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Abstract Agricultural application of sewage sludge is an effective disposal method as it is beneficial to agricultural productivity.
However, there is a great need to regularly monitor the levels of heavy metals in sludge. Such monitoring is lacking in our sewage 
treatment plants. Thereby, leading to informal use of sewage sludge in agriculture and a lack of quality control. Furthermore, there 
is an absence of local technologies for heavy metal removal. Conventional processes for heavy metal removal such as chemical 
precipitation and membrane filtration are too expensive, require technologically advanced systems, are difficult to maintain, require 
a lot of expertise and are therefore not locally accessible. Heavy metals have adverse effects on human life when consumed. There 
is therefore a demanding need to come up with affordable, innovative technologies that can be locally used to remove heavy metals 
from sewage sludge used in agriculture. This study used phytoextraction, a process in which certain plants have the ability to 
absorb toxic contaminants from a soil matrix, to remove heavy metals from sewage sludge. The objectives entailed identifying and 
quantifying heavy metals present in sewage sludge samples before and after phytoextraction; identifying and quantifying heavy 
metals in the sunflower plant roots and shoots before and after phytoextraction and using the results to assess the efficiency of 
sunflower phytoextraction. The experimental set up was in three sets. The first containing soil and Kariobangi sewage sludge mix 
in the ratio 1:1. The second containing soil and Dandora sewage sludge mix in the ratio 1:1. The third set contained 100% soil and 
thus served as the control experiment. A ratio of 1:1 was used to closely emulate local farming practices. Sunflowers were grown 
in each of the sets and heavy metal levels were monitored for a period of four months using atomic absorption spectroscopy. After
the four months, cadmium levels in the sewage sludge were reduced by 83.94%, manganese by 90.64%, copper by 85.27%, lead 
by 88.64% and zinc by 83.61%. The stated heavy metals were all brought down to levels acceptable for garden soil. Proving that
sunflower phytoextraction is a technology that can be assimilated in sewage treatment plants to ensure safe use of sewage sludge
in agriculture.

Keywords Atomic absorption spectroscopy, heavy metal, hyper accumulators, phytoextraction.

1. Introduction 
The use of sewage sludge as fertilizer can be dated as far 
back as 1550 in Bunzlau, Germany [11]. In the 1980’s
American sewage sludge used to be dumped into the 
Atlantic and Pacific Oceans. Later, scientists discovered 
that the practice was killing marine life. This led Congress 
to ban ocean dumping, forcing the country to find an 
alternative method for disposing of sewage sludge. The 

result was sewage sludge application to land as fertilizer
[2]. 

Currently, sewage sludge is used as fertilizer in western 
countries in the form of bio solids, which is sludge that 
has been conditioned and processed for agricultural reuse.
Locally, unprocessed sewage sludge is used by farmers to 
supplement the use of chemical fertilizers or for total 
replacement. 

Heavy metals in sewage are mainly as a result of
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Abstract This paper presents contact force control of a one link flexible arm consisting of a simple boundary feedback of
bending moment at the base of the flexible arm. Gain tuning control system using neural network was developed and its control
performance examined and compared with fixed gains by numerical simulation and experiment. In this work, feedback gain
was tuned to correspond to the coupling coefficient of the neural network, and stabilized the learning by giving the initial value
to the coupling coefficient of the neural network, thereby shortening the learning time. To adjust the gain value in real time,
a sequential correction type technique(online learning) that repeats learning at every sampling was adopted as the learning
scheme of the neural network. As a result, it was confirmed that by using the neural network, the value of the feedback
gain was adaptively changed and the target contact force converged after 0.35 seconds. Comparing the performance with that
obtained with fixed gain, it was found that neural network tuned controller took a shorter time to converge to the target value
by 0.8 seconds confirming that the proposed controller is more effective for the contact force control of the flexible arm.

Keywords Flexible arm, contact force control, neural networks, gain tuning

1. Introduction
For heavy and highly rigid robotic arms used in facto-

ries and the like, it is common to increase the rigidity by
increasing the wall thickness of the arm so as to obtain
high accuracy in determining the position of the tip.
In recent years, however, there has been an increasing
demand for weight reduction of robot arms in order
to realize high speed operation and energy saving. As
the rigidity decreases however, the influence of elastic
deformation due to the flexibility of the arm becomes
large, so that position error and elastic vibration cannot
be ignored [1]–[3]. Against such a background, a lot of
research on control of flexible manipulators have been
actively conducted.

