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Abstract: Flexible manipulators capable of spatial motions have potential uses in factory work
environments since they are light-weight, low-cost and energy efficient. However, for widespread
commercialization of such robotic manipulators, simultaneous control of trajectory and vibration
still remains a challenge. To address this, an inverse system based controller is developed and
compared against the traditional direct strain feedback (DSFB) controller on performance criteria
such as trajectory tracking and vibration suppression. The controllers were verified using a 2-link,
flexible manipulator capable of 3D motion. As a baseline, trajectory tracking using inverse kinematics
was first performed, and it was observed that deflection of the links due to its self-weight deteriorated
the track following performance. Also, the vibration components of the flexible manipulator were
determined. The validation experiments on the actual manipulator showed that the inverse system
based controller was superior to the inverse kinematics method of tracking and DSFB, as it followed
the ideal trajectory by overcoming the gravitational pull, and suppressed the link vibrations.
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1. Introduction

It is desirable for industrial robot arms to be of low cost, to have low energy consumption,
and to operate with high speed. To attain these advantages, one of the approaches is to reduce the
link’s weights. However, weight reduction of the arm comes with low rigidity, and the accuracy of
the tip position is reduced due gravitational pull on the links and vibration arising from the elastic
deformation of the flexible link. [1,2].

Recently, several vibration control methods have been reported. Luo et al. [3–5] proposed the
direct strain feedback approach for vibration control. This scheme involves feeding back a fraction
of the root strain through a controller gain k. In their work, they showed that strain feedback has
the effect of increasing the system damping thereby reducing vibrations without affecting the system
stiffness. They further presented a proof that the scheme was asymptotically stable. However, the use
such fixed gain controllers is limiting in that they allow noise feedback once the strain has subsided.
Adaptive controller gain was proposed in [6,7] with better results than for those using fixed gains.

Lee et al. developed in [8] an energy-based robust controller for a multilink flexible robot. In their
work, the controller was developed using the basic relationship of systems of energy and independent
from its system dynamics. This approach has an advantage since the derivation of the system model,
which is very difficult for a multilink manipulator, is not required. Other techniques in literature
include but not limited to robust control [9], input shaping [10] to mention just but a few. From
literature, a one-link arm is called a flexible arm whereas the two or more-link arm is called a flexible
manipulator. Most of these studies control a single-link flexible arm with only a few articles on the
multilink manipulator due to the difficulty in modeling and controller design. Further, most of them
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focus only on vibration suppression, with only a few studies on the trajectory control of the tip of a
multilink manipulator.

This work is the first to report on combined trajectory tracking and vibration suppression of a
flexible manipulator which is capable of 3D motion. To this end, at first, we ignored the link flexure
and used inverse kinematics to express the robot arm tip trajectory in terms of the joint trajectories,
as if the robot arm was comprised of rigid links. Next, using the input-output data obtained, system
identification of the flexible manipulator was carried out using the subspace identification method
in MATLAB, and an inverse system for the robot arm’s tip trajectory control was developed. For the
verification of the performance of the inverse system, a real laboratory grade manipulator was used.
Experiments using strain feedback were used for comparison with the inverse system controller’s
performance. This paper’s findings will be useful for widening the potential applications of the flexible
manipulator in the industrial robotics fields.

The rest of the paper is organized as follows: Section two describes the experimental setup for
the control of the 3D flexible manipulator. Section three describes how the inverse kinematics was
formulated and its performance is shown. Section four describes the controller which uses angle and
strain feedback. Section five shows the development and testing of the controller which uses inverse
system. Section six gives the conclusion. Table 1 shows the abbreviations used in this paper.

Table 1. Abbreviations

Abreviation Name
PID Proportional Integral Derivative
3D Three-dimension
DOF Degrees of Freedom
A/D Analog to Digital
D/A Digital to Analog
DH Devavit-Hartenberg
FFT Fast Fourier transform
DSFB Direct Strain Feedback
LPF Lowpass filter

