GLOBECOM 2020 - 2020 IEEE Global Communications Conference | 978-1-7281-8298-8/20/$31.00 ©2020 IEEE | DOI: 10.1109/GLOBECOM42002.2020.9322253

Trajectory User Linking

Juliet Chebet Moso!2, Stéphane Cormier!,

I CReSTIC EA 3804, 51097

!Université de Reims Champagne-Ardenne

Reims, France

juliet-chebet.moso @etudiant.univ-reims.fr, {stephane.cormier, hacene.fouchal } @univ-reims.fr

John Wandeto?
2 Computer Science
2Dedan Kimathi University of Technology
Nyeri, Kenya
john.wandeto@dkut.ac.ke

Abstract—Vehicles in an Intelligent Transport Network ex-
change a lot of messages. Every message sent is generated
with an identifier of the transmitting vehicle. To respect the
user privacy, an identifier is kept only over a specified time
interval. The need that arises is, given that multiple identifiers
are assigned to a vehicle, are we able to group the identifiers
and detect those which belong to the same vehicle? We solved
this Trajectory-User Linking problem by chaining anonymous
trajectories to potential vehicles by considering similarity in
movement patterns. Our method managed to link trajectory
segments to their common vehicles which we validated through
map matching of the trajectories using QGIS.

Index Terms—Trajectory-User Linking, Moving objects, Sim-
ilarity measure, Semantic trajectory

I. INTRODUCTION

The development of wireless communication technology,
geographical information systems, embedded positioning de-
vices and ubiquitous devices has facilitated collection and
storage of vast quantities of mobility data. The collection
of mobility data is done by online or offline means through
devices attached/carried by the moving objects, road side units
among other techniques. These data typically contains infor-
mation describing the movement of people, goods, vehicles,
air crafts, animals, natural phenomena (hurricanes, tornadoes,
and ocean currents), etc. Each trace of a moving entity is a
multi-attribute, time-ordered sequence of locations.

According to Liu, Wang and Qu cited in [1], trajectory
mining can be viewed as a process of analyzing mobility
traces with the aim of discovering spatial, spatial-temporal and
behavioral patterns through clustering, classification, anomaly
detection, and interesting location detection. Trajectory data
mining can also be categorized into the following phases
[2]: (a) pre-processing (trajectory compression, stay-point
detection, trajectory segmentation and map matching), (b)
data management (indexing and storing the data for efficient
retrieval) and (c) pattern mining (clustering, classifying, and
detecting outliers). The key driving force in trajectory data
analysis can be “economic (logistical optimization, customer
behavior analysis, targeted advertising), scientific (animal be-
havior analysis, healthcare), administrative (urban planning,
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criminal investigation), or private” [3]. The present challenge
is how to exploit these data to extract useful knowledge and
information for improvement of mobility levels [4].

When considering moving objects especially on road net-
works, the paths taken are linked to the prevailing traffic
environment and conditions. When analyzing these trajectories
it is important to incorporate the environmental information
S0 as to gain a better understanding on the movement patterns
[5]. The behavioral and lifestyle aspects of a moving object
can be discovered from the examination of its daily trajec-
tories. Trajectory pattern analysis is invaluable in applications
such as: recommender systems, public security systems, and
path planning in emergency evacuations [6].

In order to gain useful knowledge from trajectories, the raw
points need to be enriched with semantic features, which is
essentially a challenging task. One technique for solving this
problem is to use experts to annotate the semantic features on
the raw trajectories or to let the users attach semantic labels
to their trajectories. Another approach is to associate points of
interest (POIs) with the location information such that the POIs
become the semantic labels [2], [7]. Semantically enriching a
trajectory with background information makes querying and
analysis simpler and enhances pattern identification [8]. This in
turn facilitates behavior analysis of moving entities. Semantic
trajectories can be applied in context-aware computing, trip
recommender systems and life experience sharing [2].

In extraction of semantic patterns, the purpose of visits to
a location and the time when the particular pattern occurred
are important aspects to consider. However, it is challenging to
identify the reason for visiting a region due to the fact that the
region can cover multiple POIs and most of the time the POIs
are not captured as attributes of the trajectory. Also, moving
objects generate a lot of redundant highly sampled data over a
long period of time, as a result of the low cost of storage and
advances in battery technology. The high sampling-rates over
a long period of time is an effective method to increase the
probability of capturing more patterns during pattern mining.
However, making one-by-one comparisons of the un-simplified
raw trajectories is practically impossible and computational
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intensive. To mitigate this challenge, compression and pruning
techniques can be employed during trajectory data mining [6].