In addition to the requirement mentioned above in
regards to the need for lightweight robots, use of nursing
care robots and welfare robots under human-contacting
environments is on the rise. To work safely together with
people, it is therefore necessary to control the contact
force in addition to the positioning and vibration control
[4]–[6].

In this paper, force control problem was examined for
the constrained one-link flexible arm. In this conven-
tional study, a proposal is made to extend the simple
boundary feedback consisting of a bending moment at
the root of the flexible arm and its time derivative against
the force control problem of the constrained one-link
flexible arm earlier developed in references [7], [8]. In
this works, feedback control was used to obtain the ex-
ponential stability of the closed loop system. Researchers
in [9]–[11] conducted several simulations to examine the
effectiveness of feedback techniques involving tuning the
feedback gains, but the method of adjusting the perfor-
mance verification and feedback gain by the experiment
of the proposed controller remained a problem.

Therefore, in this research, a one-link flexible arms
was developed, first to experimentally verify the con-
troller earlier proposed in [7], [8] and confirm its effec-
tiveness. Next, a control system using a neural network
controller for autotuning feedback gains was designed.
It was experimentally verified, compared and examined
the control performance of the neuro controller against
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the fixed gain controller earlier proposed. Similar work
in literature related to the control of flexible manipulator
using neural networks includes [12]–[15].

The contribution of this paper is in the derivation
of the dynamic model of a constrained one-link flexi-
ble manipulator, derivation of the solution of the model
equation of motion in s domain and the development
of a tuning algorithm using artificial neural network to
tune PI gains of a one-link flexible arm for the control
of contact force.

The rest of the paper is organized as follows: modeling
of the flexible arm is presented in section 2, solution
to the equation of motion in the frequency domain is
presented in section 3, determination of feedback gains
by trial and error is described in section 4, background
theory of multilayer neural network is given is section 5,
neural network controller design is presented in section
6, experimental results are presented and discussed in
section 7 followed by conclusions drawn in section 8.

2. Modelling of One Link Flexible Arm

The model of one link Flexible Bernoulli-Euler Arm
in this study is shown in Figure 1. Variable used in the
discussion are as tabulated in Table 1

Table 1. List of variables

l - Length of the arm
E - Young’s modulus
I - Secondary moment of area of the beam
J - Inertia of the motor, load and the gear system
θd - Desired joint angle
θ(t) - Motor shaft angle
τm - Motor torque
ρ - Linear density of the arm
τa - Motor torque
w(x, t) - Transverse displacement at point x
EI - Flexure rigidity
λ(t) - Lagrange multiplier

θ(t)

MT , IT

w(l, t)
l

X

Y

y

w(x, t)x

τ (t)

Object

λ(t)

Fig. 1. Flexible Bernoulli-Euler Arm contact with an object

The base of Flexible Bernoulli-Euler Arm is equipped
with a motor to rotate the arm, and rotation is controlled
by the actuator. Also, the tip of the arm is in contact with
an object. The equation of motion(derived in details in
Appendix A) and the boundary condition of this model

can be obtained as follows.

w(x, t)− xθ(t) = y(x, t)

ÿ(x, t) +
EI

ρ
y′′′′(x, t) = 0 (1)

Jθ̈(t) = τa(t)− EIw′′(0, t) = τ(t)

y(0, t) = y(l, t) = y′′(l, t) = lθ(t)− w(l, t) = 0

EIw′′′(l, t) = λ(t)

To control the contact force of the tip of the arm, it is
necessary to consider boundary control. Here, denoting
the target contact force by λd and the target values of
transverse position and joint angle are denoted as yd(x)
and θd respectively, the following relational expression
is obtained.

yd(x) =
λd

6EI
x(2l2 − 3lx+ x2) (2)

θd = −y′d(0) = − l
2λd

3EI

The objection of the controller is to satisfy the following
conditions {

y(x, t)→ yd(x)

ẏ(x, t)→ 0

to which the following control law is proposed

τ(t) = −k̃1EI[y′′(0, t)− y′′d(0)]− k̃2EIẏ′′(0, t) (3)

Where the feedback gains k̃1 and k̃2 are positive con-
stants. In the control law in equation 3, the first item
is the bending moment EIy′′(0, t) of the base of the
arm, we desire that the bending moment will approach
the target value EIy′′d(0, t) in a manner that is asymp-
totic. The second item is a term for vibration suppression
which act to increase the damping the control system
[11](presented in details in Appendix B).

