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Abstract 
Changes in climatic conditions increases the risks of native and alien taxa expanding in 

geographical range and causing habitat transformations. The role of climate change in 

enhancing bio-invasions in local natural environments need to be assessed to guide on effective 

species management policy formulations. In this present study, we used species presence 

records, predictor variables and an ensemble of General Circulation Models data to predict 

suitable ecological niches for five of the selected invasive plant species within Nyeri County, 

Kenya. We predicted species distributions under RCP2.6, RCP4.5, and RCP8.5 emission 

scenarios for the years 2050 and 2070. We analysed species distribution changes to identify 

invasive species requiring immediate management action. Our analysis indicated that three of 

the five study species were suitable in ~50% of the study area while the other two were suitable 

in ~30% under the current climate. Lantana camara L. and Solanum campylacanthum Hochst. 

ex A.Rich species would experience the largest range shift distance of ~6 – 10km and the largest 

habitat gain of ~12 – 33% in the future. Caesalpinia decapetala (Roth) Alston, Opuntia stricta 

(Haw.) Haw. and Senna didymobotrya (Fresen.) H.S. Irwin & Barneby species on the other 

hand would have a decline in habitat range under future climate change scenarios. Although, 

S. didymobotrya is considered a native species, it would lose half of its current suitable habitat 

in the future. Range shift analysis showed all study species would generally shift to the north 

west direction or towards the Aberdare ranges. From this study we conclude that invasive 

species management programs for smaller geographical areas ought to consider projecting 

species distributions under climate change scenarios to identify areas with high possible 

biodiversity changes. This would be important to conservationists when prioritizing 

management actions of invasive species in the region where data on invasive species is still 

limited.
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Introduction
According to Richardson et al. [1], Naturalized plants are alien plants that have consistently 

reproduced with no human intervention over many growth periods while Invasive plants are 

naturalized plants that are able to produce many reproductive offsprings at considerable 

distances from parent plants. Many of the alien invasive plant species have profound negative 

impacts on forest resources, water resources, and agricultural ecosystems [2–4]. In some 

instances, alien invasive species may be beneficial to new environments e.g. supporting local 

fauna in their habitats, reducing carbon footprint, and provision of firewood [5].

Native species are considered a nuisance if they are expanding in range and causing 

habitat transformations [6]. Although proliferation of alien species in new environments may 

be attributed to lack of natural enemies inhibiting their survival [7], changes in climatic 

conditions may render any of the alien taxa to extinction or may enable its spread and survival 

[1]. To the advantage of alien invasive species, their ability to adapt in habitats with varying 

climatic conditions has contributed to their expansion in geographical range [8]. 

Conservationists need to project distributions of invasive species during the 

temperature overshoot periods i.e. temperatures over 1.5°C in the course of 21st century so as 

to determine species survival boundary limits to guide management strategies.  In the 

Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report [9], time-

dependent projections of atmospheric greenhouse gas (GHG) concentrations are described in 

three Representative Concentration Pathways (RCPs) namely; the stringent mitigation scenario 

(RCP2.6) denoting a peak and decline of temperatures below 1.6°C, the intermediate stages 

(RCP4.5 and RCP6.0) denoting a stabilization without overshoot, and the higher GHG 

emission scenario (RCP8.5) denoting rising temperatures. As described in IPCC [9 p60] and 

[10], the period 2016 – 2035 for all RCP scenarios is predicted in the range of 0.3°C - 0.7°C 
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similar to 1986 – 2005 reference period. The mean temperatures under RCP2.6, RCP4.5 and 

RCP8.5 for the period 2046-2065 are predicted to be 1.0°C, 1.4°C, and 2.0°C respectively 

while for the period 2081 – 2100, mean temperatures will be 1.0°C, 1.8°C and 3.7°C 

respectively. Warming temperature of 2°C and above is expected to exacerbate risks brought 

about by spread of invasive plant species than that maintained at 1.5°C and below [11].  

Management decisions on invasive species usually depend on their impacts on native 

vegetation diversity and richness [12]. Although it may be challenging to quantify such impacts 

if species prevalence is unknown [13], building Species Distribution Models (SDM) forms an 

integral part in estimating prevalence and distribution changes. SDMs have been built on 

various biogeographical scales using correlative techniques relying on species occurrence data 

and predictor variables [14–16]. SDMs carried out at large biogeographical scales e.g. at, 

regional, national or continental level provide baseline information for conservation 

management policy formulation [17,18] while those at a local scale are used to provide 

estimates on community level species population for immediate management prioritization 

[19].  

Witt et al. [6] spurred interests in documenting invasive species through a broad 

baseline study on multiple invasive species status in East Africa region. Some of their study 

species included: Lantana camara L., Opuntia Stricta (Haw.) Haw, and Acacia mearnsii De 

Wild  which are listed in the land plant category of 100 worst invasive alien species [20]. L. 

camara prevalence in most parts of East Africa has led to biodiversity and livelihood losses 

[18].  O. Stricta on the other hand is naturalized and invasive in arid and semi-arid areas of 

Africa.  In Laikipia county, Kenya, 17% of the area is invaded [21].  According to Witt et al. 

[6], only south Africa has a comprehensive up-to-date database on invasive species. Gichua et 

al. [22] noted that information on the pattern of introduction and the spread dynamics of 
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invasive species in Kenya is insufficient for effective monitoring and management of invasive 

species. In highland protected areas of Rwanda, A. mearnsii has survived as an understory in 

pine and eucalyptus plantations and has generally done well in altitudes above 1200m including 

those outside natural forests [23]. Caesalpinia decapetala (Roth) Alston has been studied 

extensively in South Africa where it has had invasive presence  in natural areas such as forests 

and riparian reserves as well as in grazing areas where their prickles injure livestock [24]. In 

East Africa, distribution maps of L. camara from the work of Witt et al. [6] shows invasive 

status in central and western parts  of  Kenya and that of Solanum campylacanthum Hochst. ex 

A.Rich. is widespread along roadsides, disturbed areas and forest edges [25]. 

