed in remote areas where no 
weather stations are found. However, many users do not critically assess the 
suitability of these datasets for their applications, and errors associated with 
global datasets are often assumed to be negligible. Understanding what a cli-
mate dataset can or cannot deliver requires the user to have a working know-
ledge of what the basic spatial climate-forcing factors are at the scale of 
his/her study, and to have a good understanding of the uncertainty in the da-
taset. In geographic studies, uncertainty is often described by the degree of 
error (uncertainty), or degree of accuracy (certainty) in data, and thematic 
uncertainty refers to the uncertainty in measures made for each variable, 
whereas temporal uncertainty refers to the uncertainty in time period 
represented by each variable. Here, we used climatic data from weather sta-
tions to investigate the climate-forcing factors in southern Kenya, and then 
used this weather station data to investigate the uncertainty in the WorldClim 
dataset. Results indicated that the nineteen core Worldclim variables, known 
as bioclimatic variables, accurately depicted the local variations in climate in 
the study area. However, whereas the monthly and seasonal temperature va-
riables represented the same time period in different locations, the same was 
not true for the monthly and seasonal precipitation variables. The onset of 
rains is a key biological indicator, and scientists studying phenomena tied to 
the onset of rains need to keep in mind the temporal variations represented in 
the WorldClim dataset. 
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1. Introduction 

The idea that variations in climate exert a strong influence on organisms’ distri-
bution is centuries old [1] [2] [3]. Climate has a direct influence on vegetation 
distribution as plants are unable to evade adverse climate by sheltering or migra-
tion, and are limited to areas with suitable climate [4] [5]. Animals respond to 
climate directly when they actively habituate specific climatic zones, or indirectly 
where an animal’s distribution positively correlates to vegetation that is only 
found within specific climatic zones [4]. Whereas literature on the effects of cli-
mate on organism’s distribution dates back to the 5th century, methods for gene-
rating climatic grid surfaces for use in species distribution models (SDMs) were 
first published in the mid-80s [3]. During this period advances in computer 
science enabled the creation of specialist tools [6] to study species distribution 
based on geocoded species distribution data and interpolated environmental va-
riables [3]. Though not often described as such, these early specialist tools were 
Geographic Information Systems (GIS), and many are now found as stand-alone 
software (e.g. ANUSPLIN), as extensions for popular GIS software packages (e.g. 
QGIS), or as spatial analysis tools in popular statistical software (e.g. CRAN R). 
The BIOCLIM package, conceived by Henry Nix [3] [7] [8], generates organ-
isms’ distribution maps by delineating areas suitable for habituation based on 
sampled species distribution data and interpolated climatic variables.  

There have been numerous efforts to generate freely available global and con-
tinental climatic datasets for use in SDMs [7] [8] [9]. Many of these datasets are 
based on the climatic variables conceived by Nix [3], the most popular being the 
global climatic dataset known as WorldClim [10] [11]. This dataset is free for 
download on the Internet (http://www.worldclim.org/), and the variables 
represented in the WorldClim dataset, known as bioclimatic variables, have been 
used in various ecological studies [12] [13] [14]. The availability of datasets such 
as WorldClim is invaluable to biological studies in areas where climatic records 
are sparse or non-existent. However, many users do not critically assess the sui-
tability of these datasets for their applications [15], and errors associated with 
global datasets are often assumed to be negligible. Whereas in the past large da-
tasets were produced by governments or large organizations with well laid out 
data standards [16], in recent years the Internet has enabled many 
non-traditional actors to publish and widely distribute spatial data, and the topic 
of uncertainty in these datasets has begun gaining prominence [17] [18]. Data 
quality is a very important factor in the processing of the spatial data, and the 
data needs of users vary from person to person, organization to organization, or 
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from application to application. Because of this it is the ultimate responsibility of 
the user to check the quality and suitability of data for their specific application. 
Spatial data which is suitable for one application need not be necessarily suitable 
for another [19]. Even in cases where data standards have been published, un-
derstanding what a climate dataset can or cannot deliver requires the user to 
have a working knowledge of what the basic spatial climate-forcing factors are at 
the scale of his/her study in order to correctly interpret trends and uncertainty in 
the data [15].  

