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Chapter 1:  General introduction 
 

There are two fundamental reasons for treating wastewater: to prevent pollution, thereby 

protecting the environment and  protecting public health by safeguarding water supplies and 

preventing the spread of water-borne diseases (Gray, 2004). Throughout history wastewater 

management has presented people and governments with far reaching technical, economical 

and political challenges that has necessitated the development of wastewater management 

strategies in different periods and cultures (Lofrano and Brown, 2010). In the 21st century it 

can be said that technologies to treat wastewater are now well established and are capable of 

producing almost any degree of purification.  

 
Joining the "suite" of wastewater treatment technologies in the fifties of the past century were 

the Constructed Wetlands (CWs). Research in the 1950's by Dr. Kathy Seidel of the Max 

Planck Institute in Germany, brought recognition to constructed wetlands as a viable 

wastewater treatment technology (Vymazal, 2005). Exponential growth in the application of 

CWs has been experienced in the past three decades. This wastewater treatment technology 

has emerged as a sustainable, environmentally friendly solution in many countries across the 

world (Kadlec and Wallace, 2009). Because of the ability of CWs to recycle, transfer and/or 

immobilize a wide range of potential contaminants, there are an ever expanding number of 

applications to treat different types of polluted water (Greenway, 2007). Indeed besides 

domestic and municipal application, the use of constructed wetlands has spread to many other 

fields including treatment of industrial effluent, special wastewater (e.g. from hospitals, acid 

mine drainage), agricultural effluent, landfill leachate, road runoff and sludge consolidation 

(Vymazal, 2010b). In the developing countries, the use of CWs for water purification is 

particularly valuable and exploitable for the protection of water quality in catchments, rivers 

and lakes (Denny, 1997). 

1.1 Inadequate sanitation in developing countries 

It is still a concern that safe management of wastewater is not universal. Sanitation targets 

have joined the millennium developments goals (Mara et al., 2007; WSSCC, 2004), 

articulating an international commitment of halving the proportion of people without access 

to safe water and sanitation by 2015 through an integrated approach to sanitation, water 

supply, and hygiene promotion. The bulk of the world population without adequate sanitation 
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lives in the developing countries (WHO and UNICEF, 2000) where the evacuation and 

treatment of wastewater from human settlements is not satisfactory. The country of Kenya is 

no exception in this regard (GOK, 2005). The combination of rapid population growth, 

industrialization, expansion of agriculture and associated urbanization has increased 

wastewater volumes. The main wastewater treatment and sanitation facilities remain 

concentrated in the formally planned urban areas, though most people live in rural areas and 

the urban informal settlements (GOK, 2005). The differences in access to adequate sanitation 

between urban and rural environments still persist with urban areas served better than the 

rural areas. Outbreaks of waterborne diseases in addition to the eutrophication of surface 

water resources is common place (Odada et al., 2004).  Approximately 80% of the outpatient 

hospital attendance in Kenya is due to preventable diseases while 50% of these are water, 

sanitation and hygiene related (Njuguna and Muruka, 2011).  

Generally the reason for the lack of ample wastewater treatment in developing countries is 

financial (Muga and Mihelcic, 2008) - the large investments required to construct, maintain 

or upgrade wastewater treatment facilities - due to a focus on high cost technology; but it is 

also due to a lack of keeping abreast with the advances in wastewater technologies and the 

application of low-cost wastewater treatment technologies (Tsagarakis et al., 2001). The cost 

of wastewater treatment and pollution control is high, and rising annually, not only due to 

inflation but to the continuous increase in environmental quality that is expected (Gray, 

2004). Thus, the main issue surrounding the selection of a given wastewater treatment 

process lies in deciding which is the most appropriate and applicable technology for a 

particular social, political and economic environment (Tsagarakis et al., 2001). For 

developing countries, short-term and medium-term solutions for wastewater management lie 

in research focused on the best technologies suited to the local conditions and the use of 

cheap and robust wastewater treatment technologies in tandem with the economic realities in 

these low to middle income countries (Okurut, 2000; Tsagarakis et al., 2001). A precedent 

where a number of cheap wastewater treatment technologies such as constructed wetlands 

have been researched on and applied is in developed countries including the USA and EU 

(Kadlec and Wallace, 2009 ). Indeed they have been found useful in minimizing 

environmental pollution by removing oxygen depleting substances, the major nutrients 

(nitrogen and phosphorus), as well as pathogenic microorganisms from wastewater 

(Vymazal, 2010a).  
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In Kenya, the long-term national planning strategy, officially known as Kenya Vision 2030 

aspires for a country firmly interconnected through a network of roads, railways, ports, 

airports, water and sanitation facilities, and telecommunications (GOK, 2007). The 2030 

vision for water and sanitation is to ensure that improved water and sanitation are available 

and accessible to all. In line with the millennium development goals, this is to be achieved by 

(a) the rehabilitation and expansion of urban and rural water supply and sanitation in the key 

satellite towns, and (b) special attention to support projects that will contribute to sustainable 

water management and good sanitation through increased investments in research and 

experimental development to generate innovative scientific solutions and new technologies.  

In this work, the focus is on the application of constructed wetland wastewater treatment 

technologies for the treatment of domestic wastewater. 