Review of current literature indicate limited current and future species distribution 

studies particularly at a local scale despite their importance in conservation management 

strategies. For instance, in Nyeri County where two of the most important biodiversity-rich 

ecosystems i.e. the Aberdare national park and the Mt. Kenya national park and forest 

ecosystem [26] are located, future species distribution studies have not been conducted. 

Uncontrolled spread of invasive species leads to degradation of natural habitats. Such impacts 

have been reported in Mt. Marsabit forest where ecosystem degradation has resulted to loss of 

forest cover from initial 18,363 hectares in 1973 to 11,000 hectares by 2013 [27].

This study, aimed at providing a species distribution modelling framework to estimate 

the current and future species distribution at a local scale level to support invasive species 

policy formulation. The objectives of this study were broken into two: (i) To demonstrate the 

applicability of selected General Circulation Models (GCM) data for the year 2050 and 2070 

under RCP2.6, RCP4.5, and RCP8.5 in ensemble species distribution modelling; and (ii) To 

assess habitat suitability changes of the study species under current and future climate change 

scenarios.
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Materials and methods

Study area and its ecological importance

This study was carried out in Nyeri County in central Kenya covering an area of ~ 3278.16 

Km2. It is strategically located between Mt. Kenya ecosystem to the east and Aberdare 

ecosystem to the west within Latitudes 0° 38' 45” S and 0° 0' 42” S and Longitudes 36° 35' 28” 

E and 37° 18' 29” E (Fig 1). These two ecosystems and other isolated forest hills play a vital 

role in the climate of the area and serve as wildlife habitats, forest reserves and water catchment 

areas [28]. Nyeri County is comprised of Kieni, Othaya, Mathira, Mukurwe-ini, Tetu and Nyeri 

Town sub-counties (Fig 1). It has four agro climatic zones namely: Humid (I), Sub humid (II), 

Semi humid (III), Semi humid to Semi-arid (IV) and Semi-Arid (V).  Kieni sub-county falls in 

II, III, IV & V zones, Othaya, Nyeri Town and Tetu sub-counties fall in zones I & II, while 

Mathira and Mukurwe-ini sub-counties fall in zones I, II and III [29]. On average, annual 

rainfall in Nyeri ranges between 1200 – 1600mm and 500 – 1500mm during long and short 

rains respectively while the monthly mean temperatures ranges between 12 – 21˚C [28].

Fig 1. Study area map showing distribution of invasive species field occurrence records. 

Invasive species such as C. decapelata, S. campylacanthum, L. camara L, Datura 

dothistroma, Resinus communis, Fraxinus pennysilvania, A. mearnsii and Rubus steudneri 

have invaded Mt. Kenya and the Aberdare forest ecosystems [30]. Among these species, A. 

Mearnsii, C. decapetala (Roth) Alston, C. decapetala, S. campylacanthum have been reported 

by Witt et al. [6] to be among invasive species expanding in range and having the greatest 

impacts on habitats such as forests and arable land. Management of spread of invasive species 

is therefore required in Nyeri to mitigate the threats posed by invasive species on biodiversity 

within natural habitats. Arable land need to be protected from invasive species since agriculture 

is the main economic activity in Nyeri county [28] . 
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Collection of species occurrence records

Field survey records for six invasive species namely: L. camara, C. decapetala, Senna 

didymobotrya (Fresen.) H.S. Irwin & Barneby, S. campylacanthum, O. stricta and A. mearnsii 

were collected along selected road networks in between October 2019 and February 2020 using 

a handheld GPS receiver (±3 m accuracy). 

Since our work involved estimation of target species population, sampling species 

records through roadside surveys provided adequate estimation at a cheaper cost  [31]. 

Furthermore, transport routes have been associated with introduction and eventual spread of 

invasive species [32,33] and therefore act as a factor influencing dispersal limitation [19]. Our 

target species also invades roadside habitats [25] and therefore probability of sighting them 

along survey routes was considered very high. Since forest edges provide favourable biotic and 

abiotic conditions for alien invasive species introduction and eventual spread to fragmented 

forest interiors [34], routes leading to forest edges were also considered. 

As we drove along survey routes, target species occurrence locations were collected at 

approximately 2 to 5 km successive intervals. We selected a maximum of 5 km sampling 

interval to increase sampling intensity. The choice of interval was subjective as there are no 

reference standard intervals. For instance, [35] and [36] used 5-10km while [37] considered 

25km interval indicating the subjective nature on selection of intervals. A shorter interval of 

2km was considered on routes with steeper terrains to account for vegetation diversity changes 

as elevation increases [35]. At each stop, species occurrence locations were collected on both 

sides of the road and in the adjacent habitats if any of the target species was sighted.

In addition, a geographical grid of 5 x 5 Km2 over the entire study area was generated. The grid 

cell size was chosen to align with the maximum roadside survey interval chosen for this study. 
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The grid cells served the purpose of estimating prevalence of target species by estimating the 

percentage distribution of present grid cells to the total surveyed grid cells [38] (Table 1 in S1 

Appendix, Fig 1 and Table 1). Sampled grid cells depicted in grey colour in Fig 1 were all the 

sampled cells containing at least 1 of the species occurrence.  In addition, the use of these grid 

cells served as background extent in generating background data with the same bias as the 

collected presence records [39]. 
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164 Table 1. Description of study species, their prevalence and number of records used in SDM. Species scientific, family and common 
165 name,  life form, and origin were adopted from Witt & Luke [25].