In GIS, uncertainty is often described by the degree of error (uncertainty), or 
degree of accuracy (certainty) in data [6] [17] [19]. Errors are inevitable in any 
in any spatial data [19], and should be recognized as an inherent part of any spa-
tial dataset. Errors may creep in at any stage of data acquisition, transformation, 
and/or analysis [19]. Furthermore, GIS often deals with different layers of spatial 
data from numerous sources, collected using different sampling technics, geo-
coded using different map projections, and composed at different scales by the 
original authors. The combination of different data is one of the strengths of GIS 
[19], but for this very reason GIS models often have complex errors propagated 
from data collection through to analysis [19], and species distribution models 
are no exception. The correct conceptualization of uncertainties in individual 
data as well as the eventual propagation of uncertainties when the data is com-
bined for used in SDMs is a growing consideration when presenting results of 
modeling [19]. 

Uncertainty has been the subject of much research in GIS and Remote Sens-
ing, and is recognized as one of the priority areas in GIS research [17]. Various 
authors have looked at uncertainty as a result of processes used in generating 
spatial data [6] [17] [19], propagation of errors and uncertainty in processes 
used in spatial analysis [18] [19] [20], and uncertainty in the results of spatial 
models [21] [22]. Daly [15], in a review on the assessment of climatic datasets, 
discusses climatic datasets available to scientists and highlights the importance 
of familiarization with climate-forcing factors in one’s study area, familiarization 
with methods of spatial interpolation used to generate climatic data for one’s 
study area, and familiarization with errors inherent in the generated data.  

Here, we first asses the relationship between climate-forcing factors and the 
climate of southern Kenya by assessing the relationship between the distance of a 
weather station from the ocean, its altitude, and the climate recorded. It has long 
been reported that a correlation exists between the altitude of a station, the rain-
fall and temperatures recorded [15] [23] [24]. Reports also indicate a correlation 
between a weather station’s distance from large water bodied and the rainfall 
recorded [15] [25]. Second, we assess the thematic uncertainty, and finally the 
temporal uncertainty in the WorldClim data for southern Kenya. Thematic un-
certainty refers to the uncertainty in measures made for each bioclimatic varia-
ble, whereas temporal uncertainty refers to the uncertainty in time period 
represented by each bioclimatic variable. Thematic uncertainty is normally 



T. J. L. Wango et al. 
 

 

DOI: 10.4236/jgis.2018.106033 646 Journal of Geographic Information System 
 

represented by one or more statistical measures of error or accuracy such as the 
Standard Error of Estimates (SEE) [6] [17]. Whereas thematic uncertainty has 
received a lot of attention in literature [17], uncertainty in temporal representa-
tion of data, a key aspect when considering climatic data, has not [16]. Time is 
an important ecological consideration, and the onset of different seasons is often 
tied to environmental conditions that affect availability of food. In semi-arid 
areas such as Amboseli National Park in Kenya stress levels of baboons have 
been are known to vary with seasons which occur in different times of the year 
[26] [27]. Migration of wildebeest also seasonal [28], and migration routes are 
associated with different times of the year. Time is often not dealt with explicitly 
in geospatial databases, and temporal information is often omitted except in da-
tabases designed explicitly for historical or timelapse/time-series studies [16].  