Moving objects may have different strategies when they
need to report their locations to a central repository, such
as time-based, distance-based, and prediction-based strategies.
They may also suspend the communication with a central
server for a while and resume later. The overall result is
that the lengths and time stamps of the trajectories will be
different and the trajectories may also be segmented with
gaps (missing readings). Each trip in a trajectory dataset
includes an identification (ID) of the device it was recorded
from. Device IDs enables chaining of consecutive trips of the
same vehicle to rebuild movement over a longer period of
time, which provides a better insight into mobility patterns.
However, device IDs may periodically change for privacy or
some other reasons, which clearly limits the analysis. Thus,
to be able to gain knowledge from trajectories a method for
chaining anonymous trajectories and filling missing gaps is
required.

We propose to solve the Trajectory-User Linking (TUL)
problem by chaining anonymous trajectories to potential vehi-
cles by considering similarity in movement patterns. This will
be performed as a pre-processing step for the characterization
and semantic analysis of moving objects though behavior
analysis. We make the following contributions: (a) we present
a detailed state of the art on trajectory linking, trajectory
classification and identify the open research issues; (b) we
investigate trajectory linking problem using a real dataset of
messages generated in Cooperative Intelligent Transportation
System (C-ITS); (c) we validate our results using map match-
ing.

The rest of this paper is structured as follows: Section
Il presents the state of the art investigation on Trajectory-
User Linking and trajectory classification. Section III presents
the problem statement, methodology and description of the
dataset. Section IV presents the experiments and results, and
Section V presents the conclusion and future work.

II. RELATED WORKS

This section introduces works on Trajectory-User Linking
and trajectory classification.

A. Trajectory-User Linking (TUL)

Trajectory-User Linking is a recent area of research in
location based social network applications (LBSNs) [9]. It is
motivated by the fact that LBSN applications generate a lot
of data which are usually stripped of the user identifiers as
a way of anonymizing the data and preserving privacy. On
the other hand, linking these trajectories to the users who
generated them can provide invaluable information for rec-
ommendation systems and identification of criminals through
phone signals and check-ins among other applications. Solving
TUL is a challenging task due to the large number of user
classes and the sparsity of data. A Recurrent Neural Networks
(RNN) based semi-supervised learning model, called TULER
(TUL via Embedding and RNN) is proposed in [9] which

learns the semantic mobility patterns of spatio-temporal data
by correlating trajectories to the users who generated them.
TULER is designed to identify the dependencies inherent in
check-in data and infer hidden patterns of users.

Another semi-supervised learning framework, TULVAE
(TUL via Variational AutoEncoder) is proposed in [10] which
learns human mobility in a neural generative architecture with
stochastic latent variables that span hidden states in RNN.
It considers the fact that human trajectories especially in
geo-tagged social media are sparse with high-dimensionality
and may contain embedded hierarchical semantic structures.
TULVAE handles the data sparsity problem by analyzing
large volumes of unlabeled data which is a source of useful
knowledge and unique individual mobility patterns.

While considering the heterogeneity of mobility data due
to the growing number of location based services and the
need for a deep understanding of user behavior across multiple
services, DPLink [11] is proposed. DPLink is an end-to-end
deep learning based framework for performing user identity
linkage task on heterogeneous mobility data collected from
different services with different properties. It is made up of a
feature extractor including a location encoder and a trajectory
encoder to extract representative features from the trajectory
and a comparator to compare and decide whether to link
two trajectories as the same user. A multi-modal embedding
network and a co-attention mechanism in DPLink handle the
low-quality problem of mobility data.

B. Trajectory classification

Trajectory classification is a process of identifying the class
of a moving object based on its movement path. The goal
can be to identify a type of vessel, the transportation mode,
type of animal or a specific user based on their movement
patterns [12]. The key input to a trajectory classification task
is a sequence of spatio-temporal points. The main classification
process follows three stages [2]: (a) Trajectory segmentation,
(b) Feature extraction from the segments, and (c¢) Building
of the classification model (e.g. Dynamic Bayesian Network
(DBN), Hidden Markov Model (HMM), and Conditional
Random Field (CRF) which consider information from local
points/segments and the sequential patterns between contigu-
ous points/segments).