3. Solution to the equation of motion in s domain

This section present the solution of the fourth order
linear differential equation of motion in equation 1 in
Laplace transform domain. Taking the Laplace transform
of the equation of motion, the boundary condition, and
the control law, we have

y(x, s) = w(x, s)− xθ(s)

0 = s2y(x, s) +
EI

ρ
y′′′′(x, s) (4)

Js2θ(s) = τa(s)− EIw′′(x, s) = τ(s)

y(0, s) = y(l, s) = y′′(l, s) = lθ − w(l, s) = 0

λ(s) = EIw′′′(l, s)

τ(s) = −k̃1EI[y′′(0, s)− 1

s
y′′d(0)]− k̃2sEIy′′(0, s)

(5)
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Solving for y(x, s) from equation 4 yields

y(x, s) =F1(s) exp{−jx
(
s2E3I3ρ

)
EI

1

4

}

+ F2(s) exp{jx
(
s2E3I3ρ

)
EI

1

4

}

+ F3(s) exp{−x
(
s2E3I3ρ

)
EI

1

4

}

+ F4(s) exp{x
(
s2E3I3ρ

)
EI

1

4

} (6)

where F1(s), F2(s), F3(s) and F4(s) are unknowns and
j is the complex operator for imaginary values. With

s2θ(s) =
τ(s)

J
(7)

Substituting 5 into equation 7 and taking k1 = k̃1/J ,
k2 = k̃2/J

s2θ(s) = −k1EI[y′′(0, s)− 1

s
y′′d(0)]− k2sEIy′′(0, s)

(8)
From 6

y′′(0, s) =− F1(s)

√
−s2E3I3ρ

E2I2
+ F2(s)

√
−s2E3I3ρ

E2I2

− F3(s)

√
−s2E3I3ρ

E2I2
+ F4(s)

√
−s2E3I3ρ

E2I2
(9)

From 2

y′′d(0) =
λdl

sEI
(10)

Substituting equations 9 and 10 into the equation 8

s2θ(s) =− 1

EIs
(−k1F1(s)

√
−s2E3I3ρs

+ k1F2(s)
√
−s2E3I3ρs

− k1F3(s)
√

(−s2E3I3ρs

+ k1F4(s)
√
−s2E3I3ρs

+ k1F1(s)λdlEI

− k2
√
−s2E3I3ρ

+ k2s
2F2(s)

√
−s2E3I3ρ

− k2s2F3(s
√
−s2E3I3ρ)

+ k2s
2F4(s)

√
−s2E3I3ρ)) (11)

θ(s) =
−s(k1 + sk2)(−F1(s) + F2(s)− F3(s)

EIs3

+
F4(s))

√
−s2E3I3ρ− k1λdlEI

EIs3
(12)

Substituting equations 6 and 12 into equation 4

w(x, s) =F1(s) exp{−j(s
2E3I3ρ

EI
)

1

4
x}

+ F2(s) exp{−j(s
2E3I3ρ

EI
)

1

4
x}

+ F3(s) exp{−j(s
2E3I3ρ

EI
)

1

4
x}

+ F4(s) exp{−j(s
2E3I3ρ

EI
)

1

4
x}

− x(−s(k1 + sk2)(F1(s))
√
−s2E3I3ρ)

EIs3

− x(−s(k1 + sk2)(F1(s))− k1λdlEI)

EIs3

+
x(−s(k1 + sk2)F2(s)(

√
−s2E3I3ρ))

EIs3

+
x(−s(k1 + sk2)F2(s)(−k1λdlEI))

EIs3

− x(−s(k1 + sk2)F3(s)(
√
−s2E3I3ρ))

EIs3

− x(−s(k1 + sk2)F3(s)(−k1λdlEI))

EIs3

+
x(−s(k1 + sk2)F4(s)(

√
−s2E3I3ρ))