1.2 Treatment wetlands: option for wastewater management  

Constructed wetlands are generally designed or engineered to mimic and optimize many of 

the wastewater treatment conditions and/or processes that occur in natural wetlands 

(Langergraber et al., 2009a; Vymazal and Kröpfelová, 2009).  It presents an important 

alternative to conventional wastewater management technologies in developing countries 

(Diemont, 2006; Kivaisi, 2001) for the following reasons:    

(a)  In developing countries the emphasis now is on low-cost, high-performance, 

sustainable wastewater treatment systems (Muga and Mihelcic, 2008). Most of these systems 

would be ‘natural’ systems - so called because they do not require any electromechanical 

power input - with simple configuration together with low energy requirements and operating 

cost. The replication of centralized, highly engineered wastewater management systems has 

not been successful or possible everywhere. Often they are installed only in the urban and 

semi urban areas in developing countries. In the event the municipal authorities are not able 

to meet the costs of energy, chemicals and skilled labor to run the facilities, the treatment 

plants deteriorate and eventually break down some years after commissioning.  

(b)  The configuration can be adapted to a form that is suitable for small communities 

such as individual households and farms. This directly satisfies the smaller rural units and 

people without economic resources to offset the high per capita costs of sewage collection 

and treatment inherent in conventional wastewater treatment technologies. Eventually such 

technologies benefit as many people as possible while being adaptable to the changing needs 
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of the community which are important criteria for a technology to be successful in developing 

countries (Haberl, 1999). 

(c)  In an era where there is growing concern of the local and global impact of our current 

environmental management strategies, and the need to reduce sanitation problems, disease, 

and poverty, there is a greater need to develop more environmentally responsible, appropriate 

wastewater treatment technologies whose performance is balanced by environmental, 

economic, and societal sustainability (Muga and Mihelcic, 2008). 

1.3  The horizontal subsurface flow constructed wetland (HSSF-CW) 

Among the treatment wetlands, the HSSF-CWs are a widely applied concept (Vymazal, 

2005). Pre-treated (to prevent clogging) wastewater flows horizontally (i.e. the inlet and 

outlet horizontally opposed) through the artificial filter bed of porous media, usually 

consisting of a matrix of sand or gravel and the macrophyte roots and rhizomes. This matrix 

is colonised by a layer of attached microorganisms that forms a so-called biofilm. Purification 

is achieved by a variety of physical, chemical and (micro)biological processes, such as 

sedimentation, filtration, precipitation, sorption, plant uptake, and microbial decomposition 

(García et al., 2010; Kadlec and Wallace, 2009).  

The subsurface flow regime has a major impact on the physicochemical conditions that 

develop within the HSSF-CW treatment reactor and the types of vegetation that can be grown 

in this type of wetland (Fonder, 2010). The HSSF-CW is typically planted with sessile 

emergent vegetation (Fig.1.1). The HSSF-CW have the advantage of a lower footprint or area 

requirement (because the contact area of water, microorganisms and substrate is large), lower 

risk of spread of vector disease and odour, compared to the surface flow type wetland in 

which the majority of wastewater flows exposed to the atmosphere.  
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Fig. 1.1. Schematic representation of a constructed wetland with horizontal sub-surface flow. 1, distribution 
zone filled with large stones; 2, impermeable liner; 3, filtration medium (gravel, crushed rock); 4, vegetation; 5, 
water level in the bed; 6, collection zone filled with large stones; 7, collection drainage pipe; 8, outlet structure 
for maintaining of water level in the bed. The arrows indicate only a general flow pattern (After Vymazal, 
2005). 

HSSF-CW are typically used to treat primary or secondary treated sewage prior to discharge. 

In general, HSSF-CW have been utilized for relatively smaller flow rates than the surface 

flow constructed wetlands, mainly because of cost and hydraulic limitations associated with 

flow through the porous media. These systems are capable of operation under colder 

conditions than the surface flow systems because of the ability to insulate the top surface and 

the thermal buffering provided by the substrate. 

1.4 Mechanistic modeling of horizontal subsurface flow constructed wetlands 

Despite there being much experience available in constructing and operating CWs, it is still 

difficult to evaluate and improve their existing design criteria. Some aspects of their 

performance are still unknown because the degradation of wastewater contaminants within 

these systems takes place through a number of physical, chemical and biological processes 

that occur simultaneously. They are still often looked at as ''black box'' technology in which 

the wastewater is purified and only simulated using various degradation models, mostly based 

on input/output data (Rousseau et al., 2004; Wynn and Liehr, 2001). Indeed, CWs are known 

to be complex systems, the behaviour of which depends on both external (e.g. flow-rate, 

wastewater composition and temperature) and internal (e.g. bacteria growth and 

development) factors (Samsó and Garcia, 2013). Further, there is a lack of direct 

observational methodologies or the required equipment may be sophisticated and relatively 

expensive. Nevertheless, for the sound design and optimization of CWs, the following 

questions need resolution:  
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1. How do the microbial communities in the constructed wetland interact as far as the 

cycling of carbon, nitrogen and sulphur is concerned? What is the functional 

composition of the different bacterial groups? 

2. What is the contribution of the aerobic, anoxic and anaerobic microbial pathways in 

horizontal subsurface flow constructed wetlands? 

3. Are sorption processes significant for delaying COD and ammonium release in 

subsurface flow wetlands? 

4. What is the magnitude of root zone aeration?  

Mechanistic numerical modeling and simulation has become an efficient and elegant way to 

obtain a better understanding of the performance of wastewater treatment systems (Llorens et 

al., 2011). During the last decade, there has been a wide interest in the understanding of 

complex “constructed wetland” systems, including the development of numerical process-

based models describing these systems (Langergraber and Šimůnek, 2012). Process-based or 

mechanistic models that describe both water flow and reactions in CWs in detail are 

potentially faster and more economical tools for the qualitative and quantitative interpretation 

of the complex CWs processes and performance.  

