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Abstract 
The recent global pandemic of coronavirus (COVID-19) has had an enor-
mous impact on the financial markets across the world. It has created an un-
precedented level of risk uncertainty, prompting investors to impetuously 
dispose of their assets leading to significant losses over a very short period. In 
this paper, the conditional heteroscedastic models and extreme value theory 
are combined to examine the extreme tail behaviour of stock indices from 
major economies over the period before and during the COVID-19 pandemic 
outbreak. Daily returns data of stock market indices from twelve different 
countries are used in this study. The paper implements a dynamic method for 
forecasting a one-day ahead Value at Risk. As a first step, a comprehensive 
in-sample volatility modelling is implemented with skewed Student’s-t dis-
tribution assumption and their goodness of fit is determined using informa-
tion selection criteria. In the second step, the VaR quantiles are estimated 
with the help of conditional Extreme Value Theory framework and then used 
to estimate the out-of-sample VaR forecasts. Backtesting results suggest that 
the conditional EVT based models consistently produce a better 1-day VaR 
performance compared with conditional models with asymmetric probability 
distributions for return innovations and maybe a better option in the estima-
tion of VaR. This emphasizes the importance of modelling extreme events in 
stock markets using conditional extreme value theory and shows that the 
ability of the model to capture volatility clustering accurately is not sufficient 
for a correct assessment of risk in these markets. 
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1. Introduction 

Measurement of market risk that arises from movements in stock prices, interest 
rates, exchange rates and commodity prices is a focal point in the practice of fi-
nancial risk management. This measurement relies heavily on the use of statis-
tical financial models. These models attempt to capture the stylized facts that 
determine price fluctuations and sensitivities in financial markets. The recent 
COVID-19 pandemic fears, uncertainties and related confinement measures ac-
celerated an unprecedented contraction in economic activities. The global fi-
nancial markets reacted to the pandemic with a plunge in stock market indices 
and extreme volatility in equity prices due to panic sell-outs of equities out of 
fear. For example, on 12th March 2020 Dow Jones plunged 10%, experiencing 
its sharpest decline since the Black Monday crash in 1987. Also the S&P 500 
index plunged 9% to close in the bear market territory, thus officially ending 
the bull market that began in 2009 during the throes of the financial crisis. The 
Asia-Pacific stock markets closed down (with the Nikkei 225 of the Tokyo Stock 
Exchange also falling to more than 20% below its 52-week high) and European 
stock markets closed 11% lower in their worst one-day decline in history on co-
ronavirus fears1. At the same time, the economic turmoil associated with the 
COVID-19 pandemic has also had wide-ranging and severe impacts upon other 
sectors of the financial markets, including bond and commodity (including 
crude oil and gold) markets. The collapse of crude oil prices was one of the big-
gest price shocks the energy market has ever experienced since the first oil shock 
of 1973. The effects upon markets are part of the coronavirus recession and 
among the many economic impacts of the pandemic. 

One of the most established and widely used standard measures of exposure to 
market risk is the Value at Risk (VaR). It calculates the worst loss that might be 
expected of an asset or portfolio of assets at a given confidence level over a given 
period under normal market conditions. It gives a fixed probability (or confi-
dence level) that any losses suffered by an asset or portfolio over the holding pe-
riod will be less than the limit established by VaR. VaR can be derived as a quan-
tile of an unconditional distribution of financial returns, but it is preferable to 
model VaR as the conditional quantile so that it captures the time-varying vola-
tility inherent to financial markets [1]. The popularity of VaR as a risk measure 
can be attributed to its ability to provide an aggregate measure of risk; a single 
number that is related to the maximum loss that might be incurred on a position, 
at a given confidence level. 

To estimate market risk measures, several methodologies have been developed; 
the non-parametric approach (for example, historical simulation), the fully pa-
rametric approach (for example, based on an econometric model) and the 
semi-parametric method (for example, extreme value theory, filtered historical 
simulation and CAViaR method). However, over the last decade, conventional 
VaR models have been subject to massive criticism, as they failed to predict the 

 

 

1https://www.cnbc.com/2020/03/12/stock-market-today-live.html.  
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huge repetitive losses that devastated financial markets during the 2007-2008 
global financial crisis. These VaR models normally assume that the asset returns 
follow a normal distribution and thus ignoring the fat-tailed properties of actual 
returns. This underestimates the likelihood of extreme price movements. Thus, 
VaR may ignore important information regarding the tails of the underlying 
distributions. On the other hand, the concept of VaR as a risk measure has one 
disadvantage for measuring extreme price movements. The tail risk of VaR 
emerges since it measures only a single quantile of the return distributions and 
disregards any loss beyond the VaR level. Hence, when financial markets expe-
rience volatile behaviour and extreme price movements, the conventional me-
thods are not capable of appropriately measuring the risk. Since VaR estimations 
are only related to the tails of a probability distribution, techniques from Ex-
treme Value Theory (EVT) may be particularly effective. Therefore, emphasis 
and focus are now placed on adequate modelling of extreme quantiles for the 
conditional distribution of financial returns rather than the entire distribution. 
EVT has been proved to be successful in VaR estimation [2]. 

The Extreme Value Theory approach focuses on limiting the distribution of 
extreme returns observed over a long period, which is essentially independent of 
the distribution of the returns themselves. There two main models for Extreme 
Value Theory; the Block Maxima (BM) and the Peaks-Over-Threshold (POT) 
model. In the POT model, extreme values above a high threshold are analysed 
using a Generalized Pareto Distribution (GPD). A difficulty finding the optimal 
threshold for GPD fitting is encountered in this method. Threshold choice in-
volves balancing bias and variance. The threshold must be sufficiently high to 
ensure that asymptotic underlying the GPD approximations is reliable, thus re-
ducing bias. However, the reduced sample size for high thresholds increases the 
variance of the parameter estimates [3]. 

EVT provides a theoretical framework and practical foundation for statistical 
models describing the tail behaviour of extreme observations. Unlike the GARCH- 
family models, EVT models do not consider the entire conditional distribution 
of financial returns. Instead, they focus directly on the tails of the sample distri-
bution in order to account for the heavy tails. Therefore, EVT potentially per-
forms better than other approaches in terms of predicting unexpected extreme 
price changes, especially in volatile financial markets. However, applying EVT 
directly to return series is inappropriate as the current volatility background is 
not taken into consideration and the models deal with independently and iden-
tically distributed (i.i.d.) random variables. To overcome this shortcoming, McNeil 
and Frey [4] introduced a two-stage hybrid approach that combines the Genera-
lized Autoregressive Conditional Heteroscedasticity (GARCH) model and Ex-
treme Value Theory (EVT), referred to as Conditional Extreme Value Theory 
(CEVT) model or GARCH-EVT model, which addresses the fat tails phenome-
non and stochastic volatility. The GARCH-EVT model captures the important 
stylized facts exhibited by most financial time series, such as stochastic volatility, 
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volatility clustering and leptokurtosis of conditional return distributions, and 
quickly adapts to recent market movements. 

In econometrics and finance, implementing risk measurement methodology 
based on the theory of extremes is an important area of research. To this day, 
many researchers have investigated the estimation of Value at Risk (VaR) and 
Conditional VaR (CVaR), with the help of Extreme Value Theory. Most studies 
have VaR as their primary measure of interest. McNeil and Frey [4] showed that 
the application of combined GARCH and EVT results in a more accurate esti-
mation of Value at Risk as compared with EVT methods and GARCH-type 
models. Several researchers have used the McNeil and Frey [4] approach in es-
timating market risk. Fernandez [5] showed that EVT outperforms a GARCH 
model with normal innovations by far and that it provides similar results to a 
GARCH model with Student-t innovations, as long as these innovations arise 
from an asymmetric and fat-tailed distribution. Gencay and Selcuk [6] showed 
that at the 99th and higher quantiles the Generalized Pareto Distribution model is 
superior to five other methods used in the study in terms of VaR forecasting. [7] 
[8] [9] and [10] among others, have demonstrated that the methods for estimat-
ing VaR based on modelling extreme observations measure financial risk more 
accurately compared to the conventional approaches. 

In recent studies in finance VaR is be estimated more accurately using the 
conditional-EVT approach especially in modelling the distribution of extreme 
events and estimating extreme tail risks than the conventional models. Moreover, 
in some other studies, the conditional Value-at-Risk has been used as the risk 
measure, and researchers have shown that theoretically and empirically, using 
EVT contributes to a more precise estimation of the Value-at-Risk. Researchers 
have also compared the Extreme Value Theory models with other conventional 
methods, such as Historical Simulation (HS), Filtered Historical Simulation (FHS) 
and the GARCH models, in the estimation of Value at Risk, and have shown that 
conditional EVT models perform better. 

Among the many studies on estimating the Value-at-Risk on the financial 
market with the conditional-EVT model, is the work of Soltane et al. [11] that 
combines Extreme Value Theory (EVT) and GARCH model to estimate VaR for 
the Tunisian Stock Market. They observe that GARCH-EVT-based VaR approach 
appears more effective and realistic than conventional methods. Singh et al. [12] 
applied univariate extreme value theory to model extreme market risk for the 
ASX-All Ordinaries (Australian) index and the S&P-500 (USA) Index. Results 
from backtesting showed that conditional-EVT based dynamic approach out-
performs GARCH(1, 1) model and RiskMetrics in estimating VaR forecasts. 
Karmakar and Shukla [13] investigated the relative performance of Value-at-Risk 
(VaR) models using daily share price index data from six different countries 
across Asia, Europe and the United States. The empirical results showed the su-
perior performance of Conditional EVT model in estimating and forecasting 
VaR measures compared with other competing models. Totić and Božović [14] 
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modelled the tail behaviour of returns using conditional Extreme Value Theory 
and results from backtesting showed that a conditional EVT-based model pro-
vides a more reliable VaR forecasts than the alternative models in all the six 
markets. Zhang and Zhang [15] also showed that the exponential GARCH 
(EGARCH) model with Generalized Error Distribution (GED) combined with 
the EVT approach does very well in predicting a critical loss for precious metal 
markets. Omari et al. [16] used the conditional extreme value theory to estimate 
Value at Risk of daily currency exchange rates and their results show that the 
conditional EVT-based model provides a more accurate out-of-sample VaR 
forecasts in estimating the currency tail risk. Stoyanov et al. [17] also investi-
gated the out-of-sample behaviour of 41 equity market indices using the 
GARCH-EVT model and empirical results show that GARCH-EVT model per-
formed better in estimating Value-at-Risk and Expected shortfall at 1% tail 
probability. Tabasi et al. [18] showed that the GARCH-EVT model outperforms 
the simple GARCH model with Student’s t and normal distributions for resi-
duals. 