EIs3

+
x(−s(k1 + sk2)F4(s)(−k1λdlEI))

EIs3
(13)

w′′′(l, s) =
1

E3I3
[(−s2E3I3ρ)

3

4 IF1(s) exp{j(s
2E3I3ρ

EI
)

1

4
x}

− F2(s) exp{j(s
2E3I3ρ

EI
)

1

4
x}

− IF3(s) exp{j(s
2E3I3ρ

EI
)

1

4
x}

+ F4(s) exp{j(s
2E3I3ρ

EI
)

1

4
x}] (14)

Substituting equation 14 into equation 5

λ(s) =
1

E2I2
[(−s2E3I3ρ)

3

4 (IF1(s) exp{j(s
2E3I3ρ

EI
)

1

4
x}

− F2(s) exp{j(s
2E3I3ρ

EI
)

1

4
x}

− IF3(s) exp{j(s
2E3I3ρ

EI
)

1

4
x}

+ F4(s) exp{j(s
2E3I3ρ

EI
)

1

4
x})] (15)

By substituting the four unknowns F1(s), F2(s), F3(s),
F4(s) from the simultaneous equations of the equation
5 into 13, we get the general solution of w(x, s). Based
on the above, the block diagram of the 1-link Flexible
Arm system is shown in Figure 2.
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Fig. 2. Block diagram of 1 link flexible Bernoulli-Euler Arm

4. Determination of feedback gains k̃1 and k̃2 by
simulation

Our arm comprised of a slender having cross-sectional
breadth b and height h. Thus, in the simulation, the
cross sectional area A = bh (m2), thus, the geometrical
moment of inertia I = bh3

12 (m4), the linear density ρ
(kgm−1) is obtained as ρ = ρabh. The feedback gain
to be used is set to k̃1 = 1.2 and k̃2 = 0.5 obtained by
trial and error. Hereafter, assuming that the target contact
force λd = 1N , the results of the deflection distance at
the arm tip of the model, the rotation angle of the motor,
and the time response of the contact force exerted on the
object by the arm tip are shows in Figure 3.

Fig. 3. Block diagram of 1 link flexible Bernoulli-Euler Arm

As can be seen from Figure 3, since the contact force
at the tip of the arm converges to the target value around
2.3 seconds, the moment-PD control is also effective for
this model. This result affirms the choice of the initial
values of feedback gain used in this research as k̃1 = 1.2
and k̃2 = 0.5.

5. Multilayer Neural Networks
Neurons are the basic elements of the brain, and the

artificial model of this is called a unit. The basic building
block of the neural network is this unit and it plays an

important role in explaining dynamics such as learning
and adaptation. Figure 4 shows the model image of the
unit. Its input/output relation is as follows.

Σ g(·)

w1

w2

wi

wN

x1

x2

xi

xN

y

b

Fig. 4. Unit of neural network.

Units are regarded as multi-input single-output(MISO)
elements based on the biological properties of neurons.
A weight wk representing the strength of the synapse
connection is added to the connection through which
the input signal xk to the unit passes, and when the
weighted sum

∑
wkxk exceeds the threshold θ, the neu-

ron fires (outputs is 1). When it does not exceed it will
not fire (output is 0). Weight with positive value excites
the neuron to promote firing, whereas weight with neg-
ative value acts as inhibition to suppress firing. At this
time, the output y of the neuron can be written as follows.

y = 1(h) where h =

N∑
k=0

wkxk + θ (16)

Here, 1(h) represents a Heaviside function, 1 is re-
turned when h ≥ 0, and 0 is returned when h < 0. In
the same respect, the neuron model can be generalized
as follows. First, consider input of x0 = 1 and replace the
threshold θ with the weight w0. Next, if the Heaviside
function is an activation function g(h), the expression
16 can be written as follows.

y = g(h), h =
∑
k=1

wkxk (17)

As a typical activation function, a sigmoid function
is known as a smooth approximation of the Heaviside
function. The value range is 0 < g(h) < 1.

g(h) = σ(βh) =
1

1 + e−βh
(18)

Here, β > 0 is an inverse temperature parameter, and
the larger the value of β is, the closer the function ap-
proximates the Heaviside function. In general, β = 1
is commonly used. The derivative of equation 18 can
be written as βg(h)(1 − g(h)). The key strength of the
sigmoid function is that whereas the Heaviside function
is not differentiable at h = 0, the sigmoid function is
differentiable for all values of h.