Different formulations for the reaction/ biokinetic model have been developed by different 

authors, mainly because the models have been developed for different applications 

(Langergraber et al., 2009a). In 2009, the Constructed Wetland Model N°1 (CWM1) was 

introduced. CWM1 describes all relevant aerobic, anoxic and anaerobic biokinetic processes 

occurring in subsurface flow CWs required to predict effluent concentrations of organic 

matter, nitrogen and sulphur (Langergraber et al., 2009b). With the publication of CWM1, it 

is supposed that such as for the International Water Association (IWA) activated sludge 

models, mechanistic modeling will become unified and popular as a supporting tool for 

design and operation of subsurface flow CWs. However, as the process-based modeling of 

constructed wetlands is still in the early stages of development (Langergraber and Šimůnek, 

2012), several requirements still remain before the good simulation of CWs is achieved and 

the process-based models can be used for evaluating design criteria, for example: 

 Other processes besides microbial transformation and degradation have to be 

considered for the formulation of a full model for CWs, i.e. the influence of plants 

(growth, decay, decomposition, nutrient uptake, root oxygen release, etc.), transport 
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of particles/suspended matter and the description of clogging processes, adsorption 

and desorption processes, as well as physical re-aeration on the treatment performance 

of CWs. The presence and species of wetland plants have been shown to influence 

disposal of pollutants in CWs (Dhote and Dixit, 2009; Gagnon et al., 2007), while 

clogging of the subsurface flow in CWs is still one of the main, often-occurring, 

operational problems (Knowles et al., 2011). The inclusion of such a process in CW 

models would allow prediction of the failure of subsurface flow CWs due to clogging. 

 The implementation of biokinetic reactions and other CW processes in suitable 

software to solve the differential equations for dynamic simulations of reactive 

transport in subsurface flow constructed wetlands. Simulation software that allows for 

spatially and temporally resolved process specific mass balances for reactive species 

and possible simulation of fixed biomass would support the understanding and 

prediction of biochemical transformations and degradation processes in constructed 

wetlands. Further, this would facilitate the validation of CW process-based models in 

a wide range of conditions encountered in the design and evaluation of constructed 

wetland systems. 

Some of these issues were tackled in this thesis.  

1.4  Problem statements and thesis outline 

For a sound conceptualization and design of efficient and economic constructed wetland 

systems, there is still a need for an improved understanding of the internal processes involved 

in the transformation and degradation of carbon, nitrogen and sulphur within the horizontal 

subsurface constructed wetland for the treatment of domestic wastewater. Further, 

performance data and information that can guide design and operation of CWs under tropical 

conditions is scarce. These issues are addressed in the thesis in two parts: (a) through 

information and data collection and analysis from the literature and experimental set-up 

(Chapters 2-4), in combination with (b) mechanistic numerical modeling (Chapters 5-7).  

In the first part, Chapter 2 presents a literature survey describing the application and 

performance of the tropical macrophyte Cyperus papyrus in wetlands for wastewater 

treatment. Performance data from the literature and information on growth, productivity and 

harvesting of Cyperus papyrus is collated. The Cyperus papyrus macrophyte was chosen as it 

is among the most productive plants in wetlands besides being the dominant species of many 
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swamps in East and Central Africa. The performance of a HSSF-CW treating primary 

effluent of domestic wastewater under tropical conditions is evaluated in Chapter 3. The 

removal of organic matter (COD and BOD5), suspended solids and nutrients is assessed, 

together with the influence of the Cyperus papyrus macrophyte. Chapter 4 presents a 

comparative study of the performance and costs based on a full scale installation of a 

secondary facultative pond and a pilot scale horizontal subsurface flow constructed wetland. 

The constructed wetland systems have not yet found widespread use in developing countries 

due to a lack of or little available direct comparative information between constructed 

wetlands and other locally applied low cost technologies. Such a comparison is intended to 

offer technical and economic insights that would simplify the selection processes. 

In the second part of this thesis, process-based numerical modeling is employed to support 

the understanding and prediction of the complex biochemical transformation and degradation 

processes in constructed wetlands. Chapter 5 describes the simulation of reactive transport 

based on data from the pilot scale constructed wetland described in chapter 3, using the 2D-

CWM1-RETRASO model. The 2D simulation model allows the prediction of the effluent 

concentrations and comparison of those reaction rates involved in the organic matter 

degradation along the length and depth. In Chapter 6 the results of implementation of the 

biokinetic model CWM1 in the AQUASIM software for identification and simulation for 

aquatic systems is discussed. Data from a set of batch-operated constructed wetland 

mesocosms operated under a range of temperatures is used for calibration and validation. The 

conversion of COD, NH4
+-N and SO4

2--S in batch-operated constructed wetland mesocosms 

is simulated. The effect of adsorption on COD and NH4
+-N is evaluated. The impact of 

temperature and presence of plants on the bacterial concentration is elucidated. Chapter 7 

presents an extension of the work in Chapter 6, which involved incorporating a biofilm 

modeling approach based on CWM1-AQUASIM. This was to elucidate the biofilm growth 

dynamics in a multispecies bacterial-biofilm which is essential to the design 

conceptualization of treatment processes for constructed wetlands. Chapter 8 presents a 

general discussion based on the results from the different chapters.  The future outlook of the 

constructed wetland wastewater treatment technology and its merits as a viable alternative to 

conventional treatment of domestic wastewater in developing countries is discussed. 
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Abstract 

Cyperus papyrus, commonly referred to as papyrus, belongs to the Cyperaceae family and is 

one of the most prolific emergent macrophytes in African subtropical and tropical wetlands. 