When classifying trajectories, clustering can be performed
by assigning similar trajectories to groups (clusters) such that
the inter-class similarity is low and the intra-class similar-
ity is high. Clustering facilitates the extraction of collective
movement characteristics of objects resulting in behavior
prediction which is used for decision support in location
recommendation, destination prediction, weather forecast, ur-
ban planning and market research [13]. The current focus of
trajectory clustering research is finding appropriate features
for trajectory representation, similarity measures and develop-
ment of algorithms for spatial data clustering [14]. The main
challenge is how to identify relevant features that distinguish
the class of a single point, trajectory segment or the whole
trajectory and how to select the most discriminate features to
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be used in building the classification model[15]. A common
discriminant feature is the distance between two trajectories
or sub-trajectory segments which is computed using a distance
measure or metric based on the type of application.

Trajectory similarity encompasses the geometric patterns
of moving objects as well as the semantic generalizations
derived from the raw trajectories. Several works in litera-
ture have considered the geometric or sequential features of
trajectories when analyzing user similarity. Similarity among
trajectories is often measured in terms of the co-location
frequency (feature-based representations), which is the number
of times two moving objects appear spatially close to one
another. Other approaches for measuring similarity include
subsequence similarity metrics such as the length of the
Longest common subsequence(LCSS) [16], Edit Distance on
Real Sequences (EDR) [17], Common Visit Time Interval
(CVTI) [18], Maximal Semantic Trajectory Pattern (MSTP)
[19], Multidimensional Similarity Measure (MSM) [20], and
Stops and Moves Similarity Measure (SMSM) [21].

LCSS reduces the impact of noisy data by defining distance
and matching thresholds.Two points match when their distance
is less than a given threshold in all dimensions. However,
LCSS ignores possible gaps in sequences, which, for certain
problems, results in the same similarity value for different
pairs of trajectories. EDR uses an edit distance measure to
compute similarity between elements where a match considers
all dimensions. Penalties are assigned according to the length
of the gaps between two matched sub-sequences resulting in
more accurate results than LCSS. CVTI integrates the semantic
dimension of stops with temporal dimension. It does not allow
heterogeneous data such as stops and moves to be modeled and
measured together.

MSTP measures the similarity between two semantic trajec-
tory patterns by considering the frequency at which stops are
visited. However, it does not handle multiple data dimensions
and does not consider moves between stops. In MSM the
similarity score is built upon the matching scores of all pairs
of elements that have at least one matching dimension. Partial
similarity is assigned according to the number of dimensions in
which elements match. It allows definition of different weights
for every dimension.It however, ignores the order of stops and
does not consider moves. It may assign a high similarity score
even if two trajectories are only similar for a small portion of
their length. SMSM considers both stops and moves within the
trajectory and performs partial dimension matching and partial
ordering of stops through assignment of weights. However,
estimation of weights may be challenging for users.

Trajectory data have diverse formats which are unique to ap-
plication requirements; therefore, different mining techniques
and similarity measures are applicable based on the scenario
being modeled. When looking at the applicability of similarity
measures based on trajectory dimensions, LCSS and EDR re-
quire all elements to match across all dimensions, while MSM
considers matching pairs in a single dimension. In scenarios
where the trajectory data contains outliers LCSS, EDR, MSM
and SMSM can be applied since they are robust to noise. When

dealing with semantic trajectories MSM and SMSM are good
options though, LCSS and EDR can be extended for semantic
trajectory mining. When considering applications that use GPS
trajectories annotated with stops only or trajectories extracted
from social media, the best measure is MSM since it handles
sparse data. MSM is particularly useful when one wants
to find users who visited the same place at similar times
without considering the order of visits. When order of visits
is important, SMSM is the most appropriate since it considers
the order of the stops. SMSM is also applicable in situations
where one wants to extract the most similar paths or most
popular routes between stops.

III. PROBLEM STATEMENT AND METHODOLOGY
A. Problem Statement

The vehicles of an Intelligent Transport Network (ITS) ex-
change a lot of messages. Every message sent is generated with
an identifier of the transmitting vehicle. To respect the user
privacy, the identifiers of each vehicle are changed regularly.
An identifier is kept only over a time interval. The issue we
want to study is, given the multiple identifiers assigned to a
vehicle are we able to group the identifiers and detect those
which belong to the same vehicle? We adopt the definition of
[9] for Trajectory User-Linkability problem:

Let Ty; = m;1, mjo, ..., m;, denote a trajectory generated
by the vehicle v; during a time interval, where m;;(j € [1,n])
is a message sent from a specific location at time ¢;. Given that
the identifier is changed after a time period, trajectory 7, =
mq, My, ..., m, generated by the same vehicle in the next
time interval with a different identifier is considered unlinked.
TUL can thus be defined as:

Suppose we have a number of unlinked trajectories 7' =
t1,...,tn, generated by a set of vehicles V = vy,...,v,(m >
n), TUL learns a function that links unlinked trajectories to
the vehicles: T' — V'