The application of GARCH-EVT model in empirical research requires the se-
lection of an appropriate threshold level which separates tails of distribution 
from its middle part. The choice of threshold level is ambiguous, but critical in 
the estimation of Generalized Pareto distribution’s parameters and the corres-
ponding accuracy of value-at-risk. The standard practice is to adopt as low a 
threshold as possible, but there is a trade-off between variance and bias. If a 
threshold is too low, the asymptotic basis of the model is violated leading to high 
bias. However, too high a threshold generates insufficient excesses with which 
the model is estimated, leading to high variance. Most authors preferred to select 
a threshold as a fixed quantile of the data set, instead of determining a threshold 
value at each step, especially when they use a moving window of observation to 
find out-of-sample VaR estimates. [19] [20] and [21] chose either the 90th or 95th 
quantiles of the loss distribution as a threshold. In contrast, [6] [11] [22] used a 
less conservative but fixed thresholds. 

Recent advances in the financial econometrics and applications of extreme 
value theory to finance have led to the development of several models. These 
models are used in estimating and forecasting tail-related quantities of the asset 
returns’ conditional distribution. Some of the recent developments include; Huang 
et al. [23] who proposed a new approach to extreme value modelling for the fo-
recasting of Value-at-Risk (VaR). In particular, both the block maxima and the 
peaks-over-threshold methods are generalized to exchangeable random se-
quences that cater for the dependencies such as serial autocorrelations of finan-
cial returns observed empirically. The results of VaR forecasts show that the 
conditional GARCH-EVT model performs better compared to the unconditional 
extreme value theory (EVT) approach. [1] proposed a new self-exciting proba-
bility peaks-over-threshold (SEP-POT) model for forecasting extreme loss proba-
bility and the value at risk. The results from backtesting of SEP-POT value at risk 



C. Omari et al. 
 

 

DOI: 10.4236/jmf.2020.104034 574 Journal of Mathematical Finance 
 

(VaR) forecasts on seven stock indices favoured the SEP-POT model as an al-
ternative for forecasting extreme quantiles of financial returns. There are several 
reviews on applications of conditional EVT in finance for instance [20] [24]. 
Echaust and Just [25] used four different optimal tail selection algorithms, that is, 
the path stability method, the automated Eye-Ball method, the minimization of 
asymptotic mean squared error method and the distance metric method with a 
mean absolute penalty function, to estimate out-of-sample Value at Risk (VaR) 
forecasts and compare them to the fixed threshold approach. 

In this study, the conditional VaR at a 1-day horizon is estimated based on 
conditional Extreme Value Theory (conditional-EVT) approach and conven-
tional GARCH-type models assuming asymmetric innovations distributions. We 
take into account volatility clustering and leverage effects in return volatility by 
using the GARCH, EGARCH, GJRGARCH, CSGARCH and APARCH models 
under different probability distributions assumed for the standardized innova-
tions: Gaussian, Student-t, skewed Student-t and generalized error distribution. 
The two-step procedure of [4] fits a generalized Pareto distribution to the ex-
treme values of the standardized residuals generated by an AR(1)-EGARCH(1, 1) 
model. Then, we compare the out-of-sample one-step-ahead value at risk (VaR) 
forecasts the performance of all these models before and during the COVID-2019 
pandemic period using daily data. For VaR evaluation, the most widely used 
backtesting procedures, Unconditional Coverage (UC) and Conditional Cover-
age (CC) tests are used. The empirical analysis is based on the daily log-returns 
of twelve international stock market indices for the period between January 
2006-July 2020 (that is, S&P 500 (US; SPX), FTSE 100 (UK; FTSE), DAX 30 
(Germany; GDAXI), CAC 40 (France; FCHI), SMI (Switzerland; SMI), Euro 
Stoxx 50 (Europe; STOXX 50), S&P/TSX Composite (Canada; GSPTSE), NIKKEI 
225 (Japan; N225), KOSPI 200 (South Korea; KS11), Hang Seng (Hong Kong; 
HSI), Shanghai Composite (China, SSE), Sensex (India, BSESN)). The daily log 
returns for the equity market were calculated from the adjusted daily closing 
prices downloaded from https://markets.businessinsider.com/indices. 

This work provides an empirical study of conditional extreme value theory 
and contributes to the literature on the estimation of the tail risk of stock mar-
kets in four ways. First, several GARCH-type volatility specifications in an EVT 
model to take into account volatility clustering and asymmetric returns are used. 
Secondly, conditional EVT models that incorporate conditional models with 
asymmetric probability distributions used in the financial literature to calculate 
VaR are compared. Thirdly, VaR over the 1-day horizon for market risk man-
agement is calculated. Finally, we focus on the accuracy of our risk models for 
VaR estimation during pre-pandemic and during pandemic periods as well as 
using different significance levels. The empirical results indicate that the condi-
tional EVT based models consistently produce a better 1-day VaR performance 
compared with conditional models with asymmetric probability distributions for 
return innovations and maybe a better option in the estimation of VaR. 

The rest of the paper is organized as follows. Section 2 provides the metho-
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dological details. It presents the estimation of the GARCH models with the se-
lected innovations distribution assumptions, conditional GARCH-EVT model-
ling framework including the Peaks Over Threshold (POT) model, the Quasi 
Maximum Likelihood (QML) and describes the tail selection problem in this 
model, VaR estimation and backtesting procedures. Section 3 presents data and 
some preliminary summary descriptive statistics. Section 4 presents estimation 
results and empirical results from backtesting, while Section 5 gives a conclusion 
the paper. 

2. Methodology 
2.1. Value at Risk 

Value-at-Risk (VaR) is a popular approach to measuring market risk. It is de-
fined as the maximum loss that will be incurred on an asset with a given level of 
confidence over a specified period under normal market conditions. Given some 
confidence level ( )0,1p∈ , the VaR at a confidence level p is given by the smal-
lest number l such that the probability that the expected loss L exceeds l is no 
larger than ( )1 p− . That is,  

( ){ } ( ){ }VaR inf : 1 inf :p Ll P L l p l F l p= ∈ > ≤ − = ∈ ≥        (1) 

Let tr  denote the return on assets at time t. The one-day-ahead Value-at-Risk 
(VaR) for holding a long trading position at p level of significance, denoted as 

( )1VaR p
t tr+  is defined as  

( )1 1VaR |p
t t tP r p+ +≤ =                      (2) 

where t  is the information set available at time t. In this definition VaR is the 
pth conditional quantile of the return distribution. For a short trading position 
VaR is the (1 − p)th conditional quantile of the return distribution.  

( )1 1VaR | 1p
t t tP r p+ +> = −                    (3) 

2.2. The GARCH Model 

The Generalized Autoregressive Conditional Heteroskedasticity models are the 
most commonly used in the literature for modelling volatility and estimating 
Value-at-Risk. Let tr R∈  be the percentage log-returns of the financial asset 
(stock index) of interest at time t. Then  

,t t t tr zµ σ= +                          (4) 

where tµ  denotes the conditional mean, tσ  a conditional volatility process 
and tz  is a zero-mean white noise. The mean component of daily log returns 

tr  is assumed to be represented by an AR(1) model. The GARCH-type models 
are used in modelling conditional volatility dynamics in log-returns of financial 
time series. There are several representations of common GARCH-type models 
but we consider the ones that follow the above specification in Equation (4); 
however, in each case, the volatility process tσ  is different. For brevity, all of 
the models will be restricted to a maximum order of one. In addition, for each 
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GARCH-type model, the innovation process tε  is allowed to follow either the 
normal distribution or Student’s-t distribution or skew Student’s-t distribution 
or skew generalized error distribution. 

The standard GARCH(1, 1) model introduced by Bollerslev [26] is given as:  
2 2 2

1 1 1 1t t tσ ω α ε β σ− −= + +                        (5) 

where 0ω > , 1 0α ≥ , 1 0β ≥  and ( )1 1 1α β+ < . The GARCH(1, 1) model which 
is the most commonly used in financial literature and the main feature of the 
model is that it captures volatility clustering in the data. The “persistence’’ pa-
rameter (which accounts for the amount of volatility clustering captured by the 
model) for this model is 1 1α β+ . The parameter restrictions are necessary for 
the model in Equation (5) to be weakly stationary and the unconditional va-
riance is given by ( )( )1ω α β− + , thus higher order moments exist. 

Since financial returns tend to display leverage effects, which is the negative 
correlation between returns and its volatility, the asymmetric GARCH models 
are introduced to address the problem. 

The exponential GARCH (EGARCH) model of Nelson [27] is defined as:  

( ) ( )2 2
1 1 1 1 1 1 1log loge t t t t e tz z E zσ ω α γ β σ− − − −= + + − +          (6) 

where the coefficient 1α  captures the sign effect, and 1 0γ >  the size of leve-
rage effect. The persistence parameter for this model is 1β . 

The Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model of Glosten 
et al. [28] models positive and negative shocks on the conditional variance asym-
metrically via the use of the indicator function I. The GJR-GARCH(1, 1) model 
is given as:  

2 2 2 2
1 1 1 1 1 1 1,t t t t tIσ ω α ε γ ε β σ− − − −= + + +                  (7) 

where 1γ  now represents the “leverage” term. The indicator function I takes on 
value of 1 for 1 0tε − ≤  and 0 otherwise. The persistence depends on the para-
meter 1γ , through 1 1 1α β γ κ+ + , where κ  denotes the expected value of the 
standardized residuals. 