Botanical studies have shown that stands of papyrus are capable of accumulating large 

amounts of nutrients and have a high standing biomass. Its C4 photosynthetic pathway makes 

C. papyrus highly productive with dry weight biomass generation rates of up to                 

6.00 kg m-2 y-1 and nutrient uptake rates of up to 7.10 kg ha-1day and 0.24 kg ha-1day of, 

respectively, nitrogen and phosphorus. C. papyrus plants take about 6 - 9 months to mature 

with a highly reliable natural re-growth and replenishment on a site after harvesting.   

 
Studies featuring side by side investigations with unplanted controls, show that C. papyrus 

has mostly a positive effect on the treatment of wastewater, i.e. it supports higher treatment 

efficiencies for the removal of organics (COD, BOD5), pathogens, heavy metals and nutrients 

such as nitrogen and phosphorus. The ability of C. papyrus to use nutrients from the 

wastewater and the incorporation of heavy metals and organics into its phytomass, added to 

its easy management by regular harvesting, make it one of the most suitable plants to be used 

in wastewater phytoremediation in tropical areas. Therefore, it continues to be an excellent 

candidate for application as a macrophyte in the constructed wetland wastewater treatment 

technology.  As such, determining the potential scope of the performance of C. papyrus is 

vital for the optimal application and design of C. papyrus based constructed wetland systems. 

This work collates growth, productivity and performance information from various 

independent studies incorporating the C. papyrus macrophyte in constructed wetlands for 

wastewater treatment.  

2.0 Introduction 

In the subtropical and tropical climate, C. papyrus is one of the most interesting macrophytes 

because it is among the most productive plants in wetlands (Kansiime et al., 2005; Heers, 

2006; Perbangkhem and Polprasert, 2010). This plant has a high potential of producing 

biomass from solar energy, which is one of the recommended criteria for the selection of 

macrophytes in tropical areas with abundant sunshine for use in constructed wetlands 

(Perbangkhem and Polprasert, 2010). The papyrus vegetation has been shown to actively 

improve wastewater quality through contribution to the removal of organic compounds 

(Vymazal and Kröpfelová, 2009), heavy metals (Sekomo, 2012), pathogens (Kansiime and 
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Nalubega, 1999; Okurut, 2000) and excess nutrients such as nitrogen and phosphorus 

(Kansiime et al., 2007a; Kansiime et al., 2007b; Perbangkhem and Polprasert, 2010). This 

could be attributed to their ecological characteristics of high phytomass, well developed root 

system and high photosynthetic rate (Jones, 1988; Muthuri et al., 1989; Kansiime et al., 

2007a). Various authors have presented experimental research findings on aspects of the 

characteristics of C. papyrus that have an influence on water quality improvement, both in the 

natural and constructed wetlands. This chapter collates these findings by answering the 

following questions related to the application and management of the macrophyte C. papyrus 

in wastewater treatment: 

 
(a)  What is the growth habitat of C. papyrus macrophytes, its morphology and physical 

effects on water quality improvement including the surface area for attachment of microbial 

growth? 

(b) What is the influence of the metabolism of C. papyrus on water quality improvement 

(i.e. the plant nutrients (nitrogen and phosphorus) uptake potential, the root oxygen leakage 

and the biomass productivity)? 

(c)  What is the harvesting practice and the regeneration capacity for C. papyrus after 

harvesting? 

2.1 Influence of macrophyte on pollutant bioconversion and removal in treatment 

wetlands 

The biogeochemical cycling and storage of nutrients, organic compounds, and metals in 

natural wetlands is mimicked in constructed wetlands, through the use of plants, porous 

media and associated microorganisms (Hunter, 2001; Sonavane, 2008). The presence of 

emergent macrophytes is one of the most conspicuous features of constructed wetlands and 

their presence distinguishes constructed wetlands from unplanted soil filters or lagoons 

(Greenway, 2007; Vymazal, 2011). Their positive role on the performance of constructed 

wetlands has been well established in numerous studies measuring treatment with and 

without plants (Akratos and Tsihrintzis, 2007; Yang et al., 2007; Brisson and Chazarenc, 

2009; Kadlec and Wallace, 2009). 

 
Generally, the performance of wetlands for wastewater treatment depends on the growth 

potential and ability of macrophytes to develop sufficient root systems for microbial 

attachment and material transformations, and to incorporate nutrients into plant biomass that 
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can be subsequently harvested for nutrient removal (Kyambadde et al., 2004a; Vymazal and 

Kröpfelová, 2009). However, empirical exploitation of plants is a common practice. 

Availability, expected water quality, normal and extreme water depths, climate and latitude, 

maintenance requirements and project goals are among the variables that determine the 

selection of plant species for constructed wetlands (Stottmeister et al., 2003). 

 
While there is a recognition that the improvement of water quality in  treatment wetland 

applications is primarily due to microbial activity (Faulwetter et al., 2009; Kadlec and 

Wallace, 2009), experience has shown that wetland systems with vegetation or macrophytes 

has a higher efficiency of water quality improvement than those without plants (Coleman et 

al., 2001; Tanner, 2001; Brisson and Chazarenc, 2009). The emphasis of constructed wetland 

technology to date has been on soft tissue emergent plants including Cyperus papyrus, 

Phragmites, Typha and Schoenoplectus (Okurut, 2000; Kadlec and Wallace, 2009). These are 

fast growing species that have lower lignin contents and are adaptable to variable water 

depths. The productivity of emergent macrophytes is the highest among the aquatic plant 

communities in the tropics as well as in temperate regions. Emergent macrophytes are 

characterized by a photosynthetic aerial part above the water surface and a basal part rooted 

in the water substrate.  