2. Methodology 

Kenya, situated approximately between latitudes 4˚21'N and 4˚28'S and between 
longitudes 34˚ and 42˚E, shares her boarders with Tanzania, South Sudan, So-
malia, Ethiopia and Uganda, with the Indian Ocean on the south-eastern edge 
(Figure 1). The country lies within the Inter Tropical Convergence Zone 
(ITCZ), which determines the main features of annual rainfall and its seasonal 
variations [29] [30] [31]. Because of the local influence from the different geo-
graphic features, Kenya has diverse bioclimatic zones that include tropical, tem-
perate, arid, and desert. The Rift Valley, a low-lying area characterized by arid 
climate, is found between highlands characterized by tropical and temperate 
climate. Areas near large water bodies such as Lake Victoria and the Indian 
Ocean exhibit tropical monsoon climate. The country also has large areas that 
can be described as semi-arid, arid, and desert. The area adjacent to and south of 
the Equator, referred to here as southern Kenya, has numerous sites of interest 
to ecologists, and these include the Amboseli National Park, The Maasai Mara 
National Park, and Nairobi National Park among others. Many of these sites do 
not have weather stations within or nearby, and this means the best estimates for 
the climate of these areas are from interpolated data such as the WorldClim da-
taset. 

To investigate the correlation between climate and the geography of southern 
Kenya, climatic data consisting of monthly precipitation, average monthly 
minimum temperature, and average monthly maximum temperature for the 
years 2001 to 2012 were collected from 11 weather stations (Mombasa, Malindi, 
Voi, Makindu, Machakos, Narok, Nakuru, Meru, Laikipia, Garissa and Kisumu), 
all monitored by the Kenya Meteorological Department (KMD) (Figure 1). Fol-
lowing the description by O’donnel and Ignizio [7], nineteen core bioclimatic 
variables were calculated for each weather station. A raster with grid values de-
termined by the distance of each grid cell from the Kenyan coastline was gener-
ated using the Distance tool in ArcGIS 9.2 (ESRI, USA). Altitude data were 
downloaded from the United States Geological Survey (USGS) website  
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Figure 1. The map shows the distribution of Kenya Meteorological 
Weather Stations in southern part of the country.  

 
(https://earthexplorer.usgs.gov/ accessed 25th July 2017) and imported into 
ArcGIS 9.2 as a raster dataset. By identifying the grid value where a weather sta-
tion is located, the altitude of each weather station (ALT) and distance from the 
ocean of each weather station (DIST) were determined. Scatter analysis was then 
used to assess the relationship between the bioclimatic variables and the geo-
graphy of each weather station (ALT and DIST).  

The bioclimatic variables envisaged by Nix [3] highlight average annual cli-
matic patterns, extreme climatic monthly patterns, as well as extreme climatic 
seasonal patterns. The maximum temperature of the hottest month (BIO5), 
minimum temperature of the coldest month (BIO6), precipitation of the wettest 
month (BIO13), and precipitation of the driest month (BIO14) represent 
monthly climatic extremes. Seasonal bioclimatic variables described by Hijmans 
et al. [10] are calculated on a quarterly basis (i.e. the coldest three consecutive 
months, the hottest three consecutive months, the wettest three consecutive 
months, and the driest three consecutive months). The mean temperature of the 
wettest quarter (BIO8), mean temperature of the driest quarter (BIO9), mean 
temperature of the warmest quarter (BIO10), mean temperature of the coldest 
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quarter (BIO11), precipitation of the wettest quarter (BIO16), precipitation of 
the driest quarter (BIO17), precipitation of the warmest quarter (BIO18) and 
precipitation of the coldest quarter (BIO19) represent seasonal climatic ex-
tremes.  

To investigate the temporal uncertainty in the WorldClim dataset, we focused 
on generating time charts of the respective monthly and seasonal bioclimatic va-
riables. Literature indicates that Kenya experiences two wet seasons, with preci-
pitation experienced during the ‘‘long rains’’ (March-May) and also during the 
‘‘short rains’’ (October-December), with two dry seasons in between [29], [32]. 
To highlight the distribution of climatic extremes experienced at each weather 
station and provide a comparison with patterns in literature, the time charts 
were based on a hydrological calendar which starts in October and ends in Sep-
tember. 