Furthermore, since the differential coefficient can be
calculated only from the function value, it is very conve-
nient in view of analysis and calculation and it is known
that nonlinear continuous function can be realized, which
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is easy to use in general. In this research we used sigmoid
function.

x1

x2

xi

xNi

y1

y2

yk

yNo

h1

h2

hj

hNh

vji wkj

Fig. 5. Multilayer perceptron.

Next, perceptron as the one described above are con-
figured to form a three-layer structure shown in Figure 5.
Assuming that the exogenous input x = [x1, · · · , xk, · · ·
, xK ]T , and the output from the hidden unit j is hj , the
relational expression is

hj = g1(zj) (19)

zj =

Nh∑
k=1

vjixk + θj (20)

=

Nh∑
k=0

vjixk where vj0 = θj , x0 = 1 (21)

Where:
vji : interconnection weight of input layer unit i

and hidden layer unit j.
zj : Net input amount of hidden layer unit.
θj : Threshold value of hidden layer unit.
g1(·) : Activation function of the hidden neurons
This is basically unchanged from the formula describ-

ing the neuron model. Also, if the output of the unit j in
the hidden layer is hj , which form the input to the output
layer. The summed input to the kth neuron is expressed
as

zk =

No∑
k=1

wkjzj + θk (22)

=

No∑
k=0

wkjzj where wk0 = θk, x0 = 1 (23)

This summed input is squashed by the activation function
of the output layer to yield the output of the network
given by

yk = g2(zk)

where g2(·) is the activation function of the output layer
of the network.

Generally, in learning of a multilayer perceptron, the
weights and threshold values in the neural network are
changed so that the output for the input x approximates
the target value d corresponding to the input. In this
article, we used error backpropagation(BP) as the ba-
sic learning method. BP method is a method applying
the steepest descent method with multilayer perceptron
weight learning as numerical optimization problem. There-
fore, a gradient is necessary, and the activation function
of the neural network must be differentiable. The specific
calculation order will be explained using the multilayer
perceptron shown in Figure 5.

When a certain pattern p is input, let the target output
signal in output unit i be di. When E is the error function
for all patterns, the error function for the specific pattern
Ep is expressed by the following equation using the sum
of squared error.

Ep =
1

2

No∑
k=1

(dk − yk)2 (24)

E =
P∑
p=1

Ep (25)

We find small change in interconnection weight ∆w in
the direction in which this error function Ep decreases.
Consider the gradient of the error function Ep

∂Ep
∂yk

= yk − dk (26)

∂Ep
∂hk

=
∂Ep
∂yk

∂yk
∂hk

(27)

= (yk − dk)g′2(zi) (28)
= δk (29)

Here, δk represents the error in the output unit k of the
pattern. The slope for the weight wkj from the hidden
layer to the output layer is as follows.

∂Ep
∂zj

=
∂Ep
∂hk

∂hk
∂wkj

= δkzj (30)

Similarly,

∂Ep
∂zj

=

I∑
k=1

∂Ep
∂zk

∂zk
∂zj

(31)

=

Nh∑
k=1

δkwkj (32)

∂Ep
∂zj

=
∂Ep
∂zj

∂zj
∂zj

(33)

= g′1(zj)
I∑

k=1

δkwkj (34)

Here, δj represents the error in the hidden unit j of the
pattern p. The gradient with respect to the weight wkj
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from the input layer to the hidden layer is as follows.

∂Ep
∂wjk

=
∂Ep
∂zj

(35)

∂zj
∂wjk

= δjxk (36)

By applying these to the steepest descent method, the
updating expressions of the weights wij and wjk are

∆wij = −ηt
∂Ep
∂wij

= −ηtδjzj (37)

∆wjk = −ηt
∂Ep
∂wjk

= −ηtδkxk (38)

Where ηt is a positive constant and is called a learning
rate.