 
Emergent macrophytes find application in both surface and subsurface flow configurations of 

constructed wetlands. The significance of the plants used for wastewater purification has 

been emphasized by previous researchers (Brix, 1997; Peterson and Teal, 1995; Gersberg et 

al., 1983). Vymazal (2011) summarized the various roles played by emergent macrophytes in 

different configurations of constructed wetlands (Table 2.1).  
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Table 2.1.  Major roles of macrophytes in constructed treatment wetlands (Vymazal, 2011) 

 
 
 
Macrophyte plants, in addition to their site specific roles (i.e. attenuation of light, water 

current and wind velocity, aesthetic appearance, etc) are essential in the wetland treatment 

systems because they have properties that foster many wastewater treatment processes 

(Kyambadde, 2005; Kadlec and Wallace, 2009). Aquatic plants can absorb inorganic 

(nutrients, metals, etc), and organic pollutants (aromatics, hydrocarbons, etc)  from 

wastewater and incorporate them into their own structure (Haberl et al., 2003), thus providing 

a storage and a release of nutrients through the plant growth cycle (NAS-NRC, 1976; Shetty, 

2005). They create favorable conditions for microbes that contribute to the processing of 

pollutants by influencing the oxygen supply to the water, providing attachment surfaces, 

providing carbon and electron donor via carbon content of litter and root exudates (Brix and 

Schierup, 1989; Kadlec and Wallace, 2009). Further, aquatic plants promote stable residual 

accretions in the wetland (Greenway, 2007; Vymazal, 2007). These residuals contain 

pollutants as part of their structure or in absorbed form, and hence represent a burial process 

of contaminants (Kadlec and Wallace, 2009).  These facts have been exploited in constructed 

wetland systems which have been widely used during the past decades for the treatment of 

wastewater because of their good efficacy to improve water quality at low operational costs 

(Vymazal, 1999; Neralla et al., 2000; Rousseau et al., 2004; Molle et al., 2005 ; Zurita et al., 

2008; Perbangkhem and Polprasert, 2010). The natural wetlands too have been shown to have 

potential as sink and buffering site for organic and inorganic pollutants (Buchberger and 

Shaw, 1995; Muthuri and Jones, 1997; Mannino et al., 2008; Sekomo, 2010).  

 

Macrophyte property Role in treatment process
Light attenuation—reduced growth of photosynthesis 
Influence of microclimate—insulation during winter 
Reduced wind velocity—reduced risk of re-suspension                                                                
Aesthetic pleasing appearance of the system
Storage of nutrients

Plant tissue in water Filtering effect—filter out large debris 
Reduced current velocity—increased rate of sedimentation, reduced risk of resuspension
Excretion of photosynthesis oxygen—increased aerobic degradation
Uptake of nutrients
Provision of surface for periphyton attachment

Stabilizing the sediment surface—less erosion
Prevention of the medium clogging in vertical flow systems
Provision of surface for bacterial growth
Release of oxygen increases degradation (and nitrification)
Uptake of nutrients
Release of antibiotics, phytometallophores and phytochelatins

Roots and rhizomes in the 
sediment

Aerial plant tissue
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Wetland vegetation occasion evapotranspiration, and a corresponding increase in the 

hydraulic retention time that can be explained by a net biomass productivity accompanied by 

transpiration (Kansiime and Nalubega, 1999; Kyambadde et al., 2005). Emergent macrophyte 

vegetation tends to increase rates of water loss through evapotranspiration when compared to 

rates of evaporation from bodies of open water (Jones and Humphries, 2002). 

 
At present there is no clear evidence that treatment performance is superior or different 

between the common emergent wetland species used in treatment wetlands (IWA, 2000; Zhu 

et al., 2010). Even so some soft tissue emergent macrophytes including Phragmites sp., 
Schoenoplectus sp., Typha sp. and Carex (true sedge) are well known for their potentials in 

constructed wetlands treating wastewater and fecal sludge, and their performances are well 

documented, especially for the high latitudes, temperate climate regions (Fennessy et al., 

1994; Coleman et al., 2001; Ciria et al., 2005; Stein et al., 2006). These macrophytes are, 

however, not found in all regions of the world and efforts are being made worldwide to select 

candidate macrophytes to be exploited locally in constructed wetlands (Azza, 2000; Yang et 

al., 2007; Brisson and Chazarenc, 2009; Huang, 2010; Perbangkhem and Polprasert, 2010) 

2.2  Cyperus papyrus macrophyte 

2.2.1  History and growth habitat   

C. papyrus, commonly called papyrus or paper plant, is a member of the Cyperaceae sedge 

family, a group of plants closely related to the grasses (Michael, 1983). The Cyperaceae 

family has about 75 genera and more than 4000 species, which are for a large part perenial 

rhizomateous herbs growing in moist places. C. papyrus has a long history of being harvested 

and has been used over millennia, such as for the manufacture of the first paper by the ancient 

Egyptians (Terer et al., 2012). It once grew wild throughout the Nile Valley (Egypt, 

Ethiopia), and can still be found in the swamps and marshes of Central, East and Southern 

Africa (Chale, 1987; Boar et al., 1999; El-Ghani et al., 2011; van Dam et al., 2011). It was 

widely cultivated in Egypt for its many uses: boats, rope, food (boiled pith and rhizomes), 

sandals, boxes, mats, sails, blankets, cloth, mummy wrappings, firewood (dried rhizomes), 

medicine, and building materials as well as writing materials (scrolls Papyri) (Leach and Tait 

2000). It is the largest of the sedges, and a monocot that is native to riverbanks and mouths, 

lakeshores, floodplains and wet soil areas of North and tropical Africa. Outside Africa, it is 

thought to be native to the Hula Valley in Israel where it reaches its northernmost limits. It 
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has been introduced and naturalised in the Mediterranean (Sicily, Malta), USA (Florida) and 

India (Terer et al., 2012).  