The asymmetric power ARCH (APARCH) model of Ding et al. [29] allows for 
both leverage and the Taylor effect, named after Taylor [30] who observed that 
the sample autocorrelation of absolute returns was usually larger than that of 
squared returns. The APARCH(1, 1) model can be expressed as:  

( )1 1 1 1 1 1,t t t tz z
δδ δσ ω α γ β σ− − −= + − +                 (8) 

where Rδ +∈ , is a Box-Cox transformation of tσ , and 11 1γ− < <  is the coef-
ficient in the leverage term. The persistence parameter is equal to 1 1 1β α κ+ , 
where 1κ  is the expected value of the standardized residuals under the Box-Cox 
transformation of the term, which includes the leverage parameter 1γ . 

The component standard GARCH (CS-GARCH) model of Engle and Lee [31] 
decomposes the component of the conditional variance so as to investigate the 
long and short-run movements of volatility. Let tq  represent the permanent 
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component of the conditional variance, the component model can be written as  

( ) ( )2 2 2
1 1 1 1 1 1t t t t t tq z q qσ α β σ− − − −= + − + −                (9) 

( )2
0 1 1 1t t t tq q zα ρ φ σ− − −= + + −  

where effectively the intercept of the GARCH model is now time-varying fol-
lowing first order autoregressive type dynamics. 

For a better fit of the GARCH models, the standardised Student’s-t distribu-
tion, skewed Student’s-t distribution and Generalized Error Distributions (GED) 
are instead of the normal distribution, since returns exhibit fat tails and skew-
ness. The standardized Student’s t-distribution is given by:  

( )
( )

1
2 2

1
2, 1

22
2

t
tf

νν
ε

ε ν
ν νν

+ − 
 

+ Γ    = + −   Γ − 
 

π
             (10) 

with degrees of freedom parameter 0ν > , controlling the thickness of the tail, 
( ) 1

0
e dz xz x x

∞ − −Γ = ∫ . 
An alternative distribution for modelling skewed and heavy-tailed data is the 

skewed Student’s t-distribution proposed by Hansen [32]. The distribution as in 
Zhu and Galbraith [33] is given by  

( )
( )

( )

( ) ( )

( )

1 22

1 22

1 11 ,
2

; , , , ,
1 11 ,

2 1

v

v

xK v x
v

f x v
xK v x

v

µ µ
σ ασ

µ α µ σ
µ µ

σ α σ

− +

− +

  −  + ≤      = 
   − + >   −    

   (11) 

This parametrization of the distribution is equivalent to those of [32] and 
[34]. 

The Generalised Error Distribution (GED) is given by  

( ), , , e
12

x

f x

βµ
αβµ α β

α
β

 − 
−  
 =

 
Γ 
 

                 (12) 

Using the Quasi-Maximum Likelihood (QML), the parameters ( ), , , ,µ ω α γ β  
may be estimated simultaneously by maximizing the log likelihood. The log- 
likelihood function is obtained under the assumption that the random error 
term follows the standardized Student’s t-distribution is given by  

( ) ( )( )
2

2

1 1log log 2 log
2 2 2

1 1log 1 log
2 2 2

t

t
t

l ν νν

εν σ
ν

+   = Γ − − Γ   
   

 +
− + − 

− 

πθ
          (13) 

where ( ), , , ,µ ω α γ β=θ  is the unknown parameters in GARCH-type models 
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to be estimated. Solving the first-order conditions of the log-likelihood function 
with respect to the parameters 1 1 1, , ,ω α γ β , a specified optimal GARCH-type 
model is obtained. The standardized residuals tε  of the fitted GARCH-type 
model can also be extracted. Next, the forecasts of the conditional mean 1tµ +  
and variance 1tσ +  are obtained using the estimated parameters from QML 
above. To this extent, one-step ahead forecasts of the conditional variance of re-
turns are recursively obtained as ( )2 2

1 1ˆ |t t tE Fσ σ+ += . 
The one-step-ahead conditional variance 2

1ˆtσ +  forecast for the GARCH(1, 1), 
EGARCH(1, 1) GJR-GARCH(1, 1), APARCH(1, 1) and CS-GARCH(1, 1) re-
spectively, is:  

( ) ( ) ( )

( )
( ) ( )

2 2 2
1 1 1

2 2
1 1 1 2 1

2 2 2 2
1 1 1 1

1 1 1

2 2 2
1 1 1 1

ˆˆ ˆˆ
ˆˆ ˆ ˆˆlog log

ˆˆ ˆ ˆˆ

ˆˆ ˆ ˆˆ

ˆˆˆ

t t t

e t t t t e t

t t t t t

t t t t

t t t t t t

z z E z

I

q q q

δδ δ

σ ω α ε β σ

σ ω α γ γ β σ

σ ω α ε β σ γ ε

σ ω β σ α ε γε

σ α ε β σ

+

+

+

+

+ +

= + +

 = + + − + 

= + + +

= + + −

= + − + −

       (14) 

The VaR forecast for the GARCH-type models rely on the one-day-ahead con-
ditional variance forecast, 2

1tσ +  of the volatility model. For each GARCH-type 
model, under the assumption of different error distribution, the one-day-ahead 
VaR forecast at p% confidence level is obtained as:  

 ( )1
1 1 1ˆ ˆVaR p

t t tF pµ σ−
+ + += +                    (15) 

where ( )1F p−  is pth quantile of the cumulative distribution function of the 
innovations distribution. 

2.3. Modelling Tails Using Extreme Value Theory 

Extreme Value Theory primarily focuses on analysing the asymptotic behaviour 
of extreme values of a random variable. The theory provides robust statistical 
tools for estimating only extreme values distribution instead of the whole distri-
bution. There are two main approaches in applying EVT; the Block Maxima 
(BM) model and the Peaks-Over-Threshold (POT) model. The approaches rely 
on different references to determine the extreme values. The BM model selects 
the maximum value given a specified period or block while the POT model fo-
cusses on the observations exceeding some pre-specified high threshold. Model-
ling the maximum of a block of random variables is considered wasteful if other 
data on extreme values are available. Therefore, a more efficient approach to 
modelling extreme events is to focus not only the largest (maximum) events, but 
also on all events greater than some large preset threshold. This is the Peaks 
Over Threshold (POT) modelling. The POT models are generally considered to 
be more appropriate in practical applications, due to their efficient use of data at 
the extreme values. 

In this study, the POT approach to model extreme events is adopted. The POT 
method specifies the observations above the chosen threshold as extreme values 
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and focusses on the “exceedance’’ part to estimate parameters of the tail distri-
bution rather than the entire data set. Let 1 2, , , nX X X  be a sequence of of 
independent and identically distributed (i.i.d.) random variables, with common 
distribution function F. The POT model approach focuses on estimating the dis-
tribution function uF  of values of x above a high threshold u. The distribution 
of excesses over a high threshold u is defined as:  

( ) ( ) ( ) ( )
( ) 0Pr | , 0 ,

1u

F u y F u
F y X u X u y x u

F u
+ −

= − ≤ > = < < −
−

    (16) 

where 0x ≤ ∞  is the right endpoint of F. 
As in Balkema and de Haan [35] and Pickands [36], for a large class of under-

lying distributions functions F the conditional excess distribution function 
( )uF y , for a large u, is well approximated by ( ) ( )uF y G y≈  with u →∞ . 

That is  

( ) ( ) ( ),
0

lim sup 0
F F

u uu x y x u
F y G yξ σ→ ≤ ≤ −

− =                 (17) 

where ( ) ( ), uG yξ σ , the Generalized Pareto Distribution (GPD), given by  

( ) ( ) ( )

( )

1

,

1 1 if 0,

1 exp if 0,

u

y
uG y
y
u

ξ

ξ σ

ξ ξ
σ

ξ
σ

−
  − + ≠     = 

  
− − =     

            (18) 

where 0y ≥  for 0ξ ≥  and 
( )

0
u

y
σ
ξ

≤ ≤ −  for 0ξ < . The distribution has  

a scale, σ  and shape parameter ξ . It subsumes a number of other specific 
distributions under its parametrization. When 0ξ > , then G is a parameterized 
version of a heavy tailed ordinary Pareto distribution; when 0ξ =  corresponds 
to the light tailed exponential distribution and when 0ξ <  we have a short 
tailed Pareto type II distribution. In financial risk management, 0ξ >  is gen-
erally chosen as the most relevant for analysis purposes since the GPD tends to 
describe heavy tails. Estimates of the parameters ξ  and ( )uσ  can be ob-
tained using the method of maximum likelihood [37]. For 0.5ξ = − , Hosking 
and Wallis [38] present evidence that maximum likelihood regularity conditions 
are fulfilled and the maximum likelihood estimates are asymptotically normally 
distributed. 

By setting x u y= + , an approximation of ( )F x , for x u> , can be obtained 
from Equation (16):  

( ) ( )( ) ( ) ( ) ( ),1 ,uF x F u G y F uξ σ= − +              (19) 

The function ( )F u  can be estimated non-parametrically using the empirical 
c.d.f:  

( )ˆ un N
F u

n
−

=                         (20) 
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where uN  represents the number of exceedances over the threshold u and n is 
the sample. By substituting Equations (18) and (20) into Equation (19), an esti-
mate for ( )F x  is obtained as follows:  

( )
1
ˆˆˆˆ 1 1 ,

ˆ
uN x uF x

n
ξ

ξ
σ

−
 −  = − +  

  
             (21) 

where ξ̂  and σ̂  are estimates of ξ  and σ , respectively, which can be esti-
mated by the method of maximum likelihood. 

For ( )p F u> , px  can be obtained from Equation (21) by solving for x;  

( )
ˆ

ˆˆ 1 1ˆp
u

nx u p
N

ξ
σ
ξ

−   = + − −    
             (22) 

where u is a threshold, σ̂  is the estimated scale parameter, ξ̂  is the estimated 
shape parameter. 

One of the challenging problems in practical application of POT-method is 
setting the appropriate threshold. Single threshold selection involves a bi-
as-variance trade-off. An excessively low threshold may violate the asymptotic 
underlying the GPD approximation and, consequently, increase the bias. Con-
versely, an excessively high threshold may involve a smaller sample size and 
generate few excesses, leading to high variance in the parameter estimations. It is 
thus of importance of finding a good balance in setting the threshold to find a 
suitable balance between the variance and the bias of the model. In this paper, a 
quantile rule using an upper threshold of 10% (the 90th percentile) for setting the 
threshold value is adopted. This is a common practice. 