To investigate thematic uncertainty in the WorldClim dataset, data from 
WorldClim version 2.0 [11] consisting of nineteen core bioclimatic variables 
were downloaded from the WorldClim repository (worldclim.org), and the score 
of each bioclimatic variable at each respective weather station was noted. As 
WorldClim 2.0 is generated from data collected between the years 1970 and 2000 
[11], we used the bioclimatic variables calculated from each KMD weather sta-
tion (years 2001 to 2012) as test data and calculated the Standard Error of Esti-
mates, and the correlation (R2) between the WorldClim dataset and the KMD 
data.  

3. Analysis 
3.1. Analysis of Climatic Patterns in Southern Kenya 

Analysis indicated that temperatures in southern Kenya were mainly influenced 
by the altitude of an area, with the average annual temperature (BIO1), maxi-
mum temperature of the warmest month (BIO5), minimum temperature of the 
coldest month (BIO6), mean temperature of the wettest quarter (BIO8), mean 
temperature of the driest quarter (BIO9), mean temperature of the warmest 
quarter (BIO10), and mean temperature of the coldest quarter (BIO11) all 
showing strong correlation with altitude (all R2 > 0.9) The maximum tempera-
ture of warmest month (BIO5) also showed strong correlation with the altitude 
(R2 = 0.7) (Figure 2). Mean diurnal temperature range (BIO2), isothermality 
(BIO3), temperature seasonality (BIO4), and temperature annual range (BIO7) 
all showed strong correlation with the distance from the ocean (all R2 > 0.6). 
Analysis indicated that the distance of a station from the ocean had an influence 
on the precipitation received; however the influence was not uniform and 
showed patterns interpreted to be the interplay between convectional and relief 
rainfall (Figure 3). 

Annual total precipitation (BIO12) showed good correlation to the distance of 
a station to the ocean (R2 = 0.54). The precipitation patterns indicated that the 
areas closer to the ocean received good precipitation and this dropped as one 
moved inland, and this can be interpreted as the influence of convectional rain-



T. J. L. Wango et al. 
 

 

DOI: 10.4236/jgis.2018.106033 649 Journal of Geographic Information System 
 

fall. After about 300 km, the precipitation received picked up and slowly in-
creased as one moves further inland, and this can be interpreted as the influence 
of relief rainfall. Precipitation of Driest Month (BIO14), Precipitation of Wettest 
Quarter (BIO16), Precipitation of Driest Quarter (BIO17), Precipitation of 
Coldest Quarter (BIO19) all showed similar patterns. Precipitation of Warmest 
Quarter (BIO18) exhibiting a linear pattern, with precipitation steadily rising as 
one moved away from the coastline. 

The precipitation seasonality (BIO15) showed good correlation with the dis-
tance from the ocean (R2 = 0.7), indicating that the further inland one moves, 
the smaller the variation between monthly precipitation recorded at weather sta-
tions. Notably, the precipitation of the wettest month (BIO13) showed poor cor-
relation with altitude (R2 = 0.14), and with the distance from the ocean (R2 = 
0.3). 
 

 
Figure 2. The scatter plots show the influence of the altitude on the temperatures 
experienced when calculation BIO1, BIO5, BIO6, BIO8, BIO19, BIO10 and BIO11. 
 

 
Figure 3. The scatter plot shows the influence of the distance from the ocean on 
precipitation. BIO12 is plotted against the primary vertical axis whereas BIO14, BIO16, 
BIO17 and BIO19 are plotted against the secondary vertical axis. 
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3.2. Analysis of Thematic Uncertainty in the WorldClim Dataset 

The WorldClim dataset showed strong correlation to the KMD dataset with six-
teen variables scoring correlation values ranging from 0.9 - 0.99. The remaining 
three variables scored correlation values ranging from 0.85 to 0.89. Error analy-
sis indicated that the WorldClim dataset estimated climatic conditions well, with 
low SEE values for all nineteen variables (Table 1). Cross-correlation analysis 
between WorldClim variables indicated that there was strong correlation be-
tween variables within the study area, more so for the first eleven bioclimatic 
temperature variables (BIO1 to BIO11). There was good cross-correlation be-
tween the bioclimatic precipitation variables (BIO12 to BIO19) (Figure 4). 