 
C. papyrus is the dominant species of many swamps in East and Central Africa and can be 

found growing in both lentic and lotic fresh water environments with stable hydrological 

regimes (permanently flooded). It cannot cope with rapid water level changes and water flow 

(Kresovich et al., 1982; Jones and Muthuri, 1985; Jones, 1988; Serag, 2003). Due to its 

rhizomatic root structure it can also be found floating with a mat-like root structure (up to 1.5 

m thick) in open waters as deep as 3-4 m (Thompson, 1979; Kansiime and Nalubega, 1999; 

Azza, 2000). As a member of the sedge family it does not hold economic importance as a 

crop plant, nevertheless in some regions it still finds application in weaving mats, baskets, 

screens, and even sandals  (Osumba et al., 2010; van Dam et al., 2011; Morrison et al., 2012).   

 
A substantial number of sedges are weeds, invading crop fields in all climates of the world. 

Sedges do, however, have a considerable ecological importance. They are of extreme 

importance to primary production as well as an integral part of the hydrologic cycle 

(Saunders et al., 2007). Today, the most important uses of papyrus wetlands are those of 

ecological resources and services (Maclean et al., 2011; van Dam et al., 2011).  

 
The C. papyrus wetland soils and plants may absorb or adsorb heavy metals, pathogens, 

inorganic forms of nitrogen, phosphorus, other nutrients and trace elements. The rhizomes of 

the plant prevent soil erosion, and trap polluted sediments from inflowing water. 

Consequently, C. papyrus has found application in both constructed and natural wetlands for 

water quality improvements. Thus, even in modern times papyrus may have an important role 

in cleaning up wastewater pollution from industrial, municipal and domestic sources as 

captured in the listed selection of studies in Table 2.2. Side by side investigations with 

unplanted controls shows the macrophyte C. papyrus  has mostly a positive effect, i.e. 

supports higher treatment efficiency for the removal of organics (COD, BOD5), faecal 

coliforms, heavy metals and nutrients such as nitrogen and phosphorus (Nyakang'o and van 

Bruggen, 1999; Okurut, 2000; Kyambadde et al., 2005; Abira, 2007; Sekomo, 2012).  

 
In constructed wetland applications, C. papyrus has been found to establish well from 

rhizome fragment propagules and also to adapt well to wastewater conditions (Okurut, 2000; 

Abira, 2007 Mburu et al., 2013). This characteristic of vegetative reproduction via rhizomes 
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and rapid recovery after damage to aboveground growth is shared by other effective invasive 

macrophytes such as Phragmites (Meyerson et al., 2000).  

 
2.2.2  Cyperus papyrus morphology 

C. papyrus  has its culm or stem (often triangular) growing to an average  height of 3-5 m 

above ground and taking 6-9 months to mature (Gaudet, 1977; Kresovich et al., 1982; 

Muthuri and Jones, 1997; Terer et al., 2012). The culm has a large proportion of a spongy 

aerenchyma on its inside and to a small extent, it is capable of photosynthesis (Okurut, 2000). 

It is topped by characteristically large, spherical shaped (finely dissected bracteoles), 

reproductive umbels (it bears flowers) that serve also as main photosynthetic surface of the 

plant (Jones and Humphries, 2002; Mnaya et al., 2007). The rhizomes and the roots together 

form a mat like structure that is the base for swamp development. C. papyrus can grow well 

in the subtropical and tropical climate and is among the most productive plants of wetlands 

(Kansiime et al., 2005; Heers, 2006; Perbangkhem and Polprasert, 2010).  

 
C. papyrus is considered to be unique due to its C4 photosynthetic pathway in spite of the fact 

that it grows in a wetland ecosystem, which appears an unlikely habitat for C4 species (Jones, 

1987; 1988; Jones and Humphries, 2002; Saunders et al., 2007). Plants utilizing the C4 

photosynthetic pathway show higher potential efficiencies in the use of intercepted radiation, 

water, and nitrogen for the production of dry matter than do other photosynthetic types 

(Piedade et al., 1991). C4 species are most numerous in tropical and warm, temperate semi-

arid zones, where their greater water-use efficiency appears to be a key selective advantage 

(Piedade, 1991). The C4 photosynthetic pathway makes C. papyrus highly productive with 

dry weight biomass generation of up to 6.28 kg m-2 y-1 (Terer et al., 2012).   

 
Aerobic conditions in the roots and rhizomes of C. papyrus  are maintained by oxygen 

transport from the atmosphere through the aerenchyma of the culms (Li and Jones, 1995). 
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Aerenchymous plant tissue is an important adaptation to flooding in wetland plants 

through which transport of gases to and from the roots through the vascular tissues of 

the plant above water and in contact with the atmosphere takes place (Singer et al., 

1994). Li and Jones (1995) reported a diffusive oxygen transport between the 

rhizomes and the culms of 2.45 and 3.29 mol m-3 of oxygen at day and night time, 

respectively. This provides an aerated root zone and thus lowering the plant’s reliance 

on external oxygen diffusion through water and soil (Kadlec and Wallace, 2009). 