2.4. Conditional Extreme Value Theory Model 

The GARCH-EVT model introduced by McNeil and Frey [4] is used to estimate 
Value at Risk by extending the EVT framework to dependent data. To utilize 
EVT, an important assumption is for the data to be independently and identi-
cally distributed (i.i.d.). The EVT is used to model the tails of standardized resi-
dues te  obtained from the GARCH-type model. First, the GARCH model is 
fitted to the financial return series to filter the serial autocorrelation and obtain 
close to independently and identically distributed standardized residuals. Sub-
sequently, the standardized residuals are fitted using the POT-EVT framework. 
The GARCH-EVT approach is summarized as follows:  

Fit a suitable GARCH-type model to the return data by quasi maximum like-
lihood. That is, maximize the log-likelihood function of the sample assuming the 
standardized Student’s t-distributed innovations. Estimate 1tµ +  and 1tσ +  from 
the fitted model and extract the standardized residuals tz .  

Consider the standardized residuals computed in Step 1 to be realizations of a 
white noise process. Apply EVT to model the tails of the innovations and esti-
mate qx  for a given probability q.  

Hence, the standardized residuals can be computed as a white noise process 
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ˆ ˆt t tz ε σ= . Given the 1-step forecasts 1ˆtµ + , 1ˆtσ +  and standardized residuals 
series, the conditional value-at-risk,  1VaR p

t+  can be estimated as follows as:  



1 1 1ˆ ˆ ˆVaR p
t t t qxµ σ+ + += +                     (23) 

with ˆqx  obtained from Equation (22). 

1VaR p
t+  is computed during the out-of-sample period along with the parame-

ter estimates by using the previous in-sample observations n returns. That is, 

1VaR p
t+  with t in the set , 1, , 1n n m+ −  is calculated with returns 1, ,t n tr r− +  . 

This implementation is rolled forward for each day, which effectively captures 
time-varying characteristics. Besides, the 90th percentile of the return distribu-
tion is set as the threshold, so k equals 10% of the daily observations. Since the 
backtesting period is relatively long, the threshold value is set at the 90th quantile 
in order to simplify the procedures. The advantage of this combination lies in its 
ability to capture conditional heteroscedasticity in the data through the GARCH 
framework, while at the same time modelling the extreme tail behaviour through 
the EVT method. 

2.5. Backtesting the VaR Models 

The adequacy of models used for estimating VaR forecasts can be statistically 
tested using the backtesting procedure. This procedure consists of comparing 
the out-of-sample VaR estimates with actual realized loss in the next period. An 
accurate 1VaR p

t+  measure guarantees that the actual return will only be worse 
than the VaR forecasts 100p×  of the time. Given a time series of past ex-ante 
VaR forecasts and past ex-post returns, one can define the “hit sequence’’ (also 
referred to as indicator function) of VaR violations as:  

1 1
1

1 1

1 if VaR
0 if VaR

p
t t

t p
t t

r
I

r
+ +

+
+ +

 < −= 
≥ −

                 (24) 

The hit sequence returns a value of 1 on day 1t +  if the ex-post loss on that 
day exceeds the VaR number predicted in advance for that day and value zero 
otherwise. When performing backtesting on VaR models, a hit sequence is 
created across T days indicating when the past violations occurred. For a VaR 
model to be accurate in its predictions, then the average hit ratio or the failure 
rate over the full sample should be equal α  for the ( )th1 α−  quantile VaR 
(that is, for 95% VaR, 5%α = ). The violations involve counting the number of 
actual realized returns that exceed the VaR forecast and comparing this number 
with the expected number of violations. As expected, the closer the hit ratio is to 
the expected value, the better the forecasts of the risk model. If the hit ratio is 
greater than the expectation, then the model underestimates the risk; with a hit 
ratio smaller than the expected value, the model overestimates risk. 

In this study, the commonly used backtesting procedures; the Kupiec’s pro-
portion of failures test (also known as the unconditional coverage test) and Chris-
toffersen’s test (also known as the conditional coverage test) are used. 
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2.5.1. Unconditional Coverage Test 
According to Kupiec [39] test, the interest is to check if the proportion of viola-
tions obtained from VaR models, call it p̂ , is significantly different from the 
expected proportion, p. This is called the unconditional coverage hypothesis. 
Assuming that the probability of obtaining an exceedance is constant, the num-
ber of VaR violations by actual returns, t

T
t IT ∑ 1=1 =  follows a binomial distri-

bution ( )1,b T p , where T represents the total number of observations. An accu-
rate ( )VaR p  measure should produce an unconditional coverage 1p̂ T T=  
equal to p percent. The unconditional coverage test has a null hypothesis that the 
probability of failure for each trial ( p̂ ) should be equals to (p), that is, 

0 ˆ:H p p= .  
The likelihood ratio statistic,  

( )( ) ( )( )( )1 11 1ˆ ˆ2 log 1 log 1T T T TT T
UCLR p p p p− −= − − −       (25) 

is used to perform this test. When the null hypothesis is true, the statistic has an 
asymptotic Chi-square distribution with one degree of freedom. The advantage 
of this test is that it assesses the adequacy of the model taking into account either 
too large and too small number of exceedances. A good model used for VaR es-
timation should also be characterized by independence of exceedances. 

2.5.2. Conditional Coverage Test 
Christoffersen [40] proposed a conditional coverage test procedure that jointly 
examines the correct unconditional coverage and serial independence. The 
procedure is a joint test of these two properties and the corresponding test sta-
tistic is the sum of the individual test statistics for the properties; that is, 

CC UC INDLR LR LR= +  when conditioned on the first observation. The INDLR  
denotes the likelihood ratio statistic that tests whether exceptions are indepen-
dent, and the UCLR  is defined in the previous subsection. When the model ac-
curately estimates VaR, then a present exceedance should not depend on wheth-
er or not an exceedance occurred on the previous day. 

According to this test, the hit sequence is assumed to be dependent over time 
and that it can be described as a first-order Markov sequence with a transition 
probability matrix given by  

01 01

11 11

1
1

π π
π π

− 
Π =  − 

                     (26) 

where ( )1Pr |ij t tI j I iπ += = = . These transition probabilities simply mean that 
conditional on today being a non-violation (that is, 0tI = ), then the probability 
of tomorrow being a violation (that is, 1 1tI + = ) is 01π . The probability of to-
morrow being a violation given today is also a violation is:  

( )11 1Pr 1 and 1t tI Iπ += = = . The Markov chain reflects the existence of an order 
one memory in the sequence of exceedances. In the case of the hit sequence be-
ing independent over time, then the probability of a violation tomorrow does 
not depend on today being a violation or not. In this case, the null hypothesis in 
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the independence test is  

0 01 11:H π π π= =                        (27) 

Ultimately, one is interested in simultaneously testing if the VaR violations are 
independent and the average number of violations is correct. The conditional 
coverage test jointly examines whether the percentage of exceptions is statisti-
cally equal to the one expected ( p̂ p= ) and the serial independence of the ex-
ception indicator. In this test, the null hypothesis takes the form:  

0 01 11:H pπ π= =                       (28) 

Thus, under the null hypothesis of the expected proportion of exceptions 
equals p and the failure process is independent, the appropriate likelihood ratio 
test statistic is of the form:  

( ) ( )( ) ( )( )( )00 10 00 1001 01 1111
01 01 11 11ˆ ˆ ˆ ˆ2 log 1 1 log 1T T T TT T TT

CCLR p pπ π π π ++= − − − −  (29) 

where ( )0 1ˆij ij i iT T Tπ = + , ijT  denote the number of days when condition j oc-
curred assuming that condition i occurred on the previous day (1 if exceedance 
occurs, 0 if no exceedance occurs). 

Under the null hypothesis the likelihood ratio statistic, CCLR , has an asymp-
totically Chi-square distribution, with two degree of freedom. The Christoffer-
sen’s test enables the use to test both coverage and independence hypotheses at 
the same time. Moreover, it checks if the VaR model fails a test of both hypo-
theses combined. This approach makes us enable to test each hypothesis sepa-
rately, and therefore establish where the model failure arises. 

3. Data 

In this study, twelve major international stock indices in the world are analysed. 
The set include: S&P500 (US; SPX), FTSE 100 (UK; FTSE), DAX 30 (Germany; 
GDAXI), CAC 40 (France; FCHI), Swiss Market Index (Switzerland; SMI), Euro 
Stoxx 50 (Europe; STOXX 50), S&P/TSX Composite (Canada; GSPTSE), Nikkei 
225 (Japan; N225), KOSPI 200 (South Korea; KS11), Hang Seng (Hong Kong; 
HSI), Shanghai Composite (China, SSE) and Sensex (India, BSESN). The moti-
vation for selection of these stock indices is to examine the reliability of the pro-
posed VaR forecast models for the major world stock indices in periods of fi-
nancial distress and turmoil. Therefore, the data covers the period for 1st January 
2006 to 31st July 2020, covering the 2008 global financial crisis, the 2011 Euro-
pean financial crisis and the current COVID-19 pandemic period. Each price se-
ries is expressed in the local currency. The daily percentage log-returns on as-
sets over the sample period are used. Daily log-returns are computed as 100 
times the difference of the log prices, i.e. ( )1100log %t t tr P P−= , where tP  is 
the adjusted closing price (value) on day t. The daily log returns for the equity 
market were calculated from the adjusted daily closing prices downloaded from 
https://markets.businessinsider.com/indices. 