Species and 
Family name

Common 
name

Life 
form

Origin Class Species 
presence 
records

Presence 
cells

Sampled grid 
cells out of 109 
sampled cells

Species 
prevalen

ce

Minimum 
records for 

SDM

Rarefied 
records

Acacia mearnsii 
De Wild. 

(Fabaceae)

black 
wattle

Tree or 
shrub

South-eastern 
Australia and 

Tasmania.

Alien 11 8 7% 0.07 8 9

Caesalpinia 
decapetala 

(Roth) Alston  
(Fabaceae)

Mauritius 
or Mysore 

thorn

Evergree
n shrub / 
Climber

Native of Asia 
(India, Sri 

Lanka, China, 
Japan & 

Malaysia).

Alien 37 22 20% 0.20 19 26

Lantana camara 
L. 

(Verbenaceae)

Lantana, 
tickberry

Tree or 
Shrub

Subtropical and 
tropical 

America.

Alien 141 30 33% 0.33 25 60

Opuntia stricta 
(Haw.) Haw. 
(Cactaceae)

Erect 
prickly 

pear

Succulen
t tree or 
shrub

South-east 
USA, eastern 
Mexico and 

some 
Caribbean 

Islands.

Alien 17 12 11% 0.11 14 14

Senna 
didymobotrya 
(Fresen.) H.S. 

Irwin & 
Barneby 

(Fabaceae)

African 
senna

Tree or 
shrub

Tropical Africa Native 43 27 24% 0.24 19 31

Solanum 
campylacanthu
m Hochst. ex 

A.Rich. 
(Solanaceae)

Bitter 
apple, 
Sodom 
apple

Shrub Africa, Middle 
East and India.

Native 65 34 31% 0.31 25 50
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Modelling predictor variables 

We considered a set of predictor variables accounting for abiotic and biotic factors (see Table 

2 in S1 Appendix.). The 19 standard WorldClim bioclimatic variables derived from averaged 

climate data for the period 1970 – 2000 [40] at a spatial resolution of 30 arc seconds (~1 km2) 

were downloaded from WorldClim (https://worldclim.org/). Global aridity index and global 

potential evapo-transpiration predictor variable layers constituting water balance variables 

were obtained from Trabucco and Zomer [41]. Digital Elevation Model (DEM) data  at a spatial 

resolution of 12.5 x 12.5m was downloaded from Alaska DEM Facility [42]. Slope, aspect, 

plan and profile curvatures and topographic wetness index (twi) were derived from the Alaska 

DEM data. Landcover data derived from sentinel 2 imagery data was downloaded from ESA 

(2017) while Normalized difference moisture index (NDMI) and Normalized difference 

vegetation index (NDVI) were generated from January 2019 sentinel 2 imagery data 

downloaded from Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus). Kenya 

Soil data (soil pH and soil class) was obtained from Hengl et al. [44] in raster format. All 

predictor variable layers were resampled to 30 arc seconds spatial resolution and masked to 

study area extents (Fig 1).

Spatial downscaling future climate data representing future emission pathways for the 

year 2050 (2040 - 2069) and 2070 (2060–2089) [45] at 30 arc seconds spatial resolution was 

downloaded from (http://www.ccafs-climate.org/). We considered 6 Coupled Model 

Intercomparison Project Phase 5 (CMIP5) GCM data namely: BCC-CSM1.1(m), GFDL-

ESM2G, HadGEM2-ES, IPSL-CM5A-MR, MIROC-ESM-CHEM, and NCAR-CCSM4 under 

the RCP2.6, RCP4.5 and RCP8.5. According to McSweeney, Jones, Lee, and Rowell [46], 

these GCM models performance ratings on replicating timings for annual precipitation and 

temperature cycles are relatively the same with no significance differences in the Horn of 
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Africa region within which our study area lies. Researchers in ecological niche modelling have 

recommended use of an ensemble of values averaged for selected GCMs e.g. [47,48] to account 

for differences in climate predictions of individual GCMs. We used individual GCM data to 

predict future habitat suitability for study species and thereafter assessed spatial similarities 

between individual binary map outputs to determine candidate GCM models for an ensemble 

distribution modelling.  

Predictor variables multi-collinearity analysis

A total of 32 model predictor variables (Table 2 in S1 Appendix) were subjected to multi-

collinearity test using pearson’s correlation coefficient (r) and variance inflation factor (VIF). 

Calculation of VIF was as shown in Equation (1). Assessing and removing collinear variables 

conforms with statistical assumptions in regression models [49]. 

VIF =
1

(1 ― 𝑅2
𝑗 )

                                           (1)

where 𝑅2
𝑗 is the coefficient of determination derived from model variables j [50]. 

We implemented this in R statistical software [51] and the ‘usdm’ package [52]. We used the 

presence records for individual species to extract predictor values from all predictor variables 

and converted them into a matrix data frame for multi-collinearity test. Predictor variables with 

VIF > 10 [53] and  r > 0.70 [13] were excluded. Retained predictor variables were as shown in 

Table 2.

Preparation of presence and background data 

Rarefying presence samples

We used the SDMtoolbox 2.4 for ArcGIS 10.5 [54] to spatially rarefy individual species 

occurrence data. Spatially clustered points introduces environmental biases and tend to affect 

model’s ability to predict given new data [54]. We used 1 km Euclidean distance so as to match 
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the predictor variables 1 km2 spatial resolution  [55]. A total of 190 records out of 314 were 

retained for model fitting (Table 1).  