6. Design of control system using neural network

For the purpose of shortening the convergence time
from that observed using the feedback gain determined
by trial and error as an initial value, a control system
that tunes gain adaptively was designed. In this research,
advantage of the numerous strengths on the artificial
neural network was taken, primarily, that it can be used
to approximate any nonlinear function. Block diagram of
the arm with the neuro-controller is as shown in Figure
6 below.

1
s2J

∂2

∂x2

∂3

∂x3
x

∂2

∂x2

EI

EI

EI
EI

∂2

∂x2

x = 0

x = 0

x = 0
Y (x, s)

λ(s)

Yd(s)

+ +w1
w2

w3

w4 θ(s)
τ(s)

+ −

Fig. 6. One link Flexible arm using a neural network

The neural network to be used is a three-layer hier-
archical type having three units in the input layer, one
hidden neuron and one neuron in the output layer cor-
responding to the driving torque as shown in Figure 7.

Also, the input is the target value and the present
value of the bending moment of the base of the arm
and the present value of deflection, and the sigmoid
function is used for the output function of the hidden
layer and the output layer. As the learning method, the
error backpropagation method is used and the steepest
descent method is used for the updating the coupling
coefficient between the units in an online version. Figure
8 shows the block diagram of the control controller.

Input Hidden Output
layer layer layer

w1

w2

w3

w4

i1

i2

i3

h1 o1

Fig. 7. Three-layered neural network

Conversion

Conversion Conversion
Neural
Network

Plant
PWM
control

Moment
PD control

Feedback gain

Desired bending moment

Desired
contact

θd

Bending

Bending moment

Torque Voltage

Strain

Angle

force

Fig. 8. Neural network control system

7. Design experimental setup
Figure 9 shows the overall view of the 1-link flex-

ible arm to be controlled. The material of the arm is
aluminum (3003), the sectional shape is rectangular, the
distance from the root is l = 0.275 m. A brushed DC
motor equipped with a metal gearbox with a gear ratio
of 50:1 and equipped with an integrated type orthogonal
encoder is attached at the root of the arm to provide
the driving torque. The resolution of the encoder is 64
counts per rotation of the motor shaft (corresponding to
3200 counts per shaft rotation of gearbox output). In
order to measure the elastic deformation in the direction
of rotation of the motor, the strain gauge is attached in a
2-gauge method. The parameters used in this study are
shown in Table 2.

Table 2. System parameters

Parameter Symbol Dimension
Height h 0.02 m
Breadth b 0.00447 m
Length l 1.05 m
Density ρa 7874 kgm-3
Mass moment of inertia Iρ 2.79×10−4kgm
Youngs modulus E 2.06×10−11 Pa

Figure 10 shows a conceptual diagram of the system
configuration used in this study.

A control system consist of Laboratory Virtual In-
strumentation Engineering Workbench(LabVIEW) man-
ufactured by National Instrument installed on a PC run-
ning Microsoft Windows 7 operating system. LabVIEW
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Fig. 9. Link flexible arm.

Fig. 10. Experiment system.

makes it easier to express complex logic on a diagram by
using a graphical programming approach to visualize ev-
ery aspect of an application. Designing a distributed test,
measurement and control system can be performed effi-
ciently. For the controller, NI myRIO (manufactured by
National Instrument Corporation) embedded hardware
device for education was used. For the force sensor, 2
kg of load cell single point (beam type) manufactured by
Sensor and Control was employed together with ampli-
fying circuit. The arrangement was such that the object
made a vertical contact with the tip of the arm. Experi-
ments were conducted with a dynamic strain measuring
instrument (DPM 713 B made by Kyowa Denki) with the
low pass filter set at 100 Hz, the measurement range set
at 500µΩ, and the configuration value set at 500µε/2V.
Initial values of interconnection weights of the neural
network were set as; w1 = 1.7, w2 = 1.2, w3 = -1.0,
and a random number is used for w4. Learning was
performed at every sampling time of 2milliseconds, and
the experiments were performed with the target value
contact force λd set to 1N . Figure 11 shows temporal

changes of the feedback gains (k1, k2), Figure 12 shows
the distortion of the base of the arm, deflection of the
arm tip, the rotation angle of the motor, and the contact
force.

Fig. 11. Time response of feedback gain.