2. Experimental setup

Figure 1 shows a flexible manipulator with two links and three joints, hence having three degrees
of freedom (3DOF). The angle of each of the joints were used as the control target. A motor is attached
to each of the joints. Joint 2 and joint 3 are rotating in the elevation direction while joint 1 is rotating
in the twisting direction giving the manipulator a 3D sweep. Cast iron cylinders are mounted on the
opposite side of each motor of joint 2 and joint 3 for counterbalancing purposes. Each motor also has a
built-in optical encoder with output of 1000 pulses/rev. Link 1 is made from stainless steel (SUS304)
and link 2 is made from aluminum (A2017). A weight is attached at the tip of the second link of the
manipulator which makes the link easily deformed during operation. To measure the lateral and
torsional elastic deformation of the links, strain gauges are attached to the roots of Link 1 and Link 2
using the 2-gauge method. The strain signal is conditioned using a bridge circuit before being amplified
using the DPM713B and DPM913B strain amplifiers (Kyowa Electric Co. Ltd.). These amplified signals
are sampled at 0.01sec and digitized with an A/D converter interface to the dSPACETMDSP board for
management.

The basic representation of the control system is as shown in Figure 2. The control system
was implemented in Matlab/SimulinkTMfrom which the desired trajectory was synthesized and the
control system layout was designed. The Simulink model was downloaded in to the dSPACE Control
desk which interfaces the hardware parts of the system and collects the feedback signals for further
processing. The output signal from the motor shaft encoder is sent to the speed control-type servo
amplifier (DA2 series from Sanyo Denki) through the D/A converter to drive the servo motor. In this
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experiment, the proportional (P) controller was chosen for the joint angle control. The reason is that
the integral (I) controller would cause overshoot or undershoot, which would result in severe link
vibrations. Further, the derivative (D) controller would cause oscillations in the angular response, and
as a result, would cause vibration of the entire link. Since vibration control is one of the key objective
of this study,the proportional gain was set as 3. The trajectory of the tip of the arm was captured using
an optical motion capture tool (OptiTrackTM) which tracks a lightweight marker attached to the tip in
three-dimensional space. For this experiment, the sampling rate was set to 100 Hz. The vertical axis
was chosen as the positive z axis, the horizontal left is the positive x axis, and the forward direction is
the positive y axis.

Figure 1. Flexible manipulator

Figure 2. Flexible manipulator

3. Inverse kinematics and vibration analysis

Inverse kinematics was used to develop the joint trajectories so that the tip of the manipulator
would trace a circle. The circle has a radius of 0.15 m and it is centered at a position of 0.8 m in the
y-direction and 0.5 m in the z-direction, with the base of the manipulator being the origin. The angular
velocity for tracing of the circle for this experiment was chosen as 1.25 rad/sec, slow enough for the
rigid manipulator assumption to hold. Figure 3 shows the line diagram describing the problem at
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hand. In the figure, the axes ( x0,y0,z0 ) is the stationary frame while the axes (x1,y1,z1), (x2,y2,z2),
(x3,y3,z3), and (xt,yt,zt) are the moving frames for joint 1, joint 2, joint 3 and the tip respectively. Table
2 shows the Devavit-Hartenberg (DH) parameters of the flexible manipulator.

θ1

θ2

θ3

x0

y0

z0

x1 y1

z1

x2

y2
z2

xt yt

zt

l1

l2

x3

y3

z3

Figure 3. Line diagram of the flexible manipulator

Table 2. DH parameters of the manipulator

Link ai αi d θi
0 0 π

2 0 θ1
1 0.569 l2 0 θ2
2 0.57 l3 0 θ3

The coordinate system set for each link is Σi = {xi, yi, zi}, the rotation matrix i−1Ri and is
associated with the conversion from Σi−1 to Σi and the position vector i−1di are as follows:

0R1 =

cos θ1 0 sin θ1

sin θ1 0 − cos θ1

0 1 0


1R2 =

cos θ2 − sin θ2 0
sin θ2 cos θ2 0

0 0 −1


2R3 =

cos θ3 − sin θ3 0
sin θ3 cos θ3 0

0 0 1


0d1 =

0
0
0


1d2 =

l1 cos θ2

l1 sin θ2

0


2d3 =

l2 cos θ3

l2 sin θ3

0
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The simultaneous conversion matrix i−1Ti from Σi−1 to Σi is as follows:

i−1Ti =

[
R d
0 1

]

From this, the simultaneous conversion matrix between each link is as follows:

0T1 =


cos θ1 0 − sin θ1 0
sin θ1 0 cos θ1 0

0 1 0 0
0 0 0 1



1T2 =


cos θ2 − sin θ2 0 l1 cos θ2

sin θ2 cos θ2 0 l1 sin θ2

0 0 −1 0
0 0 0 1



2T3 =


cos θ3 − sin θ3 0 l2 cos θ3

sin θ3 cos θ3 0 l2 sin θ3

0 0 1 0
0 0 0 1


Therefore, the transformation matrix from the reference coordinate system at the root to the coordinate
system at the tip of the flexible manipulator is as follows:

0T3 = 0T1
1 T2

2 T3

=

[
0R0

0d3

0 1

]

The expanded transformation matrix is attached in appendix A.3. The coordinates of the tip of the
manipulator can be expressed as in equation (3.12):

0d3 =

cos θ1(l1 cos θ2 + l2 cos(θ2 + θ3))

sin θ1(l1 cos θ2 + l2 cos(θ2 + θ3))

l1 sin θ2 + l2 sin(θ2 + θ3))


By solving equation (3.12), each joint angle becomes equation (3.13).

θ1 = atan2(yt, xt)

θ2 = sin−1

 zt√
l2
1 + l2

2 + 2l1l2 cos θ3


θ3 = cos−1

(
x2

t + y2
t + z2

t − l2
1 − l2

2
2l1l2

)

Figure 4a shows the actual trajectory of the tip plotted against the desired tip trajectory. The error
of the radius of the circle and the deviation from the center was less than 1cm, confirming the accuracy
of the inverse kinematics described above. The error generated here is considered to be caused by the
change in the length of the link caused by the bending of the link due to its own weight. Figure 4b
shows the FFT analysis results in the x, y, and z directions. The resonance frequency was observed
at around 3 Hz in all axial directions. Having obtained the trajectory of the tip in 3D space for the
respective joint angles, system identification was performed with the joint angles as the input data and
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the trajectory of the tip as the output data. This yielded a linear state space system representing the
model of the manipulator. The validation of the model is as shown in Figure 5
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(b) FFT analysis
Figure 4. Experimental results
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Figure 5. Validation of the tip trajectory

4. Experiment 2: Control using link strain feedback

In this section, angle control using the proportional (P) controller based on the input angle
generated using inverse kinematics is presented. Also, the concepts of the tip trajectory tracking and
vibration suppression, simultaneously, using the direct strain feedback method are verified. Figure 6
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shows the block diagram of the controller where the angle control is performed by the P controller. The
root strain signal ε(0, t) was simultaneously multiplied by the feedback gain KS and was directly fed
back to be the input signal of the motor. In this experiment, the feedback gain KS which was applied
as the distortion signal for the driving of Joint 2 and Joint 3 was set to 0.4 and as mentioned in section
2, the proportional gain was still 3.

KP

KS

PLANT

θ(t)

θd(t)
ε(0, t)

+ +
-

-

Figure 6. P controller and strain feedback

Figures 7a and 7b shows the FFT’s of the measured strain values for Link 1 and link 2, for with
and without the strain feedback controller. The resonant frequency of the flexible manipulator is
approximately 3 Hz with a second peak at around 7 Hz. This results demonstrate that strain feedback
significantly suppressed vibration at the resonant frequency of 3 Hz with little suppression of the
higher harmonics at 7 Hz. Figure 8a shows the trajectory of the tip of the flexible manipulator on the xz
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(a) FFT analysis of Link 1 Strain
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(b) FFT analysis of Link 2 Strain
Figure 7. Experimental results

plane. The error of the displacement of the drawn circle is larger than in Figure 4a. This is considered
to be the effect of steady strain due to self-weight of the links. Since the flexible manipulator used in
this study has a very low rigidity, it is always distorted due to its own weight when it is tilted to the
ground. In the direct strain feedback method, this steady strain amount is also fed back, so that an
angle error is generated accordingly.