Figure 1 presents the time plots of the log-return series which shows evidence 
of volatility clustering and extreme price movements in the returns. From the 
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Figure 1. Daily log-return plots of the twelve major stock market indices for the period starting from January 1, 2006 to July 31, 
2020. 

 
figure, we can also see the effects of the 2008 global financial crisis, the 2011 Eu-
ropean financial crisis as well as the 2019 COVID pandemic shocks in March 
2020. All the ten stock market indices display similar patterns of volatility clus-
tering dynamics over time and extreme price jumps. Table 1 shows the sum-
mary statistics and statistical test results computed over the in-sample, out-of- 
sample and full sample periods for all stock market indices considered in this 
paper. All the stock market indices record a positive mean close to zero except 
for CAC40, EURO and N225 in the in-sample, FTSE in the out-of-sample and 
EURO again in the full sample that have a negative mean. The log-return series 
for each stock market index are far from being normally distributed as indicated 
by their negative skewness and high excess-kurtosis. The Jarque-Bera normality 
test also confirms that all stock market indices are non-normally distributed. 
The Augmented Dickey-Fuller (ADF) results further show that all series are sta-
tionary. The Ljung-Box Q statistic tests the null hypothesis of no serial correla-
tion and is calculated using up to 5 lags. A significant Q statistic for returns im-
plies that we reject the null hypothesis of no serial correlation in returns, while a 
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significant Q statistic for the squared return series implies that the null hypothe-
sis of homoscedastic returns is rejected. From the results, it is observed that the 
Ljung-Box Q statistics are significant for most returns as well as squared return 
series. Thus, Ljung-Box tests confirm presence of serial correlation in squared 
returns series. Again, the null hypothesis of no ARCH effects is rejected, by the 
Lagrange multiplier test for AutoRegressive Conditional Heteroscedasticity 
(ARCH-LM test) thus confirming presence of ARCH effects in all return series. 
The presence of serial correlation supports the need to filter the heteroscedastic-
ity in all series using an appropriate conditional heteroscedastic model. 
 

Table 1. Descriptive summary statistics and statistical tests results for the log-returns (%) of twelve stock market indices for 
in-sample, out-of-sample and full sample period. 

Statistics S&P FTSE DAX CAC SMI EURO S&P_TSX N225 KOSPI HSI BSESN SSE 

In-sample             

No. of Obs. 2670 2713 2695 2727 2656 2740 2659 2567 2604 2592 2607 2540 

Min −9.4695 −9.2656 −7.4335 −9.4715 −9.0704 −9.1009 −9.7879 −12.1110 −11.1720 −13.5820 −11.6044 −9.2562 

Max 10.957 9.3843 10.7975 10.5946 10.7876 10.4376 9.3703 13.2346 11.2844 13.4068 15.9899 9.0343 

Mean 0.0203 0.0071 0.0252 −0.0024 0.0018 −0.0058 0.0093 −0.0003 0.0138 0.0123 0.0417 0.0351 

Std.Dev 1.2900 1.2425 1.453 1.5007 1.1940 1.5025 1.1913 1.6284 1.3302 1.6257 1.5438 1.8063 

Skew −0.3334 −0.1345 −0.0281 −0.0269 −0.2237 −0.0678 −0.6611 −0.4551 −0.5644 0.0301 0.0913 −0.6087 

Kurt. 10.3369 7.2749 5.5163 5.7007 7.8009 5.3376 9.9723 7.1498 8.6935 8.4008 8.3019 3.5603 

Out-of-sample             

No. of Obs. 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Min −12.765 −11.512 −13.055 −13.098 −10.1339 −13.2405 −13.1761 −8.2529 −8.7669 −5.7202 −14.1017 −8.0391 

Max 8.9683 8.6668 10.4143 8.0561 6.7805 8.8343 11.29446 7.7314 8.2513 4.9249 8.5947 5.5543 

Mean 0.0397 −0.0141 0.0142 0.0085 0.02314 0.0042 0.0107 0.0319 0.01304 0.0184 0.0305 0.0133 

Std.Dev 1.2682 1.0703 1.2578 1.1951 0.9772 1.1813 1.1368 1.2266 1.0725 1.1344 1.1918 1.0822 

Skew −1.1713 −1.5436 −0.7376 −1.7609 −1.2942 −1.7337 −2.1783 −0.3285 −0.3119 −0.4915 −1.9551 −0.7165 

Kurt. 23.2205 22.1706 22.0029 21.6635 17.3195 23.7462 49.344 7.6226 13.0891 2.7614 30.1745 6.8474 

Full-sample             

No. of Obs. 3670 3713 3695 3727 3656 3740 3659 3567 3604 3592 3607 3540 

Min −12.765 −11.512 −13.055 −13.098 −10.134 −13.240 −13.176 −12.111 −11.172 −13.582 −14.102 −9.256 

Max 10.957 9.384 10.797 10.595 10.788 10.438 11.294 13.235 11.284 13.407 15.990 9.034 

Mean 0.0256 0.0014 0.222 0.00055 0.00766 −0.00311 0.00967 0.00873 0.014 0.014 0.0386 0.0289 

Std.Dev 1.284 1.198 1.403 1.425 1.138 1.424 1.176 1.5263 1.264 1.505 1.455 1.634 

Skew −0.554 −0.40275 −0.1654 −0.3035 −0.413 −0.325 −1.036 −0.45176 −0.528 −0.033 −0.2172 −0.6419 

Kurt. 13.6775 9.999 8.5298 8.098 9.482 7.966 19.380 7.711 9.683 8.719 11.516 4.549 

JB 28832.83* 15590.73* 11234.93* 10256.82* 13818.48* 9968.14* 57985.92* 8972.53* 14269.23* 11394.75* 19987.47* 3301.71* 

ADF −15.026* −15.526* −15.031* −15.424* −15.847* −15.386* −14.92* −14.825* −15.107* −14.665* −13.937* −13.437* 

Q(5) 86.857* 28.647* 5.465 18.218* 46.115* 18.982* 34.64* 9.874 10.152 7.793 10.179 19.988* 

Q2(5) 2281.50* 1342.60* 680.77* 1026.9* 1644.9* 946.48* 2425* 1675.9* 1685.1* 1859.4* 747.07* 514.49* 

LM(5) 1086.8* 722.86* 438.11* 579.30* 754.93* 554.94* 994.98* 788.80* 838.20* 851.46* 430.42* 305.83* 

JB is the test statistic of Jarque-Bera test, ADF is the test statistic of Augmented Dickey-Fuller test, Q(5) is the test statistic of Ljung-Box test on returns series, 
Q2(5) is the test statistic of Ljung-Box test on squared returns series and LM is the test statistic of Lagrange multiplier test for autoregressive conditional 
heteroscedasticity (ARCH-LM test), with * stands for significance at 0.01%.  
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4. Empirical Results 
4.1. In-Sample Analysis 

First an in-sample analysis is considered, where the GARCH-type models are 
fitted to the in-sample data. An approximately 70% log-returns (in percent) are 
used for the estimation and run the backtest over 1000 (about 4 years) out-of- 
sample log returns for the period from August, 01, 2016 to July, 31, 2020 (the full 
data set starts on January, 01, 2006). Each model is estimated on a rolling win-
dow basis and both the density and one-step-ahead log-returns forecasts are ob-
tained. The model parameters are updated every 20th (monthly) observations. 
This frequency was selected in order to speed up the computations. Similar re-
sults were obtained for a subset of stocks when the parameters were updated 
every day. This is also in line with the observations of [41], who noted that in the 
context of GARCH models, that the performance of VaR forecasts is not affected 
significantly when moving a daily updating frequency to a weekly or monthly 
updating frequency. It is important to note that, while the parameters are up-
dated every 20 observations, the density and downside risk measures are com-
puted every day. 

As we are interested in the volatility dynamics, as a first step we de-mean the 
stock indices return series and remove autoregressive effects in the data using a 
first order autoregressive model, AR(1)-filter and estimate the models on the re-
siduals. As noted, the log-returns are skewed and leptokurtic. Thus, to account 
for the excess kurtosis, skewness and the dynamics of fluctuations typical in the 
financial time series data, we consider different error distributions including 
Student’s-t distribution, skewed Student’s-t distribution and Generalized error 
distribution (GED). The standard AR(1)-GARCH(1, 1) model specification is 
fitted to all return series with the different error distributions. Table 2 presents 
the AIC and BIC values for fitted AR(1)-GARCH(1, 1) model with different er-
ror distributions. Overall the skewed Student’s t distribution and Generalized 
error distributions fits well majority of stock market indices returns. The skewed 
Student’s-t distribution accounts for the excess skewness and kurtosis typical of 
financial time series data. 

 
Table 2. Criterion for selecting the appropriate error distribution for the log returns. 

 S&P FTSE DAX CAC SMI EURO S&P_TSX N225 KOSPI HSI BSESN SSE 

Dist. Student-t distribution 

AIC 2.749 2.861 3.269 3.329 2.792 3.337 2.636 3.492 2.963 3.371 3.279 3.696 

BIC 2.762 2.874 3.282 3.342 2.805 3.350 2.649 3.506 2.977 3.385 3.293 3.709 

 skewed Student-t distribution 

AIC 2.741 2.855 3.264 3.325 2.785 3.334 2.610 3.482 2.955 3.369 3.279 3.690 

BIC 2.756 2.870 3.279 3.339 2.801 3.349 2.626 3.498 2.971 3.385 3.294 3.707 

 Generalized error distribution 

AIC 2.739 2.856 3.262 3.328 2.795 3.334 2.635 3.489 2.957 3.367 3.282 3.687 

BIC 2.752 2.869 3.275 3.341 2.808 3.347 2.649 3.502 2.970 3.380 3.295 3.701 
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For brevity, the AR(1)-SGARCH(1, 1), AR(1)-EGARCH(1, 1),  
AR(1)-GJRGARCH(1, 1), AR(1)-APARCH(1, 1) and AR(1)-CSGARCH(1, 1) 
models are used to filter conditional volatilities in all return series and estimate 
the out-of-sample VaR forecasts. Table 3 reports the Akaike Information Crite-
rion (AIC) and Bayesian Information Criterion (BIC) values of all the GARCH- 
type models considered in the study with error distributions; skewed Student’s 
t-distribution and generalized error distribution. The AR(1)-EGARCH(1, 1) 
model with skewed Student’s t distribution is selected as the optimal GARCH 
specification with the smallest AIC and BIC values for modelling volatility dy-
namics in all stock indices returns. According to the results reported in Table 4, 
the expected daily index return is not statistically different from zero for all stock 
return indices. However, the index for FTSE, CAC, SMI and EURO give a posi-
tive return. The estimated mean return for S&P, CAC, N225 and BSESN are sta-
tistically significant at 5% level. Volatility persistence in the return series for each 
of the stock indices is described by both 1α  and 1β  terms as reported in Panel 
B of Table 4. The parameter 1α  represents the lagged squared residuals, while 

1β  is the lagged conditional variance term in the EGARCH model. Volatility is 
said to be persistent if the sum of the two volatility terms is close to unity, less 
persistent if less than unity and explosive if greater than unity. The coefficients 
for all the stock market indices are significant at 5% level of significance in fa-
vour of the EGARCH(1, 1) model. The implication of these results is that, all the 
stock indices returns show no evidence of long-memory in their respective re-
turn series. This means that shocks to volatility tend to decay quickly, implying 
that positive volatility do not have a strong predictive power on current volatility. 
These results are, however, conditional on the model specification and the dis-
tribution assumption made in the estimation. A number of empirical research in 
stock market returns distribution points to significant leverage effect, where 
higher volatility tends to follow negative returns. Asymmetries in the distribu-
tion of returns may arise as a result of shocks due to systemic risk factors that 
affect the cross-section of returns, or because of country-specific shocks. The 
results reveals significant positive leverage effect for all return series. Similarly, 
the parameters of skew and shape are statistically significant for all the stock in-
dices series. 