3.3. Analysis of Temporal Uncertainty 

Analysis of monthly data indicated that five stations received the most precipita-
tion in November (Voi, Garissa, Makindu, Machakos, and Meru), four received 
the most precipitation in April (Laikipia, Narok, Nakuru, and Kisumu), and two 
received the most precipitation in May (Mombasa and Malindi) (Figure 5).  

Analysis indicated that six stations received the least precipitation in February 
(Malindi, Mombasa, Garissa, Laikipia, Nakuru, and Kisumu), one received the 
least precipitation in July (Meru), and the remaining four received the least pre-
cipitation in July (Voi, Makindu, Machakos, and Narok). Three stations expe-
rienced their coldest month in January (Maru, Laikipia, and Nakuru), six expe-
rienced their coldest month in July (Mombasa, Garissa, Makindu, Machakos, 
Narok, and Kisumu), with one experiencing it’s coldest month in August (Voi) 
and one in September (Malindi). All weather stations experienced their hottest 
month between February and March. 

Analysis of the seasonal data indicated that five weather stations experienced 
their wettest quarter during the “short rains” between October and January (Voi, 
Garissa, Makindu, Machakos,v and Meru), with the rest experiencing their wet-
test quarter during the “long rains” between March and June (Malindi, Momba-
sa, Laikipia, Narok, Nakuru, Kisumu). Mombasa, Malindi, Laikipia, Nakuru and 
Kisumu experienced their driest quarter between December and February. Voi, 
Garissa, Makindu, Machakos, Meru and Narok experienced their driest quarter 
between June and September. All stations experienced their hottest season be-
tween January and April, and all stations experienced their coolest season be-
tween May and September (Figure 6). 

4. Discussion 
4.1. Climate Forcing Factors in Southern Kenya 

Correlation analysis between test KMD data and independent variables (DIST = 
Distance from the Ocean and ALT = Altitude) indicated that bioclimatic va-
riables representing temperature (BIO1 to BIO11) showed consistently strong 
correlation with ALT (all R2 > 9), and this was an indication that the altitude is a 
climate forcing factor to consider when assessing the climatic data. Generally,  
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Table 1. BioClimatic Variables. 

Code Description 
Standard Error of 

Estimates 
Correlation 
Coefficient 

BIO1 Annual Mean Temperature 3.41 1.00 

BIO2 Mean Diurnal Range 5.81 0.93 

BIO3 Isothermality 2.39 0.90 

BIO4 Temperature Seasonality 21.01 0.98 

BIO5 Max Temperature of Warmest Month 2.00 0.99 

BIO6 Min Temperature of Coldest Month 5.16 0.98 

BIO7 Temperature Annual Range 4.06 0.94 

BIO8 Mean Temperature of Wettest Quarter 3.58 0.99 

BIO9 Mean Temperature of Driest Quarter 7.93 0.91 

BIO10 Mean Temperature of Warmest Quarter 3.55 1.00 

BIO11 Mean Temperature of Coldest Quarter 3.48 0.99 

BIO12 Annual Precipitation 45.15 0.94 

BIO13 Precipitation of Wettest Month 11.28 0.91 

BIO14 Precipitation of Driest Month 3.21 0.86 

BIO15 Precipitation Seasonality 2.56 0.96 

BIO16 Precipitation of Wettest Quarter 23.19 0.96 

BIO17 Precipitation of Driest Quarter 9.09 0.93 

BIO18 Precipitation of Warmest Quarter 24.48 0.89 

BIO19 Precipitation of Coldest Quarter 9.51 0.97 

The table shows the code of each bioclimatic variable and gives a short description of the information cap-
tured by each variable. The table also shows the Standard Error of Estimates calculated for the WorldClim 
data using Kenya Meteorological Department data from the years 2001-2012 as test data, and the correla-
tion (R2) between the WorldClim data and the Kenya Meteorological Department data. 