Minimum sample size for generating accurate SDM 

Filtered species presence data (Table 1) were assessed to determine whether the minimum 

number was met for building accurate SDMs [13]. Five of the study species except for A. 

mearnsii were found to be within the recommended prevalence range (0.1 (10%) to 0.5 (50%)) 

as shown in Table 1. R scripts adopted from van Proosdij et al. [13] were run and results based 

on real AUC threshold (AUC > 0.9) from the maxent model built using linear and quadratic 

features were considered to assess the required minimum sample records. The minimum 

records were 8, 11, 15, 19, 19 and 25 for 0.05, 0.10, 0.20, 0.30, 0.40, and 0.50 prevalence 

values respectively (Table 3 in S1 Appendix).  A. mearnsii had 9 presence records and a 

prevalence of < 0.10 and was therefore dropped from further distribution modelling as 

recommended by van Proosdij et al. [13]. 

Generating background data 

Background data were generated randomly within study area sampling grid cells (Fig 1). Based 

on the number of rarefied presence data (see Table 1, S6 Dataset), a ratio of 1:1 for 

presence/background data for C. decapetala (Roth) Alston, L. camara and S. campylacanthum 

species and a ratio of 2:1 to presence data for O. stricta and S. didymobotrya species were used 

to fit models with random forest and maxent methods. According to Barbet-Massin et al. [56], 

the same number of background data selection should be used for machine learning methods. 

However, the effect of using large background data was reported in the work of  Liu, Newell, 

and White [57] where low model accuracies were found for random forest models built with 

large number of background samples (n=5000). They used a ratio of 2:1 to presence data to 

improve on species model AUC values. 
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Current and future species distribution modelling

Model fitting and evaluation

As illustrated in Fig 2 and previous sections, SDMs were generated and evaluated using R 

statistical software [51] and the ‘sdm’ package [53]. SDM models were built with maxent [58], 

and Random Forest [59] methods using presence/background data and noncollinear predictor 

variables (Table 2). Random forest algorithm has gained popularity in ecological niche 

modelling due to its good performance as reported in Zhang et al. [60] and Shabani, Kumar, 

and Ahmadi [61] while the Maxent algorithm is popular due to its high predictive power than 

the traditional logistic regression [14] regardless of available sample size [17]. Species 

presence data were randomly split into two sub-sets; 70% for model fitting and 30% for testing 

community level predictions. Using all datasets may cause model overfitting and consequently 

fail to provide generality of the model for future time predictions [62]. We used 10 runs of 

subsample replications for both maxent and random forest algorithms hence generating 10 

models for both. We used linear and quadratic features, a regularization multiplier of 1, with 

extrapolation and clamping to fit maxent models and retained defaults for R package 

‘randomForest’ [63]  models. A regularization multiplier of 1 provided a balance between a 

largely spread out and a localized prediction. Clamping helped in maintaining the range of 

predictor values seen during model training when predicting distributions with novel climate 

data [64]. 

Fig 2. A conceptual framework for species distribution modelling under current and 

future climate scenarios.

Area under the receiver operating characteristics (ROC) curve (AUC) [38,65] and the True 

Skill Statistic (TSS) [66] average model assessment metrics were used for model evaluation 

(Table 4 in S1 Appendix). Average AUC ≥ 0.70 and TSS ≥ 0.5 from our fitted models were 
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considered satisfactory for ensemble prediction to the rest of the study area. Average maximum 

Sensitivity plus Specificity (maxSSS) threshold values [67]  were used to transform current 

and future probabilistic distribution maps into binary outputs. 

We computed the species null-model AUC values to test significance of each of the 

obtained species model AUC values from random expectation [68]. A modification of the 

NullRandom function in ‘dismo’ package [69] was used to generate null-model AUC values 

for our study species. The randomly drawn collection localities (presences) within our 

geographical extent were the same number as the actual number of individual species records 

used in building our SDM models. We limited the number of background points to not more 

than 10,000 and repeated the randomizations 99 times. Comparison between null-model and 

species model AUC values showed all model AUC values were significantly better than those 

obtained by random chance (Table 3).

Ensemble predictions 

Ensemble model predictions over entire study area using current climate data (Table 2) and 

future GCM climate data under climate change scenarios for the years 2050 and 2070 were 

based on, a weighted average over all fitted models for both maxent and random forest methods 

using the TSS statistic and maxSSS threshold criteria in the ‘sdm’ R package [53].GCM outputs 

spatial similarity analysis 

We used r and p-values in the function “rcorr” in “Hmisc” R package  [70] to assess 

spatial similarity levels among pairs of individual GCM binary outputs per study species [71]. 

Spatial correlation analysis was based on a threshold of r ≥ 0.70 to indicate a ‘strong’ spatial 

correlation between pairs of GCM binary outputs per study species. Future predicted maps for 

the 3 RCPs and individual 6 GCMs for both future periods were taken as the variables (Table 
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S4.5). Strongly correlated GCM model binary output maps for a given study species were 

selected as candidates for averaging into an ensemble of future predictor variables. 

Change distribution analysis

Change distribution analysis between current and future binary output maps were performed 

in SDMtoolbox v2.4 [54]. We obtained change distributions in km2 grouped into four classes 

namely: range expansion, no occupancy (absence) in both current and future, no change 

(presence) in current and future, and range contraction. To maintain consistency in the change 

distribution analysis, all SDM binary rasters were projected to an equal area projected 

coordinate system (Lambert Azimuthal Equal Area for Equatorial Region). Centroids for the 

current and future binary output maps were derived for calculation of species range shift 

distance in kilometres and direction shifts in bearings.