 
In the tropical swamps C. papyrus establishment, growth and mortality occur 

concurrently through the year, so that there is little temporal change in the standing 

crop (Muthuri et al., 1989). The culms can be divided into different age classes; some 

authors have used classification based on three age classes, namely  juvenile, with 

unopened umbels, mature, with opened green umbels and senescent with more than 

half of the umbels brown (achlorophyllous) (Muthuri et al., 1989), while others have 

identified six age classes namely, young elongated culm with closed umbel, elongated 

culm with umbel just opening, fully elongated culm and fully expanded umbel, fully 

elongated culm and fully expanded umbel but older, senescing culm (> 10% 

achlorophyllous), dead culm (> 80% achlorophylious) (Muthuri and Jones, 1997). 

Culm density is controlled by density dependent mortality (Thompson, 1979).  

 
2.3 Cyperus papyrus biomass productivity 

In both natural and constructed wetlands with C. papyrus, vegetative and reproductive 

parts above the ground level and their root systems comprise a substantial part of the 

wetland biomass (Fig.2.1). Emergent macrophytes in swamps and marshes are 

amongst the most productive plant communities (Muthuri et al., 1989). C. papyrus 

vegetation is highly productive and under favourable temperatures, hydrological 

regime and nutrient availability estimates of aerial standing live biomass (including 

scale leaves, culm and umbel) often exceed 5000 g (dry weight) m-2 (Saunders et al., 

2007).  
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Fig. 2.1. Photos of the above ground vegetative and reproductive parts of Cyperus papyrus in a 
constructed wetland at Juja, Kenya 
 

The productivity of natural papyrus wetlands is found to be variable (Table 2.3) and 

controlled by different factors such as climate, nutrient availability and the prevailing 

general hydrological conditions (Okurut, 2000). Differences in aerial biomass of 

papyrus in various sites have been attributed to prevailing climatic conditions. Some 

studies have noted a trend of an increase in standing biomass of papyrus swamps with 

increase in altitude. Nevertheless the trend has not been found to hold by all authors 

(Thompson, 1979; Muthuri et al., 1989; Mnaya et al., 2007). Unlike other emergent 

aquatic plants (Table 2.4), its high productivity rates and standing / harvestable 

biomass makes C. papyrus have a high nutrient removal potential more so in wetlands 

receiving a high nutrient load. The harvesting of biomass presents a potential for 

biological nutrient removal (Kansiime and Nalubega, 1999; Kyambadde et al., 2005).  

 
Estimating biomass or primary productivity in tropical swamps which have relatively 

stable biomass, requires measurements of population dynamics and the life cycle of 

individual shoots (Muthuri et al. 1988), unlike in the temperate ecosystems, where 

common methods of estimating primary productivity include measurements of peak 

biomass, maximum minus minimum biomass or methods which account for death and 

decomposition between harvests (Muthuri et al., 1989; Sala, 2000). 

2.2.3.1  Above ground biomass 

The aerial organs of papyrus (umbel, culm and scale leaves) contribute about 50 % of 

the total plant biomass (Thompson, 1979), in which the largest proportion is in culms 

(Muthuri et al., 1989). The high aerial biomass of papyrus (Table 2.3) is unlike many 
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other perennial emergent macrophytes such as Typha latifolia (890-2500 g m-2), 

Scirpus validus (2355-2650 g m-2) and Phragmites  australis (1110-5500 g m-2) 

(Kadlec and Wallace, 2009 ) that have a large proportion of their biomass in the form 

of roots and rhizomes (Muthuri et al. 1988). High aerial primary production indicates 

that less carbohydrate is assimilated in the rhizomes, hence the living culms act as 

storage organs. This function is normally for the rhizome (Tanner, 1996). Boar et al. 

(1999) established that biomass allocation to the various C. papyrus tissues is directly 

related to the fertility of the growing media such that least investment in roots and 

rhizome indicates plenty of nutrient supply. However, some studies have found that 

an important fraction of the plants’ biomass is stored in the below-ground stands of 

the papyrus (Saunders et al., 2007; Kengne et al., 2008; Kanyiginya et al., 2010). 

2.2.3.2  Below ground biomass 

The below ground biomass of C. papyrus  consists of an interlaced but permeable root 

mat with a rhizomatic structure (Kansiime and Nalubega, 1999). Measurements of 

rhizomes and root mass in the papyrus vegetation involve excavation to the maximum 

depth to which the roots are found (Muthuri et al., 1989). In natural swamps, the 

rooting mat has been estimated to contribute up to   30 - 52 % of the total biomass 

(Boar et al., 1999; Okurut, 2000). The below-ground biomass (i.e. the root and 

rhizomes) surface area provides attachment sites which are conducive for the 

proliferation of bacterial biomass. The roots and rhizomes influence the wastewater 

residence time, trapping and settling of suspended particles, surface area for pollutant 

adsorption, uptake, assimilation in plant tissues and oxygen for organic and inorganic 

matter oxidation in the rhizosphere (Kansiime and Nalubega, 1999; Okurut, 2000; 

Kyambadde et al., 2004a).  For example, the nature and density of the rooting biomass 

can greatly influence the extent of faecal bacteria removal via sedimentation and 

attachment processes. This influence was demonstrated in the studies of Kansiime and 

Nalubega (1999) in a natural wetland where faecal coliform counts were consistently 

higher in zones dominated by the Miscanthidium violaceum macrophyte, than in 

zones dominated by C. papyrus. The rooting mat of the former was tight and compact 

and thus had a reduced total surface area. In contrast, the papyrus mat is hollow and 

interwoven giving it a larger surface area for entrapment and attachment of faecal 

coliforms (Okurut, 2000). Sekomo (2012) established that C. papyrus plants plays an 
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important role in metal retention. The C. papyrus root system was the most important 

part of the plant in heavy metal retention, followed by the umbel and finally the stem. 