 

 
Figure 4. The chart indicates the spatial distribution of bioclimatic variables based on 
monthly climatic extremes. 
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Figure 5. The chart indicates the spatial distribution of bioclimatic variables based on 
quarterly climatic extremes.  
 

 
Figure 6. The chart shows strong cross-correlation between bioclimatic variables. 
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the higher the altitude the cooler an area will be, and this coincided with other 
scientific studies [15]. Seven bioclimatic variables representing precipitation 
(BIO12, BIO14, BIO15, BIO16, BIO17, BIO18 to BIO19) showed good correla-
tion with DIST (all R2 ~0.5 to 0.7), with one bioclimatic variable showing poor 
correlation with either ALT or DIST (BIO13). For BIO13, the low correlation 
value indicates that local variation in precipitation patterns measured by this va-
riable are complex, and were not fully captured by the KMD weather stations 
sampled. Generally, areas closer to the ocean experienced high rainfall, and this 
steadily reduced as one moved inland. After 300 kilometers the precipitation 
steadily picked up and continued to steadily rise. These results indicated that the 
precipitation followed a global trend, and was not strongly influenced by local 
variations in altitude in the study area. 

4.2. Thematic Uncertainty 

It is often the case that where wildlife activity is vibrant there are no active 
weather stations, and this presents a challenge to ecologists studying in these 
areas. Southern Kenya, for example, has a sparse network of weather stations, 
most of which are located in irregularly spaced towns across the region. This 
presents a challenge for ecologists working far from town where the weather sta-
tions are located. For these scientists, interpolation is one option pursued in or-
der to get estimation of climatic conditions in their study sites. However, many 
scientists lack the requisite skills to perform interpolation. Compounding this 
problem, when spatial data are sparse the assumptions made about the underly-
ing variations that have been sampled and the choice of method to be used for 
interpolation and its parameters can be critical if one is to avoid misleading re-
sults (e.g. Burrow and McDonnell 1998). For this reason, grid climatic data 
found on the Internet offer an attractive alternative. Normally, the first concern 
is if the downloaded data gives close estimates to the conditions found on the 
ground, i.e. is the thematic uncertainty low. Results of analysis indicate that the 
WorldClim dataset gave close estimates of the average climatic conditions for 
the years 2001-2012, with low standard errors for all variables measured. This 
does indicate that the WorldClim dataset can be used to estimate climatic condi-
tions in areas where there are no weather records within southern Kenya.  

4.3. Temporal Uncertainty 

Seasonal bioclimatic variables described by Hijmans et al. [10] are calculated on 
a quarterly basis, and this fits well with seasonal patterns experienced in tempe-
rate climates where four distinct seasons (winter, summer, spring and fall) are 
well defined. Kenya experiences two wet seasons with two dry seasons in be-
tween, and analysis of the seasonal quarters as described in the WorldClim data 
(hottest quarter, coldest quarter, wettest quarter, and driest quarter) showed 
great temporal variation in seasonal precipitation patterns. In contrast, analysis 
showed stable seasonality in temperature patterns. Temporal patterns observed 
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in the wettest and driest quarters implied three temporal zones. Areas close to 
the Indian Ocean (Mombasa, Malindi, and Voi) received the most precipitation 
(wettest quarter) during April, May and June, the period commonly referred to 
as the “long rains”. Areas furthest from the Indian Ocean (Laikipia, Narok, Na-
kuru, and Kisumu) also received the most precipitation during March, April, 
May, and June. The areas in between (Garissa, Makindu, Machakos, and Meru) 
received the most precipitation between October and January, the period re-
ferred to as the “short rains”. The temporal distribution of the driest quarter also 
showed a mixed pattern with Mombasa and Malindi, the stations closest to the 
Indian Ocean, Nakuru and Kisumu, stations furthest from the Indian Ocean, 
experiencing their driest quarter between December and March. Voi, Garissa, 
Makindu, Machakos, and Meru experienced their driest season between June 
and September. Laikipia and Narok seeming out of place when compared to the 
stations closest to them. This implies that any reference to the “wettest season” 
describes one thematic phenomena that occurs at different times in different re-
gions of the country. Similarly, references to the “driest season” would have spa-
tio-temporal implications. For example, in Nakuru the “driest season” would re-
fer to the December-February season, whereas in Narok the “driest seasons” is 
experienced in July-September. Camberlin et al. [30] noted that the onset of the 
rainy season varied locally, and that where there was spatial coherence in preci-
pitation events there was none in the intensity of the precipitation experienced, 
and analysis in this work support these findings. 