Fig. 12. Transient responses; blue line: Moment-PD; red line: NN-
Moment-PD

From Figure 12, the blue line show the performance
when moment-PD is fed back via fixed gains whereas
the red line show the performance of the NN-moment-
PD control. To make the comparison easier, median filter
is employed for smoothing. From this result, it can be
seen that the time taken by the neuro-controller to con-
vergence is 0.8 seconds shorter than the time taken by
the fixed moment-PD control. In addition, it can be seen
that the control system to which the NN-moment-PD
control is applied stably converges to the target value.
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From the above, it is confirmed that by designing the
control system using the neural network as the gain ad-
justment method, it is possible to adaptively change the
value of the gain and to quickly converge to the target
value of the contact force. These results confirms the
effectiveness of this study in terms of enhancing the
speed of convergence.

8. Conclusion
In this research focusing on force control of a con-

strained one link flexible arm, a one-link flexible arm was
developed and a simple boundary feedback controller
(Moment-PD control) consisting of bending moment at
the base of the arm proposed. A control system using
a neural network was designed as a gain adjustment
method. Comparison and examination of control per-
formance by numerical simulation and actual machine
were performed. First, regarding moment-PD control,
general solutions were derived from the model by for-
mulating a theoretical expression from the model, and
the value of the feedback gain to be used in this re-
search were determined using numerical simulation by
trial and error. Thereafter, using those values on an ex-
perimental laboratory flexible arm, it was confirmed that
the target contact force converged about 1.15 seconds.
From this, the effectiveness of the moment-PD control
proposed was confirmed. Next, control system applying
the neural network as the gain adjustment method was
designed to enhance the performance obtained with fixed
gains. Weight updating scheme adopted in this work was
the online error backpropagation in which learning is
repeated for each sampling for learning timing of the
neural network. Analyzing the experimental results, it
was confirmed that by using the control system em-
ploying the neural network, the value of the feedback
gain is adaptively changed, and the target contact force
converges around 0.35 seconds. Relative to the control
law having fixed gains, Neuro-controller succeeded in
enhancing the time it takes for convergence to the target
value by 0.8 seconds confirming the effectiveness of the
controller proposed in the actual machine. The learning
rate employed in this is fixed, as a future prospect, a pro-
posal to enhance learning by the introduction of adaptive
learning rate is hereby made. This way, the learning rate
will be set to higher values when the error is high and to
smaller values when the error decrease to lower values.
The learning will gradually decay as the network learns
and approach the target values. Also, plans are in place
to compare the performance of this scheme with other
popular machine learning schemes like support vector
machine and deep learning.
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Appendix A
Derivation of the equation of motion

Considering a uniform single link flexible arm which is rotated by a control motor in the horizontal plane as
shown in Figure 13. Let w(x, t) denote the arm deflection at position 0 < x < l along the link and at time t and
let θ denote the rotation angle of the motor shaft. Denoting by ρ and EI the mass density per unit length and the
bending rigidity of the flexible arm respectively. Denote by J the moment of inertia of the total load attached to
the motor shaft of radius l0.

θ(t)

MT , IT

w(l, t)
l

X

Y

y

w(x, t)x

τ (t)

Object

λ(t)

Fig. 13. Single link flexible arm

At the tip, we introduce a constraint

φ(w(l, t), θ(t)) = w(l, t)− lθ(t) = 0 (39)

Kinetic and potential energies of the manipulator are expressed as

T =
1

2
Jθ̇(t)2 +

1

2

∫ l

0
ρ(xθ̇(t)− ẇ(x, t))2dx (40)

U =
1

2

∫ l

0
EIw′′(x, t)2dx (41)

and virtual work
δW = τδθ(t)dt (42)

Using Hamilton’s principle ∫ t2

t1

(δT − δU + δW + λδφ)dt = 0 (43)

The first term of equation 43 can be expressed as∫ t2

t1

δTdt =

∫ t2

t1

Jθ̇δθ̇dt+

∫ t2

t1

∫ l

0
ρ(xθ̇(t)− ẇ(x, t))(xδẇ(x, t)− δẇ(x, t))dxdt (44)

integrating the first term by parts,∫ t2

t1

δTdt = −
∫ t2

t1

Jθ̈δθdt− ρ
∫ l

0

∫ t2

t1

(xθ̈(t)− ẅ(x, t))(xδθ(t)− δw(x, t))dtdx (45)