Results 

Model performance 

Results for the relative predictor variable importance and model performance are summarized 

in Table 2 and Table 3 respectively. All maxent and random forest models showed high AUC 

values ranging between 0.76 – 0.93 and were consequently significant above the null-model 

AUC values.
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Table 2. Retained noncollinear predictor variables (r < 0.70) for individual study species. 

C. decapetala L. camara O. stricta S. didymobotrya S. campylacanthum 
Aspect a Aspect Aridity index a Aspect Aspect
bio14 (Precipitation of 
Driest Month)

bio14 (Precipitation of 
Driest Month)

Aspect a bio18 (Precipitation of 
Warmest Quarter) a

bio14 (Precipitation of 
Driest Month)

bio15 (Precipitation 
Seasonality (Coefficient of 
Variation)

bio18 (Precipitation of 
Warmest Quarter)

bio1 (Annual Mean 
Temperature)

bio4 (Temperature 
Seasonality)

bio18 (Precipitation of 
Warmest Quarter) a

bio18 (Precipitation of 
Warmest Quarter) a

bio4 (Temperature 
Seasonality) a (SD × 100)

bio14 (Precipitation of 
Driest Month) a

bio6 (Min Temperature 
of Coldest Month) a

bio3 (Isothermality) a

bio2 (Mean Diurnal 
Range) 

bio7 (Temperature Annual 
Range)

bio18 (Precipitation of 
Warmest Quarter)

bio7 (Temperature 
Annual Range) a

bio7 (Temperature Annual 
Range)

bio3 (Isothermality) DEM a bio4 (Temperature 
Seasonality) a (SD × 100)

landcover bio9 (Mean Temperature 
of Driest Quarter) a

bio6 (Min Temperature 
of Coldest Month) a

landcover bio6 (Min Temperature of 
Coldest Month)

NDMI a landcover a

landcover a NDMI landcover NDVI NDMI
NDMI NDVI NDMI Plan curvature NDVI a

NDVI Plan curvature NDVI Profile curvature Plan curvature
Plan curvature Profile curvature Plan curvature slope Profile curvature
Profile curvature slope Soil Class a Soil Class slope a

slope Soil Class twi Soil Class
Soil Class Soil pH Soil pH
Soil pH a twi twi 
twi a 

twi, topographic wetness index; NDMI, Normalized Difference Moisture Index; NDVI, Normalized Difference Vegetation Index; DEM, Digital 
Elevation Model.
aPredictor variables with relative variable importance (correlation test: ‘1 – correlation’ > 0.05) for both maxent and random forest algorithms.
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Table 3. Average AUC, TSS, maxSSS model accuracy assessment values based on 30% subsampled dependent test data and Null model 

AUC values used to assess significance of species model AUC values.

Species scientific 

name

Species model AUC Null-

model 

AUC

Mean TSS Optimized mean threshold (TR) using 

(maxSSS) criteria

rf maxent Mean rf maxent Mean rf maxent Mean

C. decapetala 0.75 0.77 0.76 0.71 0.56 0.63 0.59 0.49 0.44 0.46

L. camara 0.90 0.91 0.91 0.66 0.79 0.78 0.79 0.47 0.39 0.43

O. stricta 0.94 0.92 0.93 0.71 0.87 0.83 0.85 0.49 0.49 0.49

S. didymobotrya 0.76 0.76 0.76 0.69 0.58 0.58 0.58 0.30 0.42 0.36

S. campylacanthum. 0.75 0.79 0.77 0.66 0.53 0.57 0.55 0.44 0.40 0.42

  rf, random forest;
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Relative variable importance as applied in determining species habitat suitability 

differed among study species (Fig 1 in S2 Appendix). Important bioclimatic variables among 

study species were generally <3 in addition to different topographic variables for each species. 

Precipitation of the warmest quarter(bio18) variable was common to C. decapetala (Roth) 

Alston, S. didymobotrya, and S. campylacanthum while the variable on temperature seasonality 

(bio4) was common to L. camara and O. stricta. Analysis of species response curves (Fig 2 in 

S2 Appendix) showed values ranging from ~250 – 350mm for bio18 enhanced C. decapetala 

distribution indicating that areas with precipitation of below 250mm during warmest quarter 

reduces its distribution. S. didymobotrya distribution declined with increasing bio18 values 

ranging between ~250 - 375mm meaning that the species distribution does not depend on 

precipitation above this range while S. campylacathum responded positively within 

precipitation range of ~250 – 375mm during the warmest quarter. Probability of L. 

camaraspecies distribution showed an increase within 6.5 – 11 bio4 values giving an indication 

that it survives well within a wide range of temperature variations throughout the year while 

values of ~6.0-7.0 increased O. stricta species response and values above 7.0 gradually 

decreased its response.

Current habitat suitability maps output 

Individual species binary distribution maps (Fig 3) showed that 50%, 31%, 30%, 53%, and 

48% of the total geographical area as suitable for C. decapetala (Fig 3a), L. camara (Fig 3b), 

O. stricta (Fig 3c), S. didymobotrya (Fig 3c) and S. campylacanthum (Fig 3d) species 

respectively. O. strictaspecies current suitable areas occupied most of Nyeri Town, parts of 

mukurwe-ini sub-county and in the semi-humid to semi-arid area of Kieni sub-counties. Senna 

species recorded the highest suitability area within Kieni sub-county and the least in Mukurwe-

ini sub-county. L. camara and O. strictaspecies had relatively the same current suitable area 
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with L. camara species covering the whole of Mukurwe-ini and Nyeri Town and parts of 

Othaya, Tetu, Mathira and Kieni sub-counties. C. decapetala and S. campylacanthum species 

suitable area covered half of the study area and were generally spread across all sub-counties. 