Figure 8b shows the FFT analysis of the performance of the manipulator using inverse kinematics
for with and without the direct strain feedback (DSFB). Vibration was suppressed near the resonant
frequency component of 3Hz (Figure 8b ). Comparing the results of Figure 8b with those of Figures 7a
and 7b, there is an insignificant suppression of frequency component of 7Hz by the strain feedback.
Hence, there is no guarantee that the vibration at the tip can be suppressed by suppressing the vibration
at the link root. The increase in the frequency component below 2 Hz was considered to be due to
the effect of gravity on the feedback steady strain signal. Therefore, the direct strain feedback was
effective for removing some of the resonance frequency components. However, since the error of the
steady strain is also fed back, the accuracy of the trajectory is degraded. To reduce this error, it is
necessary to feed back the amount obtained by subtracting the magnitude of steady strain when the
manipulator was tilted. The feedback gain was again set to 0.4. However, if the tip speed changed, the
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Figure 8. Experimental results with DSFB

gain value should be adjusted accordingly. Further, the strain gauge used this time was attached at the
root, however, there was a delay before the vibration generated at the root was transmitted to the tip.
If control was not performed after taking these factors into consideration, the vibration of the tip may
worsen and the accuracy of the trajectory may be adversely affected.

5. Control using inverse system

From the input and output data obtained by the inverse kinematics, system identification was
performed using the canonical variate analysis method in the System Identification Toolbox of Matlab.
The input data used here was the displacement of each of the joints measured by the encoder and
the output data was the trajectory measured by OptiTrack. Since the system has multiple inputs and
multiple outputs, the state space model was used and the number of states were 10. Since the direct
transfer term D was set to 0, the time-invariant state space equations for the identification system is
expressed by the equations:

ẋ = Ax + Bu

y = Cx (1)

For details of these state matrices, see appendix A.1. Where x, y and u are expressed as follows

x =
[

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

]T

y =
[
y1 y2 y3

]T

u =
[
u1 u2 u3

]T

Elements y1, y2 and y3 indicate the x, y, z of the tip trajectory, and u1, u2, u3 are the displacements
of the input angles to Joint 1, Joint 2, and Joint 3.

Figure 9a shows the pole-zero map of the identified system. Since the poles are concentrated on
the left half-plane, it can be seen that it is a stable system. Further, since all zeros are concentrated on
the left half-plane, the model is a minimum phase and the resulting inverse system will be stable. Since
the flexible manipulator is a non-minimum phase system, it generally has unstable zeros, however,
during identification, a minimum phase model that does not have unstable zeros was settled upon
to evade the complexity that comes with inverting a non-minimum phase model. This way, it was
possible to sufficiently reproduce the vibration characteristics.
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The inverse system was derived using the construction algorithm proposed by Silverman et al.
[11–13]. First, the lower expression of equation 1 is differentiated to derive equation 2.

ẏ = Cẋ (2)

Next, the above equation of equation 1 is substituted into equation 2.

ẏ = Cẋ

= CAx + CBu (3)

Check if CB 6= 0 in equation 3. When CB = 0, Equation 3 is differentiated. Repeating this n times,
when CAnB 6= 0

yn = CAnx + CAn−1Bu (4)

Next, equation 4 is transformed as follows.

u = (CAn−1B)−1[yn − CAnx] (5)

Substituting equation 5 into the above equation of equation 1.

ẋ = Ax + B(CAn−1B)−1yn − B(CAn−1B)−1CAnx

= [A− B(CAn−1B)−1CAn]x + B(CAn−1B)−1yn

Also, from equation 5
u = −(CAn−1B)−1CAnx + (CAn−1B)−1yn (6)

From the above, the equation of state of the inverse system can be expressed by the following equation.

˙̂x = Âx̂ + B̂yn

u = Ĉx̂ + D̂yn

where:

Â = A− B(CAn−1B)−1CAn

B̂ = B(CAn−1B)−1

Ĉ = −(CAn−1B)−1CAn

D̂ = (CAn−1B)−1

For details of these state matrices, see appendix A.2.
Figure 9b shows the pole-zero map of the inverse system. Compared with the pole-zero map of

the identified system is as shown in Figure 9a, it can be confirmed that the placements of poles and
zeros are interchanged. As a result, the controlled object and the poles and zeros of the inverse system
cancel each other out, thus suppressing the vibrations. The pole near the origin of the inverse system
has a positive real part, but its value is sufficiently small that it has no adverse effect in this experiment,
so it was neglected.

Having identified the system model and developed the inverse system, next, the low
reproducibility of the high frequency components is described, which is a drawback of the inverse
system and the solution to it, is also described. In general, most existing physical systems have
integral characteristics that attenuate the high frequency components. Since the inverse system also
cancels this integral characteristic, it may amplify high frequency components and adversely affect
the entire system. Thus, a filtered inverse system that used a lowpass filter (LPF) was employed.
In this method, the high-frequency components are attenuated by a low-pass filter, and only the
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Figure 9. Pole zero maps

low-frequency components are reproduced [10]. In this work, the cutoff frequency of the low-pass
filter was set to 50 Hz because it is outside the 3 Hz resonant frequency of the manipulator system.