Panel C of Table 4 reports Ljung-Box test results for standardized residual se-
ries and squared standardized residual series as well as Lagrange multiplier tests 
for autoregressive conditional heteroscedasticity (ARCH-LM test) on the resi-
duals. The Ljung Box results on standardized residuals up to 5 lags are signifi-
cant for all stock residuals except for SMI and SSE at 5% level. For the squared 
residuals the results are also significant for all stock indices except for KOSPI 
and HSI. The ARCH-LM test confirms that no ARCH effects are present in the 
standardized residuals of most stock indices except for KOSPI, HSI and BSESN. 
Therefore the AR(1)-EGARCH(1, 1) model sufficiently filters the serial autocor-
relation and conditional volatility dynamics present in stock indices returns ef-
fectively producing standardized residuals that are closer to being independently 
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and identically distributed (i.i.d.) compared to the original log-return series. 
However, the fitted GARCH-type models fails to capture extreme observations 
experienced in the stock markets. 

In the next step, the GARCH-EVT model is utilized in estimating VaR fore-
casts. The standardized residuals from the fitted AR(1)-EGARCH(1, 1) model 
are approximately i.i.d. which is a standard requirement for extreme value theory 
to be applied in modelling extreme observations. The Peak over threshold (POT) 
approach is used to model the tail behaviour of standardized residuals of stock 
market indices returns. A threshold value is set at 90% quantile of the in-sample 
observations to estimate the parameters of the generalized Pareto distribution 
(GPD). Table 5 reports threshold values, number of exceedances and parameter 
estimates of the fitted GPD with their corresponding standard errors enclosed 
in brackets. The shape parameter (ξ ) is positive and significantly different 
from zero except for S&P500, FTSE, S&PTX, KOSPI, HSI and SSE indicating 
heavy-tailed distributions and a finite variance. This also implies that tail dis-
tributions of stock market indices belong to Frechet class which is heavy- 
tailed. The scale parameter is positive and significant for all the stock market 
indices. 

 
Table 3. AIC and BIC values for the fitted GARCH-type models for stock market indices returns. 

  S&P FTSE DAX CAC SMI EURO S&P_TSX N225 KOSPI HSI BSESN SSE 

Dist. Skewed Student-t distribution 

GARCH AIC 2.741 2.855 3.264 3.325 2.785 3.334 2.610 3.482 2.955 3.369 3.279 3.690 

 BIC 2.756 2.870 3.279 3.3398 2.801 3.349 2.626 3.498 2.971 3.385 3.294 3.707 

EGARCH AIC 2.684 2.806 3.2198 3.261 2.734 3.269 2.577 3.455 2.933 3.356 3.257 3.691 

 BIC 2.702 2.824 3.237 3.278 2.751 3.286 2.595 3.474 2.951 3.375 3.275 3.709 

GJRGARCH AIC 2.694 2.809 3.228 3.277 2.744 3.287 2.585 3.463 2.933 3.357 3.256 3.691 

 BIC 2.712 2.826 3.246 3.295 2.762 3.304 2.603 3.481 2.951 3.375 3.274 3.709 

CSGARCH AIC 2.712 2.852 3.265 3.325 2.784 3.335 2.611 3.483 2.955 3.370 3.280 3.692 

 BIC 2.761 2.872 3.285 3.345 2.804 3.354 2.631 3.503 2.976 3.390 3.301 3.713 

APARCH AIC 2.678 2.801 3.217 3.259 2.728 3.268 2.575 3.454 2.931 3.353 3.254 3.691 

 BIC 2.698 2.821 3.237 3.279 2.748 3.288 2.595 3.474 2.951 3.374 3.275 3.712 

Dist. Generalized error distribution 

GARCH AIC 2.739 2.856 3.262 3.328 2.795 3.334 2.635 3.489 2.957 3.367 3.282 3.687 

 BIC 2.752 2.869 3.275 3.341 2.908 3.347 2.649 3.502 2.970 3.380 3.295 3.701 

EGARCH AIC 2.699 2.815 3.228 3.275 2.754 3.280 2.612 3.465 2.939 3.354 3.266 3.689 

 BIC 2.715 2.830 3.243 3.291 2.7699 3.295 2.627 3.481 2.955 3.370 3.281 3.705 

GJRGARCH AIC 2.704 2.816 3.234 3.288 2.764 3.294 2.617 3.471 2.939 3.355 3.265 3.688 

 BIC 2.7195 2.831 3.249 3.304 2.997 3.309 2.633 3.487 2.955 3.370 3.281 3.704 

CSGARCH AIC 2.7395 2.853 3.263 3.328 2.795 3.335 2.636 3.489 2.957 3.367 3.283 3.689 

 BIC 2.757 2.871 3.280 3.346 2.812 3.352 2.654 3.507 2.975 3.385 3.301 3.707 

APARCH AIC 2.693 2.810 3.225 3.272 2.749 3.278 2.610 3.465 2.937 3.351 3.262 3.688 

 BIC 2.711 2.828 3.242 3.2898 2.767 3.296 2.627 3.483 2.955 3.369 3.281 3.707 
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Table 4. AR(1)-EGARCH(1, 1)-sstd estimation results for stock market indices returns. 

 S&P FTSE DAX CAC SMI EURO S&P_TSX N225 KOSPI HSI BSESN SSE 

Panel A: Conditional mean equation 

µ  −0.0202 0.0057 −0.0175 0.0113 0.0087 0.0185 −0.0089 −0.0092 −0.0012 −0.0166 −0.0332 −0.0397 

 (0.0746) (0.6844) (0.2696) (0.6102) (0.6107) (0.2493) (0.5036) (0.7154) (0.9478) (0.4585) (0.0929) (0.1003) 

1φ  −0.0635* −0.0299 0.0112 −0.0440* 0.0294 −0.0352 0.0233 −0.0402* −0.0077 0.0075 0.0789* 0.0088 

  (0.1059) (0.6389)  (0.1384) (0.0741) (0.2212)  (0.6947) (0.6997)  (0.4965) 

Panel B: Conditional variance equation 

ω  −0.0026 0.0008 0.0123* 0.0137* −0.0018 0.0134* −0.0035 0.0232* 0.0043 0.0094* 0.0097* 0.0109* 

 (0.5199) (0.8349)   (0.7086)  (0.2152)  (0.1809)   

1α  0.1954* 0.1584* 0.1372* 0.1864* 0.1833* 0.1850* 0.1237* 0.1162* 0.0961* 0.0699* 0.1129* 0.0026* 

1β  0.9769* 0.9750* 0.9739* 0.9693* 0.9628* 0.9718* 0.9866* 0.9639* 0.9823* 0.9846* 0.9791* 0.9900* 

1γ  0.1253* 0.1425* 0.1263* 0.1089* 0.1526* 0.1075* 0.1076* 0.1752* 0.1490* 0.1507* 0.1756* 0.1438* 

skew 1.2052* 1.1541* 1.1540* 1.1578* 1.1741* 1.1365* 1.3209* 1.1510* 1.1489* 1.0716* 1.0619* 1.1051* 

shape 6.5448* 10.3353* 24.8099* 9.0280* 8.8667* 8.7654* 13.7407* 12.4688* 7.8757* 8.9537* 6.8498* 4.9935* 

Panel C: Diagnostics and heteroscedastic tests 

Loglik −3575.08 −3798.49 −4330.73 −4438.05 −3622.05 −4470.67 −3418.13 −4426.92 −3810.68 −4341.88 −4237.70 −4679.94 

AIC 2.684 2.806 3.2198 3.2608 2.7335 3.269 2.577 3.455 2.9329 3.3564 3.2572 3.6913 

BIC 2.702 2.824 3.2373 3.2781 2.7512 3.286 2.595 3.474 2.951 3.3745 3.275 3.709 

Q(5) 3.6089 2.0227 2.1944 4.3065 7.4562 3.9546 2.5234 3.1462 2.857 2.198 2.1103 7.330 

 (0.2947) (0.7048) (0.6548) (0.1807) (0.0127) (0.2328) (0.5597) (0.3954) (0.4682) (0.6537) (0.6794) (0.0143) 

Q2(5) 5.807 3.958 3.628 1.875 1.8946 3.399 4.502 0.9711 7.141 9.119 4.6195 2.1849 

 (0.0998) (0.2594) (0.3043) (0.6483) (0.6435) (0.3390) (0.1978) (0.8662) (0.0479) (0.0155) (0.1863) (0.5754) 

LM(5) 0.5185 4.880 1.633 0.3841 4.947 0.7143 1.3063 1.6715 8.2317 11.725 6.985 2.570 

 (0.8781) (0.1095) (0.5582) (0.9172) (0.1057) (0.8191) (0.6447) (0.5484) (0.0177) (0.0025) (0.0351) (0.3585) 

*Significant at 5% level of significance and p-values are shown in parentheses.  

 
Table 5. AR(1)-EGARCH(1, 1)-EVT estimation results for stock market indices returns. 

 S&P FTSE DAX CAC SMI EURO S&P_TSX N225 KOSPI HSI BSESN SSE 

Left Tail             

No. of 
Obs. 

2670 2713 2695 2727 2656 2740 2659 2567 2604 2592 2607 2540 

u 1.2657 1.2655 1.2709 1.2649 1.2489 1.2483 1.3653 1.3123 1.237 1.2689 1.1906 1.176 

No. of 
Exceed. 