B. Methodology

In a C-ITS environment cooperative awareness is achieved
through exchange of CAMs which contain position informa-
tion. This can act as a privacy threat to the drivers since an
eavesdropper is able to create a detailed mobility pattern of
the driver. To mitigate this, Pseudonym schemes are used to
provide anonymous communication. A pseudonym generally
provides authentication for vehicles which can use multiple
pseudonyms in order to guarantee unlinkability of actions[22].
This involves the change of pseudonyms after a preset time
period so as to prevent linkability of one pseudonym to another
which can in turn result in the identity of a vehicle and
consequently that of the driver being revealed if one is able
to identify the home address

TUL problem is currently an active research area in location
based social networks where the aim is to identify the users
who generate check-in trajectory data. In this study we look at
this problem in relation to trajectories generated by vehicles
on a constraint road network. Our aim is to generate contin-
uous trajectories using anonymous data while ensuring that
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privacy is preserved.Our mining framework starts with Data
processing which transforms the raw trajectory data into a
form that can be correctly analyzed. It entails the identification
and correction of errors in the data. This is followed by feature
selection where the most relevant input variables to the task
at hand are identified and selected. There is also a need to
do data transformation by changing the scales and/or variable
distributions due to the use of different scales during data
capture.

Trajectory linking: In order to link the trajectories we con-
sider the following conditions for triggering CAM generation
as specified in ETSI EN 302 637-2 standard [24]:

o If the absolute difference between the current heading
value of the vehicle and the heading value included in
the last transmitted CAM by the same vehicle exceeds
4°;

« If the distance between the current position of the vehicle
and the position included in the last transmitted CAM by
the same vehicle exceeds 4 meters;

o If the absolute difference between the current speed of
the vehicle and the speed included in the last transmitted
CAM by the same vehicle exceeds 0.5 m/s.

A first work consists in grouping as much as possible the
different identifiers which represent sub-trajectories of one
vehicle. A complete grouping with all the identifiers of each
vehicle may be difficult to obtain but grouping some identifiers
can be obtained. For example, if the last message of an
identifier is spatially and temporally close to the first message
obtained with another identifier and the change in attributes
like speed and heading angle is consistent, then the change
of identifier from the last message to the first one is obtained
for the same vehicle. Thus the two identifiers are linked and
belong to the same vehicle. In this example, the work consists
in defining a reliable link between two messages with different
identifiers.

Then we detect the contradictions between messages. For
instance, if two messages give the same localization at the
same time, then their identifiers cannot belong to the same
vehicle. These contradictions help to define the group of iden-
tifiers for each vehicle by rejecting the identifiers leading to a
contradiction. To enhance the accuracy of trajectory linking,
aspects of the vehicle’s mobility need to be incorporated under
Mobility pattern mining step.In addition to the three constraints
for CAM change, the driving direction of a vehicle is used a
parameter to filter matched identifiers where by a true match
is one where the direction of motion of the trajectories is the
same. Nearest neighbor (spatial) search is performed to extract
the trajectory closest to the end point of the current trajectory
both in space and time. We also extract the first and the last
ten points per identifier for use in mobility similarity analysis.

Similarity calculation step extracts similar trajectories by
computing how close they are in space,time and the similarity
in movement direction.Segments are similar if they form a
continuous sequence in space and time. The spherical distance
measure is used to compute the minimum distance between
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Fig. 1. Trajectory mining framework.

two longitude/latitude geometries.The framework to be fol-
lowed in the analysis is shown in Fig.1.

Definition: Trajectory: A raw trajectory consists of a se-
quence of n points T = [p1,p2,...,pn), in wWhich p; =
x,y, 2z, t, A, where x, y ,z represent the position of the moving
object in space, ¢ is the timestamp and A represents other
attributes associated with the point (i.e. speed, heading angle
and drive direction)

In this study a trajectory is considered as the consolidation
of messages uniquely identified by a single identifier.

C. Dataset Description

In our study we used a real dataset of Cooperative Aware-
ness Messages (CAM) collected in France between September
2018 and August 2019 under a C-ITS project [23]. The
purpose of CAMs is to give dynamic information about the
vehicle (i.e. speed, position, heading (direction of motion with
regard to true north) etc.). A vehicle sends CAMs to its
neighbourhood using Vehicle-to-Vehicle (V2V) or Vehicle-to-
Infrastructure (V2I) communications. The frequency of CAM
message generation varies from 10Hz to 1Hz (100 millisec-
onds to 1000 milliseconds). Each CAM is uniquely defined by
a stationid (Pseudonym) and timestamp. In this dataset each
of the 80 vehicles was assigned unique stationids which were
changed periodically for privacy reasons resulting in a total
number of 3866 unique IDs and a total number of 10,174,437
CAM messages sent.