Notably, part of the suitable areas for C. decapetala species covered parts of the Aberdare 

ecosystem to the west. Other than C. decapetala, the rest of the species current suitable habitats 

were not predicted in the Mt. Kenya national reserve and the Aberdare national reserve. 

Fig 3. Species current distribution maps obtained with random forest and maxent 

algorithms and ensemble binary maps obtained in a weighted average. (a) C. decapetala 

(Roth) Alston; (b) L. camara; (c) O. stricta (Haw.) Haw.; (d) S. didymobotrya; (e) S. 

campylacanthum

Future habitat suitability outputs

Spatial correlation among change distribution maps 

Correlation coefficient values among binary output pairs of respective GCMs under the 3 RCPs 

for years 2050 and 2070 were found to be significantly different than 0 (p < 0.001). Spatial 

correlations among predicted binary outputs from all the six GCM (Table 1 in S5 Appendix) 

for C. decapetala, L. camara and O. strictawere above the r threshold value (r = (0.82 - 0.96); 

r = (0.86 - 0.98); and r = (0.71 - 0.97) respectively) (Fig 1 in S3 Appendix, Fig 1 in S4 

Appendix).

Output binary maps for S. didymobotrya species were strongly correlated except for 

three binary output maps. These were correlations between BCC-CSM1.1_m and MIROC-

ESM-CHEM outputs under RCP4.5 for year 2050 (r = 0.66) and for year 2070 (r = 0.62) and 

the lowest correlation value (r = 0.58) given by correlations between IPSL-CM5A-MR and 

MIROC-ESM-CHEM outputs under RCP4.5 for year 2070. The highest correlation coefficient 
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value (r = 0.97) was given by HadGEM2-ES and NCAR-CCSM4 outputs under RCP2.6 for 

year 2070.

S. campylacanthum species binary outputs recorded the least correlation values (min r 

= 0.53) for both HadGEM2-ES and IPSL-CM5A-MR, and HadGEM2-ES and MIROC-ESM-

CHEM outputs under RCP2.6 for year 2050. Maximum r value (r = 0.93) was given by IPSL-

CM5A-MR and NCAR-CCSM4 outputs under RCP8.5 for year 2070. Binary outputs from 

HadGEM2-ES compared to those obtained from the rest of GCM were consistently below 

threshold r values (r < 0.70) under RCP2.6 for years 2050 and 2070, under RCP4.5 for year 

2050 and under RCP8.5 for year 2070. We therefore concluded that HadGEM2-ES model 

prediction skill for S. campylacanthum species climate space was not satisfactory as compared 

to the rest of the GCMs (Fig 1e in S3 Appendix and Fig 1e in S4 Appendix) and hence was 

dropped from ensemble species distribution modelling of S. campylacanthum species. The six 

GCM model data were used for ensemble distribution modelling of rest of the species. 

Ensemble species distribution changes

Ensemble species distribution changes showed an increase in habitat suitability for L. camara 

and S. campylacanthum species and a decline in habitat suitability for C. decapetala, O. stricta, 

and S. didymobotrya species for both 2050 and 2070 projection periods (Table 4; Figs 4, 5 and 

6). S. campylacanthum species had the largest range expansion of ~33% of the total study area 

under RCP2.6 and RCP4.5 climate change scenario for both future periods 2050 and 2070. Its 

range expansion indicated a reduction of ~25% and ~30% under RCP8.5 for 2050 and 2070 

respectively. L. camara had the second largest range expansion of ~12% under RCP2.6 and 

RCP4.5 for years 2050 and 2070. Its range expansion under RCP8.5 was ~14% and ~11% for 

years 2050 and 2070 respectively. O. stricta species had low range expansion of <1% under 

RCPs 2.6 and 4.5 for both future periods. Its lowest range expansion (~0.31%) was under 
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RCP8.5 for the year 2050. Range expansion for C. decapetala on the other hand was ~1% for 

both future periods under all RCPs except for RCP8.5 for the year 2050 where the range 

expansion was the lowest (0.26%). S. didymobotrya species on the other hand recorded a range 

expansion of ~2% under all RCPs for both future periods. Its range expansion was towards the 

Aberdares national park and in Mukurwe-ini sub-county where initially absent in current 

distribution for both years (Figs 3 and 4).

Fig 4. Predicted suitable areas under changing climate scenarios in square kilometres 

for the 5 study species.
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Table 4. Percentage ensemble distribution changes for current climate period (1970 - 2000) and future climate periods; years 2050 (2040 
- 2069) and 2070 (2060 - 2089). 

species 
scientific 

name

Year range expansion (%)  no occupancy (absence 
in current and future) 
(%)

 no change (present in 
in current and future) 
(%)

 
range contraction (%)

 
 Range shift (km) 
(%)
 

Shift 
direct

ion 
(%)

  a b c a b c a b c a b c a b c  
2050 1.15 1.15 0.26 49.28 49.28 50.17 42.92 43.47 39.44 6.65 6.10 10.13 1.31 1.21 0.76 NWC. 

decapetala  2070 1.15 0.99 1.02 49.28 49.44 49.41 43.08 42.42 42.63 6.49 7.14 6.94 1.31 1.31 1.08 NW

2050 12.14 12.77 14.87 57.21 56.58 54.49 30.59 30.59 30.62 0.05 0.05 0.03 8.42 8.91 9.65 NWL. camara 