267 272 270 273 266 274 266 257 261 260 261 254 

ξ  −0.01147 −0.0590 0.00149 0.02926 0.06821 0.03189 −0.0257 0.0313 −0.1476 −0.0941 0.0500 −0.0343 

(s.e) (0.05305) (0.04643) (0.05714) (0.02923) (0.06821) (0.03189) (0.05504) (0.04934) (0.05165) (0.05304) (0.06573) (0.07201) 

β  0.72964 0.68182 0.64025 0.62709 0.60549 0.62645 0.63118 0.58458 0.77753 0.63272 0.60508 0.76105 

(s.e) (0.05909) (0.05201) (0.05345) (0.05050) (0.04818) (0.05083) (0.05199) (0.04648) (0.06228) (0.05151) (0.05460) (0.07267) 
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4.2. Out-of-Sample Analysis 

We now turn to an out-of-sample analysis where we compare the ability of the 
conditional EVT and GARCH-type models to correctly forecast the one-day 
ahead Value-at-Risk (VaR). We use out-of-sample data for backtesting; thus we 
have an in-sample of the return observations for the rolling window estimation 
procedure, containing the 2008 global financial crisis period, and we run the 
backtest over 1000 out-of-sample observations for a period starting from 1st 
June 2017, to 31st July 2020. VaR forecasts are also estimated following a roll-
ing-window approach. The out-of-sample data is further divided into blocks of 
500 and 1000 trading days to observe how the models behave for both shorter 
and longer periods of observation. To test the ability of our models to capture 
the true VaR, we compare the realization of the returns with the one-day ahead 
VaR forecasts at 95% and 99% risk levels. To that aim, we adopt the UC test of 
[39] and the CC test of [40] to evaluate the accuracy of each of the 5 models con-
sidered in terms of predicting accurate VaR forecasts at the 5% and 1% levels for 
all daily returns on the 11 stock indices. Table 6 presents the out-of-sample VaR 
Violations and p-values of the Unconditional Coverage (UC) test and Table 7 
presents the one-day ahead VaR backtesting results computed using 1000 and 
500 out-of-sample observations at the 5% and 1% risk levels. 

Table 6 summaries the violation ratio percentages of the underlying VaR 
models and the p-values corresponding to the unconditional coverage (UC) tests 
for the 500 and 1000 blocks at 5% and 1% significance levels. The expected 
out-of-sample VaR violations for the 1000 window is 50 at 95% and 10 for 99% 
confidence level while for the 500 window is 25 at 95% and 5% for 99% confi-
dence level respectively. Based on the proximity of the actual violation ratio to 
the expected violation ratio, the GARCH-EVT VaR model perfoms better than 
the standard GARCH(1, 1), EGARCH(1, 1), GJR-GARCH(1, 1) and APARCH(1, 
1) VaR models. According to the UC test results, the VaR forecasts based on the 
GARCH-EVT model produce a rather accurate out-of-sample proportion of vi-
olations the highest number of times. However, GARCH-EVT model rejected the 
null of correct coverage five times at 5% risk level for the 1000 window. At the 1% 
risk level, these differences are mostly significant; we obtain p-values close to 1 
with the EVT-based model. Overall, the one-day ahead backtesting results demon-
strate the superiority of the GARCH-EVT models over the GARCH-type models.  

 
Table 6. Out-of-sample VaR Violations and p-values of the Unconditional Coverage (UC) test on the VaR forecasts. 

Model S&P FTSE DAX CAC SMI EURO S&P_TSX N225 KOSPI HSI BSESN SSE 

500 window 5% level of significance 

GARCH 6.2% 5% 7.2% 6.8% 6% 5.8% 5.6% 5.8% 6.2% 6.4% 6% 4.6% 

UC: p-value (0.235) (1.000) ** (0.079) (0.319) (0.423) (0.546) (0.423) (0.235) (0.168) (0.319) (0.678) 

EGARCH 5.6% 4.6% 5.8% 5.8% 6.8% 5.4% 4.2% 5.2% 6.0% 6.4% 4.4% 4.4% 

UC: p-value (0.546) (0.678) (0.423) (0.423) (0.079) (0.685) (0.399) (0.838) (0.319) (0.168) (0.530) (0.530) 

GJR-GARCH 5.8% 5.2% 5.8% 5.0% 5.2% 4.6% 4.4% 5.0% 6.0% 6.0% 4.8% 4.6% 
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Continued 

UC: p-value (0.423) (0.838) (0.423) (1.000) (0.838) (0.678) (0.530) (1.000) (0.319) (0.319) (0.836) (0.678) 

APARCH 6.2% 4.5% 5.6% 5.8% 6.2% 5.2% 4.0% 4.8% 5.6% 6.2% 4.6% 4.4% 

UC: p-value (0.235) (0.678) (0.546) (0.423) (0.235) (0.838) (0.288) (0.836) (0.546) (0.235) (0.673) (0.530) 

GARCH-EVT 3.8% 4.2% 5.0% 5.4% 5.0% 4.8% 3.6% 5.0% 5.0% 5.8% 5.0% 4.0% 

UC: p-value (0.199) (0.399) (1.000) (0.685) (1.000) (0.836) (0.131) (1.000) (1.000) (0.423) (1.000) (0.288) 

 1% level of significance 

GARCH 1.8% 1.8% 2.2% 1.8% 1.4% 1.8% 1.8% 1% 1.8% 1.6% 1.4% 1.4% 

UC: p-value (0.106) (0.106) ** (0.106) (0.397) (0.106) (0.106) (1.000) (0.106) (0.215) (0.397) (0.397) 

EGARCH 1.8% 1.8% 2.2% 2.2% 1.6% 2.6% 1.6% 1.2% 1.6% 1.4% 1.4% 1.6% 

UC: p-value (0.106) (0.106) ** ** (0.215) ** (0.215) (0.663) (0.215) (0.397) (0.397) (0.215) 

GJR-GARCH 1.6% 2.0% 2.2% 2.2% 1.4% 2.2% 1.6% 1.0% 1.2% 1.2% 1.2% 1.4% 

UC: p-value (0.215) ** ** ** (0.397) ** (0.215) (1.000) (0.663) (0.663) (0.663) (0.397) 

APARCH 1.4% 1.8% 2.2% 2.0% 1.6% 2.4% 1.4% 0.8% 1.4% 1.4% 1.4% 1.6% 

UC: p-value (0.897) (0.106) ** ** (0.215) ** (0.397) (0.641) (0.397) (0.397) (0.397) (0.215) 

GARCH-EVT 1.0% 1.8% 1.8% 1.8% 1.2% 1.6% 1.6% 0.8% 1.6% 1.2% 1.2% 1.2% 

UC: p-value (1.000) (0.106) (0.106) (0.106) (0.663) (0.215) (0.215) (0.641) (0.215) (0.663) (0.663) (0.663) 

1000 window 5% level of significance 

GARCH 4.8% (3) 4.4% 6.3% 5.3% 5.3% 5.3% 5.0% 4.4% 5.6% 5.6% 4.8% 4.1% 

UC: p-value (0.770) (0.375) (0.069) (0.666) (0.666) (0.666) (1.000) (0.375) (0.393) (0.393) (0.770) (0.178) 

EGARCH 5.1% (2) 4.3% 4.3% 4.3% 4.9% 3.9% 4.5% 4.6% 5.6% 5.9% 4.5% 4.0% 

LRUC p-value (0.885) (0.299) (0.299) (0.299) (0.884) (0.097) (0.461) (0.557) (0.393) (0.204) (0.461) (0.133) 

GJR-GARCH 4.5% (4) 4.4% 4.9% 3.9% 4.6% 3.7% 4.2% 3.8% 5.3% 5.5% 3.9% 4.1% 

UC: p-value (0.461) (0.375) (0.884) (0.097) (0.557) ** (0.233) (0.070) (0.666) (0.475) (0.097) (0.178) 

APARCH 4.9% (1) 3.9% 4.5% 4.4% 4.8% 4.1% 4.3% 4.0% 5.4% 5.7% 4.3% 4.0% 

UC: p-value (0.884) (0.097) (0.461) (0.375) (0.770) (0.178) (0.299) (0.133) (0.566) (0.320) (0.299) (0.133) 

GARCH-EVT 3.3% (5) 3.5% 3.7% 4.1% 4.2% 3.4% 4.0% 3.6% 4.6% 4.6% 3.9% 3.8% 

UC: p-value ** ** ** (0.178) (0.233) ** (0.133) ** (0.557) (0.557) (0.097) (0.069) 

 1% level of significance 

GARCH 1.5% (4) 1.4% (5) 1.1% (2) 1.0% (1) 0.9% (1) 1.2% 1.5% 0.9% 1.6% 1.3% 0.9% 1.4% 

UC: p-value (0.139) (0.231) (0.754) (1.000) (0.746) (0.538) (0.139) (0.746) (0.097) (0.362) (0.746) (0.231) 

EGARCH 1.5% (4) 1.3% (4) 1.3% (5) 1.3% (5) 0.8% (3) 1.4% 1.2% 0.8% 1.5% 1.1% 1.1% 1.5% 

UC: p-value (0.139) (0.362) (0.362) (0.362) (0.510) (0.231) (0.538) (0.510) (0.139) (0.754) (0.754) (0.139) 

GJR-GARCH 1.2% (2) 1.2% (1) 1.1% (3) 1.2% (5) 0.8% 1.1% 1.2% 0.9% 1.2% 1.2% 0.8% 1.4% 

UC: p-value (0.538) (0.538) (0.754) (0.538) (0.510) (0.754) (0.538) (0.746) (0.538) (0.538) (0.510) (0.231) 

APARCH 1.3% (3) 1.2% (1) 
1.1% (3) 

(2) 
1.1% (3) 0.9% (1) 1.3% 1.3% 0.8% 1.4% 1.1% 1.0% 1.5% 

UC: p-value (0.362) (0.538) (0.754) (0.754) (0.746) (0.362) (0.362) (0.510) (0.231) (0.754) (1.000) (0.139) 

GARCH-EVT 1.0% (1) 1.2% (1) 0.9% (1) 0.9% (2) 0.8% (3) 0.8% 1.3% 0.8% 1.3% 0.9% 0.9% 1.3% 

UC: p-value (1.000) (0.538) (0.746) (0.746) (0.510) (0.510) (0.362) (0.510) (0.362) (0.746) (0.746) (0.362) 

The table reports the violations ratios and p-values of the unconditional coverage (UC) test for the one-day ahead 5% and 1% VaR. ** stands for the null 
hypothesis of the Kupiec’s test being rejected under the significance level 5%. In other words, the violations rates are either underestimated or over esti-
mated.  
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Table 7. Conditional Coverage (CC) tests of Christoffersen (1998) results of backtesting. 