(46)

For the second term

−
∫ t2

t1

δUdt = −
∫ t2

t1

∫ l

0
EIw′′(x, t)δw′′(x, t)dxdy (47)

integrating by parts yields

−
∫ t2

t1

δUdt = −
∫ t2

t1

EIw′′(x, t)δw′(x, t)

∣∣∣∣l
0

dt+

∫ t2

t1

EIw′′′(x, t)δw(x, t)

∣∣∣∣l
0

dt−
∫ t2

t1

∫ l

0
EIw′′′′(x, t)δw(x, t)dxdt

For the variation of the virtual work ∫ t2

t1

δW =

∫ t2

t1

τδθ (48)
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Finally, the variation of the constraints∫ t2

t1

λδφ(w(l, t), θ(t))dt =

∫ t2

t1

λδw(l, t)− λlδθ(t)dt (49)

Adding all the energy terms and gathering the like terms together:
• δθ(t):

−
∫ t2

t1

[
Jθ̈(t)dt+ τ − ρ

∫ l

0
x(xθ̈(t)− ẅ(x, t))dx− λl

]
dt = 0 (50)

• δw(x, t):

ρ

∫ t2

t1

∫ l

0

[
(xθ̈(t)− ẅ(x, t))− EIw′′′′(x, t)

]
dxdt = 0 (51)

• δw(l, t): ∫ t2

t1

[
EIw′′′(l, t) + λ

]
dt = 0 (52)

• δw′(l, t):

−
∫ t2

t1

EIw′′(l, t)dt = 0 (53)

For equations 50,51, 52 and 53, the we have the following integro-differential equations of motion and boundary
conditions.

Jθ̈(t)dt+ ρ

∫ l

0
x(xθ̈(t)− ẅ(x, t))dx = τ(t)− λ(t)l (54)

ρ(xθ̈(t)− ẅ(x, t))− EIw′′′′(x, t) = 0 (55)
EIw′′′(l, t) = −λ(t) (56)
EIw′′(l, t) = 0 (57)

w(0, t) = w′(0, t) = 0 (58)

From equation 55

xρ(xθ̈(t)− ẅ(x, t)) = xEIw′′′′(x, t)

integrating by parts, equation 54 can be rewritten as

Jθ̈(t) + EIw′′(0, t) = τ(t) (59)

Appendix B
How the second term increases system damping

In this section, the importance of the second term of the proposed control law in the mitigation if link vibration
by increasing system damping will be presented. Introducing the inner product in a Hilbert space H derived as

〈u, v〉 = ρ

∫ l

0
ū(x)v(x)dx ∀u, v ∈ H

where ū(x) denote the complex conjugate of the variable u(x) ∈ H. Further, introducing an operator A as
D(A) = {u(x)|u(x)′′′′ ∈ H, u(0) = u′(0) = u′′(0) = u′′′(0) = 0}

Au(x) = EI
ρ u(x)′′′′, ∀u(x) ∈ D(A)

using the above operator, the equation of motion in 55 can be rewritten as an abstract differential equation on H as

ẅ(t) +Dẇ(t) +Aw(t) = xθ(t)
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where the term Dẇ(t) is introduced to describe natural damping of the link. Further introducing another operator
Π? defined as

Π?u = xu′′(0) x ∈ (0, l) ∀u ∈ D(A)

From equation 59

τ(t) = Jθ̈(t) + EIw′′(0, t) from which

θ̈(t) =
τ

J
− EI

J
w′′(0, t)

substituting this into the equation of motion yields

ρ(ẅ(x, t)) +DEIẇ′′′′(x, t) + EIw′′′′(x, t) + x
EI

J
w′′(t, 0) = x

τ(t)

J

Letting the motor torque τ(t) = −k2ẏ′′(t, 0), the closed loop system equation can be expresses in Hilbert space by
utilizing the operators defined before as

ÿ(t) + (D +
k2
J

Π?)︸ ︷︷ ︸
Damping

ẏ(t) + (A+
EI

J
Π?)︸ ︷︷ ︸

Stiffness

y(t) = 0

From this expression, it can be seen that the third term increases the damping term by a value equal to k2
J Π?

which act to suppress vibration of the arm.
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