The period described as the “hottest quarter” spanned four months through-
out the country, and was experienced between January and April. The period 
described as the coldest quarter was experienced between June and September in 
all except one weather station (Kisumu). This indicates that the temporal pattern 
in temperatures observed at each weather station was distinct and uniform 
across the country. Temporal patterns exhibited in the monthly data (hottest 
month, coldest month, wettest month, and driest month) also showed complex 
climatic patterns, more so in precipitation experienced across the country. All 
stations experienced their hottest month between February and March. Three 
stations (Meru, Narok, and Nakuru) experienced their coldest month in January, 
and this fell out of the period described as the “coldest quarter” in this work as 
well as in literature [32]. The rest of the stations experiencing their coldest 
month between July and September, and this coincided with the seasonal analy-
sis in this work and in literature. Voi, Garissa, Machakos, Makindu, and Meru 
experienced their wettest month in November, with the rest experiencing their 
wettest month between April and May. Malindi, Mombasa, Garissa, Laikipia, 
Nakuru, and Kisumu experienced their driest month in February, with the rest 
experiencing their driest month between June and July. As with the seasonal 
analysis, the monthly analysis showed that the precipitation patterns were com-
plex, and that different areas experienced heavy precipitation during different 
months as observed by Chamberlin et al. [30]. Analysis of the coldest month in-
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dicated that three stations (Meru, Laikipia and Nakuru) experienced their cold-
est month outside the coldest quarter (or cold season), and it can be assumed 
that the local geography had a strong influence on the temperatures experienced 
at these three stations in January. 

5. Conclusion 

In summary, we can conclude that the variations in climate observed in southern 
Kenya were influenced by the altitude the distance from the Indian Ocean, and 
that the influence of these climate forcing factors was well captured in the 
WorldClim dataset. Whereas the patterns in temperature, mainly influenced by 
altitude, showed strong local variation, patterns in precipitation showed global 
trends and were mainly influenced by the distance of an area from the ocean. 
The study concluded that the WorldClim dataset closely estimated average cli-
matic conditions found in southern Kenya, and that thematic uncertainty was 
not a major concern when using the WorldClim dataset. However, the temporal 
uncertainty in the dataset, more so for bioclimatic variables that measure differ-
ent aspects of precipitation, would be a concern for some. Scientists hoping to 
use the WorldClim dataset for species distribution models should carefully con-
sider both the temporal characteristics of their study species and the temporal 
uncertainty of the WorldClim dataset before using the WorldClim dataset in 
their respective studies. Activities that are closely coupled with seasonality in 
organisms include migration and dispersal, and these activities often have an in-
fluence on the distribution of different species. Migration, describes as a seasonal 
long distance movement of individual or groups, is often tied to seasonal trig-
gers. Dispersal in animals is described as the movement from one area to a 
breeding site, and is often tied to seasonal triggers. In plants seed dispersal and 
germination are closely related to seasonality, and only occur when climatic 
conditions are favorable. When studying a species that is found in a wide geo-
graphic area, the different patterns observed in precipitation patterns indicate 
that key behavior that is triggered by seasonal changes may occur at different 
times in different areas, and this may not be clear when using the WorldClim 
dataset. 
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