Figure 10 shows the bode plots for the magnitudes (Figure 10a) and phase (Figure 10b) of
the identified and the inverse models in the same figure. From Figure 10a, it can be seen that the
magnitude plots of the inverse model resemble that plot for the identified model flipped about the
resonant frequency ranges. The profile of the phase plots of the two models is also similar as can be
seen in Figure 10b. The minor discrepancy between the plots of the two model stems for the unstable
pole of the unstable that was not ignored in the analysis.

To investigate the behavior of the combined controller, block diagram to illustrate the entire
system is shown in Figure 11. Variable r = [xd, yd, zd]

> is the target value and u = [θ1, θ2, θ3]
> is the

input value for the target value. Variable y = [xt, yt, zt]> is the output from the system, G is the
identified model, and G−1 is the inverse system. In this experiment, r is the target trajectory and u is
the target angle of each joint.

The Bode diagram of the entire system shown in Figure 11 is as shown in Figure 12. It can be seen
from Figure 12a that the frequency response is generally flat. The inverse system was at first simulated
using Simulink. The input was the target displacement of the tip while the angular displacement that
emerged from the inverse system was the input to the identification system. Figure 13 shows the error
in displacement in the x, y, and z directions. Since the error from the ideal trajectory is within 5mm in
all the directions of displacement, the inverse system is considered to function with sufficient accuracy.
Based on this accurate input-output relationship, it was confirmed that the created inverse system
could cancel the high frequency characteristics of the system.

Experiments with the real flexible manipulator were performed and the experimental results are
as shown in Figure 14. From the figure, it can be confirmed that the control method using the inverse
system tracks the trajectory with higher accuracy than when using the inverse kinematics method.
This was attributed to the fact that the inverse kinematics did not consider the deflection due to the self
weight of the links in the determination of the joint angles. Also, The input output relationship was
used for identifying the system’s model, where this identified model was used to develop the inverse
system. Thus, the inverse system considered the deflection due to its weight. Further, as shown in, the
inverse controller suppressed the resonance frequency component near 3 Hz, which demonstrated its
effectiveness (Figure 14b). The other frequency component at around 7 Hz was not suppressed. This
was because the frequency response could not be reproduced well because the state variable was set
low to create a model without unstable zeros during system identification.
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Figure 12. Bode plots of the filtered inverse system

6. Conclusion

Trajectory and vibration control was demonstrated on a 2-link 3-DOF flexible manipulator.
Trajectory tracking using the inverse kinematics approach was affected by the arm’s self weight
from the gravitational pull. The resonant frequency of the flexible manipulator was at 3 Hz and
another small vibration peak at about 7 Hz. Trajectory control using inverse kinematics approach
combined with a well known vibration suppression method using direct strain feedback, was verified.
It was confirmed that direct strain feedback was effective in suppressing the tip vibration. A large error
occurred in the tip trajectory due to the effect of steady strain from the gravitational pull. Experiments
on the actual plant using the filtered inverse controller showed the effectiveness of controller for
sufficient tracking of the ideal trajectory and suppression of resonant frequency components near 3 Hz.
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Figure 13. Simulation results
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Figure 14. Experimental results of tip tracking
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Appendix A State matrices

Appendix A.1 State space matrices of the identified model

A =



−0.6926 −0.8675 0.0516 −0.0511 0.2786 0.5353 −0.1166 0.1086 −0.1400 0.4740
0.4900 −1.5583 −0.5355 0.0367 −0.8306 0.2203 −1.5467 −0.0287 −1.1216 2.0692
−0.1760 3.5986 −3.2778 1.9900 −6.8039 −3.7085 −4.7814 −1.4837 −2.0616 1.3883
−0.0582 0.1535 −2.6397 −3.5329 −0.3705 1.3518 −3.8494 6.5161 −3.3288 11.8725
−0.1508 2.4174 7.2666 −2.4489 −0.3628 −10.9042 10.2229 4.6523 4.2277 0.0171
−1.0621 0.1789 7.7042 −9.7875 5.0168 3.3471 9.5343 −1.6831 −4.3811 9.8268
0.6934 2.1370 11.7847 2.8564 −17.6533 −0.1577 2.4951 −3.9490 3.4115 2.2134
−2.6478 −0.4796 34.4820 −64.7539 −43.5529 27.7574 13.5589 6.4922 32.2565 18.0729
2.6061 10.8855 16.4387 18.3434 −24.6379 33.9769 8.8472 −40.4746 −25.6975 −43.7943
0.9775 −0.2089 2.8948 −14.2132 −4.8481 0.2834 −6.0791 16.9463 −6.6456 −28.3385