Model S&P FTSE DAX CAC SMI EURO S&P_TSX N225 KOSPI HSI BSESN SSE 

500 window 5% level of significance 

GARCH 5.501 8.000 5.380 14.657 5.835 6.032 0.487 3.343 3.425 2.348 3.334 0.117 

CC: p-value (0.064) ** (0.068) ** (0.054) ** (0.784) (0.188) (0.180) (0.309) (0.189) (0.915) 

EGARCH 0.487 3.097 1.714 1.714 4.393 1.734 1.874 0.154 1.759 2.348 0.395 0.395 

CC: p-value (0.784) (0.213) (0.424) (0.424) (0.111) (0.420) (0.392) (0.926) (0.415) (0.309) (0.821) (0.821) 

GJR-GARCH 3.343 4.264 1.714 5.009 1.903 1.012 0.395 2.638 1.759 1.759 0.066 0.177 

CC: p-value (0.188) (0.119) (0.424) (0.082) (0.386) (0.603) (0.821) (0.267) (0.415) (0.415) (0.967) (0.915) 

APARCH 3.425 3.097 1.673 3.734 3.588 4.264 2.543 2.469 0.487 2.007 0.177 0.395 

CC: p-value (0.180) (0.213) (0.433) (0.155) (0.166) (0.119) (0.280) (0.291) (0.784) (0.367) (0.915) (0.821) 

GARCH-EVT 1.749 4.523 0.497 7.098 4.739 5.339 4.295 0.060 0.426 1.605 2.016 1.176 

CC: p-value (0.417) (0.104) (0.780) ** (0.094) (0.069) (0.117) (0.970) (0.808) (0.488) (0.365) (0.555) 

 1% level of significance 

GARCH 2.943 2.943 5.869 2.943 0.918 2.943 4.739 0.101 2.943 4.104 0.918 3.805 

CC: p-value (0.230) (0.230) (0.053) (0.230) (0.632) (0.230) (0.094) (0.951) (0.230) (0.128) (0.632) (0.149) 

EGARCH 2.943 2.943 5.869 5.915 1.799 9.669 4.104 0.336 1.799 0.918 0.918 4.104 

CC: p-value (0.230) (0.230) (0.053) (0.052) (0.407) ** (0.128) (0.845) (0.407) (0.632) (0.632) (0.128) 

GJR-GARCH 1.799 4.323 5.869 5.915 0.918 5.915 4.104 0.101 0.336 0.336 0.336 3.805 

CC: p-value (0.407) (0.115) (0.053) (0.052) (0.632) (0.052) (0.128) (0.951) (0.845) (0.845) (0.845) (0.149) 

APARCH 0.918 2.943 5.869 4.323 1.799 7.702 3.805 0.282 0.918 0.918 0.918 4.104 

CC: p-value (0.632) (0.230) (0.053) (0.115) (0.407) ** (0.149) (0.869) (0.632) (0.632) (0.632) (0.128) 

GARCH-EVT 0.101 2.943 2.906 2.943 0.336 1.798 4.104 0.282 1.798 0.336 0.336 3.901 

CC: p-value (0.951) (0.229) (0.234) (0.229) (0.845) (0.407) (0.128) (0.869) (0.407) (0.845) (0.845) (0.142) 

1000 window 5% level of significance 

GARCH 7.265 7.271 5.615 13.737 5.504 3.471 0.855 4.771 4.994 0.738 1.233 1.874 

CC: p-value ** ** (0.060) ** (0.064) (0.176) (0.652) (0.092) (0.082) (0.691) (0.540) (0.392) 

EGARCH 0.747 1.102 1.102 1.807 2.579 4.068 0.996 0.348 1.878 1.699 0.544 2.354 

CC: p-value (0.688) (0.576) (0.576) (0.405) (0.275) (0.131) (0.608) (0.840) (0.391) (0.428) (0.762) (0.308) 

GJR-GARCH 2.224 4.771 2.579 6.006 0.751 4.210 1.454 3.434 1.861 0.831 2.896 1.874 

CC: p-value (0.329) (0.092) (0.275) (0.050) (0.687) (0.122) (0.483) (0.180) (0.394) (0.660) (0.235) (0.392) 

APARCH 4.391 4.068 2.325 1.397 2.898 4.518 1.093 2.502 0.781 1.171 1.093 2.354 

CC: p-value (0.111) (0.131) (0.313) (0.497) (0.235) (0.104) (0.579) (0.286) (0.677) (0.557) (0.579) (0.308) 

GARCH-EVT 10.532 7.396 5.591 6.843 6.085 14.207 3.328 4.952 1.929 0.707 5.861 3.501 

CC: p-value ** ** (0.061) ** ** ** (0.189) (0.084) (0.381) (0.702) (0.053) 0.174 

 1% level of significance 

GARCH(1, 1) 3.704 1.807 0.320 0.202 0.268 0.672 3.704 0.250 3.597 2.833 0.268 3.183 

CC: p-value (0.157) (0.405) (0.852) (0.904) (0.875) (0.715) (0.157) (0.883) (0.166) (0.243) (0.875) (0.204) 
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Continued 

EGARCH 7.823 1.173 1.147 1.173 0.563 1.835 2.669 0.547 3.704 0.343 0.343 3.704 

CC: p-value ** (0.556) (0.564) (0.556) (0.755) (0.399) (0.263) (0.761) (0.157) (0.842) (0.842) (0.157) 

GJR-GARCH 2.669 0.672 0.320 0.672 0.563 0.343 2.669 0.250 0.672 0.672 0.563 3.183 

CC: p-value (0.263) (0.715) (0.852) (0.715) (0.755) (0.842) (0.263) (0.883) (0.715) (0.715) (0.755) (0.204) 

APARCH 2.833 0.672 0.320 0.343 0.268 1.173 2.833 0.547 3.183 0.343 0.202 3.704 

CC: p-value (0.243) (0.715) (0.852) (0.842) (0.875) (0.556) (0.243) (0.761) (0.204) (0.842) (0.904) (0.157) 

GARCH-EVT 2.973 0.672 0.249 0.268 0.563 0.563 2.833 0.547 1.173 0.268 0.268 2.833 

CC: p-value (0.226) (0.715) (0.883) (0.875) (0.755) (0.755) (0.243) (0.761) (0.556) (0.875) (0.875) (0.243) 

The table reports the p-values of the conditional coverage (CC) test of Christoffersen (1998) for the one-day ahead 5% and 1% VaR. ** stands for the null 
hypothesis of the Christoffersen’s test being rejected under the significance level 5%.  
 

Table 7 presents conditional coverage (CC) test statistic values and p-values 
in parentheses for the 500 and 1000 windows at two levels of significance of 95% 
and 99% which are considered to reflect extreme market conditions. For the 
conditional coverage test, likewise, a good model should accept the null hypo-
thesis, that is, correctly identifying the number of violations and being indepen-
dent. The results of the CC test checking both the correct coverage and the lack 
of dependence of order one in VaR violations seem to support the GARCH-EVT 
model. The conditional EVT model yield the highest success rate for both tests 
with higher p-values that are statistically significant in most of the cases demon-
strating the supremacy of the model over the other competing models. The 
poorest fit corresponds to the 5% risk level because, the null of proper specifica-
tion had to be rejected for S&P 500, FTSE 100, CAC, SMI and EURO. As in the 
case of the UC test, the CC test results demonstrate that the GARCH VaR model 
rendered the worst fit with the null rejected in three cases at 5% level of signi-
ficance for both the 500 and 1000 windows. 

In general, we observe that conditional EVT-based models give the best one 
day-ahead VaR forecasts according to the UC and CC backtesting results. Moreo-
ver, an EGARCH(1, 1) specification leads to a substantial reduction in the rejec-
tion frequencies. A heavy-tailed conditional distribution is of fundamental im-
portance for both the GARCH-EVT and GARCH specifications, and delivers 
excellent results at both risk levels. Thus, we conclude that it is feasible to dis-
criminate between the estimation methods based on an analysis of the VaR 
forecast accuracy. 

5. Conclusion 

In recent times, VaR has become the most common risk measure used by finan-
cial institutions to assess market risk of financial assets. Since VaR models often 
focus on the behavior of asset returns in the left tail, it is important that the 
models are calibrated such that they do not underestimate or overestimate the 
proportion of outliers, as this will have significant effects on the allocation of 
economic capital for investments. Stock market indices are normally characte-
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rized by high volatility and extreme price shocks unlike financial assets such as 
currencies exchange rates and securities market prices. The GARCH-EVT ap-
proach allows us to model the tails of the time-varying conditional return dis-
tribution. The conditional extreme value theory has been proved to be one of the 
most successful in estimating market risk. The implementation of this method in 
the framework of the POT model requires choosing a threshold return for fitting 
the generalized Pareto distribution. Threshold choice involves balancing bias 
and variance. The GARCH-EVT model performs relatively well in estimating 
the risk for all stock indices. Empirical backtesting results demonstrate that the 
conditional EVT and the E-GARCH skewed Student’s t models are the most ap-
propriate techniques in measuring and forecasting risk since they outperform 
the competing conventional methods and are ranked as the top two models in most 
cases. Backtesting procedures indicate that regardless of the choice of the tail, ap-
proximately the same accuracy of VaR prediction is provided. The GARCH-EVT 
model provides a significant improvement in forecasting value-at-risk over the 
widely used conventional GARCH models. This study may be extended by con-
sidering more robust models such as the MSGARCH-EVT-Copula model that 
can also capture the structural breaks and dependence structure between stock 
markets. The measurement of market risk can also be implemented using ex-
pected shortfall which is a coherent risk measure. Given that the financial mar-
kets are complex, dynamic and dependent on other markets, selection of diversi-
fied investment portfolio is another important area for further research. 
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