In this study, each message has an identifier (id) associated
with the transmitting vehicle but this vehicle is unknown. The
message also includes a time stamp (time), the localization of
the vehicle with latitude (lat), longitude (long) and altitude
(alt), the speed (speed), the heading angle (angle) of the
vehicle and the drive direction(direction). Thus the message
is a data defined with 8 variables: id, time, lat, long, alt,
speed, angle, direction. The variables lat, long, alt are the three
position variables. Speed, angle and direction variables are
used as variables of the behavior of the transmitting vehicle.

IV. EXPERIMENTAL EVALUATION AND RESULTS

We performed trajectory mining using PostgreSQL database
with the spatial extension PostGIS used for storing and pro-
cessing spatial data. We also used Quantum GIS (QGIS) an
open-source cross-platform desktop geographic information
system application that supports viewing, editing, and analysis
of geospatial data. QGIS was majorly used for visualization
and map matching of the trajectories as a validation step.
Data pre-processing was done by removing noise from the
data. The distribution of all trajectories is shown in Fig.2.
We then extracted origin-destination pairs from the trajectories
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Fig. 2. Distribution of all trajectories.

whereby an origin is the first message of each trajectory and
a destination is the last message of the trajectory. Fig.3 shows
the distribution of the origin (green colour)-destination (red
colour) pairs.

Considering the fact that each vehicle was assigned multiple
identifiers, we sort out to link identifiers which occurred on
the same day. Taking the destination points, we extracted the
nearest origin point within 170 meters (since the highest speed
recorded in the dataset was 163m/s) and also filtered out the
results by implementing the CAM generation trigger condi-
tions as additional constraints. The distance computation was
done using the ST_DistanceSpheroid function in PostgreSQL
which gives the linear distance between two longitude/latitude
points. We also used the CAM generating frequency of 100 —
1000 milliseconds as a constraint in order to get exact matches
in time and space.

During matching we were specifically targeting the matches
which occurred on the same date within a short period of time
(in few seconds) so as to get trajectories which are continuous
in space and time. Also, as a test for continuity, the matched
trajectories had to be traveling in the same direction during the
change of identifiers. After processing all the trajectories we
were able to get 867 matching/linked ID pairs with the month
of April having the highest matches at 124 IDs. We selected 45
trajectories generated on the 5th and 6th April 2019 (as shown

La Rox helle s Crermont
'l Limgqges Ferrand

Unrdeauo

Fig. 4. Distribution of trajectories for the 5th and 6th of April 2019.

in Fig.4) and after processing 10 trajectories linked with others
to generate a total of 35 trajectories. The highest number of
linkages per trajectory was four trajectories where ID 1 linked
to 2 then 3 and finally 4 both in time and space as shown
in Fig.5, thus generating one continuous trajectory as shown
in Fig.6. To validate the linkage/matching of trajectories, we
performed map-matching to ensure that the trajectories are on
the same road and moving in the same direction.

The fact that the trajectories are constrained by a road net-
work increases the probability of linking trajectory segments
to the generating user given background knowledge and behav-
ioral aspects of movement like speed, heading angle and drive
direction. However, complete linkage of all segments to the
generating users is a difficult task and might not be possible.
This is proven by the fact that out of 3866 trajectories, we
were only able to link 867 pairs which is 22.43% of the
total number of trajectories. The monthly analysis of linked
trajectories is shown in Fig.7 which indicates the total number
of IDs per month, the total number of IDs linked per month
and the linkage percentage.

Fig. 3. Distribution of origin-destination pairs.

Fig. 6. Continuous trajectory after linking four trajectories.
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V. CONCLUSION

In this work we considered the trajectory-linking problem
and applied it to messages generated by vehicles in C-ITS.
Based on our analysis, it is possible to link trajectories to the
generating users if other distinguishing attributes (like speed,
heading angle, altitude and drive direction) and background
knowledge on generation of the messages are considered when
performing similarity analysis. It is also worth noting that
the use of pseudonyms as a privacy and security measure
has been proven to be a viable approach since we were
not able to break the unlinkability requirement. As future
work, we plan use the linked trajectories for frequent pattern
mining, semantic analysis and anomaly detection.We intent
to semantically enrich the trajectories and perform behavior
analysis on the data.
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