2070 11.62 12.35 11.54 57.73 57.00 57.81 30.62 30.59 30.57 0.03 0.05 0.08 7.99 8.49 8.08 NW

2050 0.52 0.92 0.31 69.41 69.01 69.62 27.06 27.87 19.47 3.01 2.20 10.60 1.49 1.37 5.64 NWO. stricta 

2070 1.20 0.60 0.71 68.73 69.33 69.22 28.42 27.03 27.51 1.65 3.04 2.56 1.32 1.30 1.12 NW

2050 1.94 1.94 2.30 45.28 45.28 44.91 26.54 29.34 32.40 26.25 23.45 20.39 4.41 3.55 3.40 NWS. 
didymobotry

a 2070 2.22 1.94 1.86 44.99 45.28 45.35 26.75 26.80 25.39 26.04 25.99 27.40 3.89 4.45 4.45 W

2050 33.16 33.11 25.52 19.03 19.08 26.67 47.61 47.53 46.82 0.21 0.29 0.99 6.69 6.59 5.52 NWS. 
campylacant

hum. 2070 33.84 32.27 30.25 18.35 19.92 21.93 47.74 47.66 47.76 0.08 0.16 0.05 6.69 6.59 6.52 NW

a, RCP2.6; b, RCP4.5; c, RCP8.5; NW, North West); W, West;
Bold Values indicate species range expansion or range contraction of ≥ 10% and range shift of ≥ 5 km).
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Although S. didymobotrya species had the largest suitability area (53%) among study 

species, its future habitat will contract by approximately half of its current habitat i.e. ~26% 

under RCP2.6 for both future periods. Its lowest range contraction (~20%) was under RCP8.5 

for year 2050 and the largest (~27%) under RCP8.5 for year 2070. C. decapetala had the second 

largest range contraction after S. didymobotrya at ~6% under all RCPs and both future periods 

except under RCP8.5 for year 2050 which was at ~10%. 

O. stricta distribution range had the highest range contraction at ~10% under RCP8.5 

for year 2050 and the least at ~2% under RCP2.6 for year 2070. On the other hand, L. camara 

and S. campylacanthum had the lowest range contraction among the study species. The highest 

for S. campylacanthum was at ~1% under RCP8.5 for year2050 and the rest at <1%. L. camara 

range contraction was very low at ~0.03% – 0.08% under all RCPs for years 2050 and 2070.  

Analysis of the species range shift indicated that L. camara species had the largest range 

shift (~8 – 10km) followed by S. campylacanthum (~6 – 7km). S. didymobotrya’s range shift 

distance was ~3 – 4km, C. decapetala ~1km while O. stricta had the largest range shift of ~5 

km under RCP8.5 for the year 2050 and ~1km under the rest of RCPs for both years. All study 

species showed a North West range shift direction. Based on these results, it is evident that 

changing climatic conditions had little impact on L. camara, S. campylacanthum and O. stricta 

species suitable habitats within the study area. On the other hand, S. didymobotrya species 

suitable habitat was greatly reduced under changing climatic conditions.

Fig 5. Ensemble species distribution changes between current and future climate 

scenarios under RCP2.6, RCP4.5, and RCP8.5 for the year 2050. (a) L. camara; (b) C. 

decapetala (Roth) Alston; (c) O. stricta; (d) S. didymobotrya; (e) S. campylacanthum Hochst. 

ex A. Rich.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 25, 2020. ; https://doi.org/10.1101/2020.08.25.265991doi: bioRxiv preprint 



Fig 6. Ensemble species distribution changes between current and future climate 

scenarios under RCP2.6, RCP4.5, and RCP8.5 for the year 2070. (a) L. camara; (b) C. 

decapetala; (c) O. stricta; (d) S. didymobotrya; (e) S. campylacanthum 

Discussion
Previous research has shown that climate change cause changes to the current environmental 

parameters of a given area [72] which in turn causes expansion of invasive species suitable 

areas [47]. Our study shows that L. camara and S. campylacanthum current distribution will 

persist and expand significantly to new habitats. Other than climate change enhancing range 

expansion, species may be subjected to an extinction trajectory. In our case, S. didymobotrya 

and C. decapetala have the largest range contraction among the study species. Despite S. 

didymobotrya being a native species and presumably well adapted to its environment, the 

impacts of changing climatic conditions will exacerbate its decline and a possible shift to new 

environments outside our study area. On the contrary, distribution of alien invasive species 

such as L. camara, C. decapetala, and O. stricta will persist under these climatic changes. This 

confirms that invasive species adapts well in diverse habitats with varying climatic conditions 

[8].  Although SDM outputs may give an under-prediction of a given study species due to 

difficulties in predicting species ability to evolve and adapt under changing conditions 

(Sinclair, White, and Newell 2010), our results confirms the role of climate change in 

enhancing bio-invasions in local natural environments [73]. 