B =



−1.0210 −0.5904 −0.5717
5.2493 6.9163 1.8214

32.5313 32.2858 13.8965
−59.0933 −36.6227 −29.2562
−78.8517 −78.9634 −28.0289
−0.6712 −5.8014 1.7168
48.7067 34.2729 22.7535
−298.4638 −412.3211 −42.6761
538.8148 504.9310 184.5226
218.7773 210.5332 78.9056



C =

 0.7545 −0.0670 −0.0168 0.0051 0.0053 0.0075 0.0048 0.0004 0.0331 0.0004
−0.2734 −0.0851 −0.0167 −0.0591 −0.0091 −0.0016 0.0046 −0.0032 −0.0026 −0.0079
0.8109 0.1275 0.0503 −0.0297 −0.0123 00048 0.0013 0.0004 −0.0051 −0.0008


D =

0 0 0
0 0 0
0 0 0



Appendix A.2 State space matrices of the inverse model

Â =



−0.7498 −0.9482 −0.0126 0.1634 0.3362 0.4609 −0.1429 0.0101 −0.0672 0.3618
−4.9467 −9.6075 1.2321 0.0750 2.8272 5.1341 −0.7792 −0.0170 −1.2179 4.4401
−21.6027 −28.2769 3.8597 −1.0576 6.0569 16.9038 −2.9337 0.0051 −4.1027 14.1147
24.1976 36.9731 −7.9847 9.4114 −6.4490 −23.7448 2.6950 0.6424 5.6125 −16.6298
10.9824 18.1039 5.5332 −11.0247 −1.6416 −6.0843 10.0795 −1.1402 −3.8846 3.6871
−26.7389 −39.2451 17.7469 −6.6843 −8.0731 26.3519 −2.7290 0.3994 −10.7755 28.8191
759.0890 1139.4763 −85.9007 −50.3812 −393.5548 −591.7411 116.8091 −0.3093 123.2259 −495.5186
−723.8249 −1079.3174 136.1552 −62.5961 278.0174 651.7493 −112.2687 −3.6228 −146.6866 515.4380
−259.4299 −390.4555 52.2579 −43.2276 111.3288 225.5909 −39.2710 −3.5482 −46.6396 164.0669



B̂ =



0.0415 −0.3757 −0.2624
−5.6923 −1.9402 −5.1393
−22.4575 −1.5935 −18.4455
20.9541 −18.4306 19.4764
81.7583 6.0869 99.2044
10.2468 5.3027 14.0964
−23.9267 11.0621 −24.6789
618.1098 144.7863 865.8609
−591.7940 −11.7588 −786.0879
−221.1660 −8.7231 −273.9078



Ĉ =

−4.6568 −7.0624 0.0167 −0.6707 0.9621 3.5661 −2.0358 0.2826 −1.2520 4.6948
0.7303 1.1503 0.3038 0.4092 0.3815 −0.4850 0.9429 −0.1721 0.5233 −1.4615
7.6627 11.5665 −0.2313 0.4000 −2.2131 −5.7380 2.7079 −0.1547 1.5681 −6.6791
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D̂ =

−2.7328 0.7425 −5.8814
−0.0208 −0.9175 1.1451
4.8297 0.2787 9.7806



Appendix A.3 Transformation matrix

0T3 =


cos θ1 cos(θ2 + θ3) − cos θ1 sin(θ2 + θ3) − sin θ1 cos θ1(l1 cos θ2 + l2 cos(θ2 + θ3))

sin θ1 cos(θ2 + θ3) − sin θ1 sin(θ2 + θ3) 0 sin θ1(l1 cos θ2 + l2 cos(θ2 + θ3))

sin(θ2 + θ3) cos(θ2 + θ3) 0 l1 sin θ2 + l2 sin(θ2 + θ3))

0 0 0 1
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