Although climatic changing conditions will play a major role in reducing species 

habitats in future, continued decline and complete extinction is more likely to be influenced by 

habitat fragmentation over a longer period of time [74]. Land-use changes (habitat 

fragmentations) influences species biological processes as much as climate change does 

[35,72]. On the other hand, implying native species habitat decline as due to co-occurring alien 
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invasive species may not suffice Gurevitch and Padilla [75] unless a more practical framework 

such as a six-threshold framework outlined in the work of Downey and Richardson [74] is used 

to assess the role of alien plants on native plants extinction. Contrary to perceived negative 

impacts in terms of habitat transformations by alien and native species Witt et al. [6], S. 

didymobotrya species has been found useful in African traditional medicine. For instance, 

Jeruto et al. [76] found that its stem and root extracts had high efficiencies in inhibiting fungus 

growth while Jeruto et al. [77] found that root bark extracts possess phytochemical properties 

that inhibit bacterial pathogens growth. In a conservation point of view, making policies that 

aim at conserving S. didymobotrya species especially in the wild would sustain availability of 

materials for development of alternative medicine. As such more studies on the species current 

and future habitats involving multiple county levels should be prioritized. As far as the other 

study species are concerned, their negative impacts on natural habitats may outweigh their 

positive benefits. Many studies have advocated for urgent control measures for species such as 

L. camara due to its negative impacts on socio-economic livelihoods and biodiversity [2,18]. 

Shackleton et al. [21] suggested urgent intervention measures on O. stricta  species in Laikipia 

county due its impacts on annual economic losses per household among other negative impacts 

on rangelands. We foresee a similar scenario within our study area where O. stricta suitability 

in Kieni sub-county rangelands will affect pastoralism and wildlife conservation. 

S. campylacanthum species, a native plant species, shows good adaptability to warming 

climatic conditions. Its gain in habitat includes parts of Mt. Kenya national park and forest 

reserve and the Aberdare national park and forest reserve (Figs 5 and 6). Extrapolation of 

climate envelope [72] to the entire study area shows new species habitat areas within 

unsampled protected areas (Fig 1) hence proving the usefulness of SDMs. Threats posed by 

alien plants invasion in high conservation areas is usually significant [74].  Our species 

distribution maps confirm possible proliferation of C. decapetala, S. campylacanthum, and L. 
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camara species within protected areas both in current and future climates. These species had 

been cited as a nuisance in these protected areas by Kenya Forest Service [30].  Fragmented 

pixels within the Aberdare national park are predicted as suitable for C. decapetala species 

with a possible contraction in future climates (Figs 3 and 4). L. camara proliferation, as 

observed during field data collection, is pronounced within isolated forest conservation areas 

such as the Muringato nursery, Nyeri municipality and Nyeri forest conservation areas all of 

which fall within Nyeri Town sub-county (Fig 3b). Interests are high on S. campylacanthum 

species studies especially in conservation areas. For instance, a five-year research study by 

Pringle et al. [78] focusing on the effects of different sized mammalian herbivores including 

elephants, impala and dik-dik on S. campylacanthum species population within Mpala 

Research Centre in central Kenya indicated a complementary effect on the species population. 

While dik-dik reduced much of S. campylacanthum foliage, the impala and elephants 

contributed to seed dispersal hence complementing each other on sustaining species 

population. Since our study shows climate change will increase habitat range for S. 

campylacanthum species in conservation areas, its spread into new habitats will be fast due to 

availability of seed dispersers. Referring to the case of S. campylacanthum species, we have 

seen that while SDMs may provide an understanding to the distribution dynamics of invasive 

species, studies on other drivers of species population distribution are equally important.

For a local species SDM study e.g. areas of relatively small geographical extents, small-

scale habitat attributes such as fine scale topography and vegetation metric such as NDMI and 

NDVI [79] are important. Such attributes are usually overlooked despite their profound 

importance [72]. Moreover, species distributions depend on additional biotic factors (e.g. 

ability of species to compete for nutrients) and dispersal factors of a given species [80] which 

were lacking in our SDM models. Nevertheless, most researchers use the readily available 

standard bioclimatic variables (mostly temperature and precipitation) as the only predictor 
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variables for calibrating models for species future predictions e.g. Ashraf et al. [81]. Despite 

using predictor variables with 1km grain size for a small scale study [49], our current and future 

species distribution estimates provides information needed to activate management and 

monitoring actions in threatened habitats.   

Fewer bioclimatic variables were selected as important (Table 2) a situation attributed 

to the fact that our study area is relatively small and possibly having little climate variations 

than that of a large spatial scale [49]. Topographic variables played a big role in species 

response and therefore cannot be ignored in small scale SDM studies. For instance, DEM 

variable shows decreasing low probability of occurrence for L. camara in higher elevated areas 

>1750m. Thapa et al. [35] also found L. camara range contracting in upper elevations and 

expanding in lower elevations in the Kailash Sacred Landscape, Nepal.  

In conservation planning, one of the goals is to establish biogeographical patterns of a 

given species often through SDMs. Such efforts enable identification of species invasiveness, 

sites that need prioritization for rehabilitation as well as re-introduction of threatened species 

[72]. We have provided baseline information on distribution of study species within Nyeri 

county, a major milestone in moving towards maintaining healthy natural habitats and 

preventing climate change vulnerabilities such as wild fires, reduction of survival of endemic 

species and adverse effects on agricultural systems and water catchment areas brought about 

by uncontrolled spread of invasive species [82].

Conclusions 
Our study has demonstrated the importance of carrying out SDM at a local natural environment 

to establish where and which invasive species will lose, gain suitable habitats and persist with 

little change in future climate change scenarios. We have also shown that invasive species 

management programs in local natural environments ought to consider climate change aspects 
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in addition to other topographic factors. Immediate actions are needed to avert possible losses 

of biodiversity due to persistence and future expansion of L. camara and S. campylacanthum 

invasive species within Nyeri county more so in the biodiversity hotspot areas. Additional work 

is needed to support local invasive species eradication programs more so on determination of 

their actual location and absolute quantification of area of occupancy. Moving forward, we 

intend to improve on this work by developing a mapping framework that utilizes species unique 

spectral indices to enhance rapid estimation of fractional cover maps as well as derivation of 

essential biodiversity variables from remote sensing imageries for building accurate SDMs at 

local scale levels. 
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