 
 
Table 2.3. Biomass productivity of Cyperus papyrus growing in different types of wetlands  

 
*Total biomass (Below ground + Aerial) 

 
 
Table 2.4. Biomass productivity of other macrophytes growing in different types of wetlands 

 
 

2.2.4 Nutrient uptake and storage 
 
The removal of soluble inorganic nitrogen and phosphorus via absorption from either 

the water column or the sediment and storage in plant tissue is a direct mechanism of 

nutrient sequestration (Greenway, 2007). Table 2.5 shows values for nutrient uptake 

of C. papyrus under different set-ups. The difference in the uptake rates may be 

attributed to nutrient availability under the experimental conditions and/ or the growth 

phase of the macrophyte. Comparison of nutrient concentrations in plants, soil and 

water column in the Natete wetland (Kampala, Uganda), found that C. papyrus stored 

the highest amounts of nutrients as compared to soil and water (Kanyiginya et al., 

Below ground   Aerial  
Pilot scale (Free water Surface), Uganda    1250  2250  Kyambadde et al. (2005)   
Natete wetland, Kampala, Uganda       1288  +   8      1020  + 14   Kanyiginya et al. (2005)  
Man made swamp, Kenya (Kahawa Swamp)    4,955* 

Chale (1987)  
Lake Naivasha, Kenya   3245 
Busoro (Flooded river valley), Rwanda   1384 

883-1,156 
3,529-5,844 

Pilot Scale Constructed Wetland, Uganda    Nyakang’o et al.1999  
Constructed wetland, Thailand     2200–3100*   Perbangkhem et al. (2009)   
Constructed wetlands, Uganda   Kansiime et   al. (2005)  
Natural wetland, Lake Naivasha, Kenya   2731  Muthuri et al.(1989)   
Natural wetland, Lake Naivasha, Kenya   4652  Terer et al. (2012)  
Rubundo Island,Lake Victoria, Tanzania   4144  +  452  5789  +  435  Mnaya et al. (2007)   
Lake Naivasha, Kenya   Boar (2006)  
Nakivubo wetlands, Uganda   
Kirinya Wetlands, Uganda  
Nakivubo wetland, Uganda    1158  2480  Mugisha et al. (2007)   
Kirinya wetland, Uganda   4343  3290  Mugisha et al. (2007))  

Kansiime et al. (2003)  

Biomass productivity  
(Dry weight g biomass m  -2 ) 

 

Jones and Muthuri (1985)  

Kansiime et al. (2007)  7200*  

Nakivubo wetland (two sites), uganda   

16900-18700*  

6950  +  860* 
6700*  

Study/ Site    Reference   

Below ground Aerial
Colocasia esculenta     Nakivubo wetland,   Uganda 1236 2024 Mugisha et al. (2007)
Colocasia esculenta     Kirinya wetland,   Uganda 1697 2463 Mugisha et al. (2007)
Miscunthus Violeceus   Nakivubo wetland, Uganda 870 1190 Mugisha et al. (2007)

Miscunthus Violeceus Kirinya wetland, Uganda 1470 1680 Mugisha et al. (2007)

Phragmites mauritianus Nakivubo wetland, Uganda 745 1790 Mugisha et al. (2007)

Phragmites mauritianus Kirinya wetland, Uganda 1452 3030 Mugisha et al. (2007)
Phragmites australis Tidal salt marsh, North America 727-3663 Meyerson et al. (2000)

Phragmites australis Freshwater marsh, N. America 980-2642 Meyerson et al. (2000)

Reference

Biomass productivity         

(Dry weight g biomass m-2)
 Study/ siteMacrophyte             
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2010). Plants take up nutrients as a requirement for their growth. These nutrients 

accumulate in plant parts which present an opportunity to remove excess nutrients 

from wetland systems through harvesting the aerial plant phytomass (Kansiime et al., 

2007a). In this regard, plants with high rates of net primary productivity and higher 

nutrient uptake are preferred in wetlands subject to wastewater inputs (Kansiime et 

al., 2007).  

 
Table 2.5. Cyperus papyrus macrophytes nutrient uptake rates under varying experimental set-ups 

 
 
 
The nutrient elements essential for plant growth would be removed in proportion to 

their compositional ratios in the particular species (Boyd, 1970). For C. papyrus, 

Chale (1987) found the nitrogen concentrations of the various plant organs were 4.8% 

roots, 8.4% rhizomes, 4.5% scales, 4.8% culms, and 6.2% umbels on dry weight 

basis. As to phosphorus, the concentrations were 0.09% roots, 0.11% rhizomes, 

0.09% scales, 0.10% culms, and 0.13% umbels. A high content of nutrients is 

observed for the aerial biomass of papyrus, an indication of active translocation and 

storage of nutrients to parts of the plant where they are needed for primary growth, 

e.g. synthesis of amine acids and enzymes (Muthuri and Jones, 1997; Kyambadde et 

al., 2005; Kansiime et al., 2007b). Significantly higher amounts of nutrients are 

sequestered in papyrus umbels and culms compared to roots/rhizomes portions 

(Kyambadde et. al., 2005). Similar observations have been made by Mugisha et al. 

(2007) who established that photosynthetic organs of C. papyrus (culm and umbel) 

generally had a higher nutrient content than other organs (roots and rhizome) at the 

Nakivubo and Kirinya wetlands at the shores of Lake Victoria in Uganda. 

Nevertheless, nutrients in papyrus plants decrease with the age of the plant as the 

nutrients are translocated to the metabolically active juvenile plants for growth 

(Mugisha et al., 2007).  

 

Phosphorus uptake Nitrogen uptake

(Kg ha-1 day-1) (Kg ha-1 day-1)
Septic tank effluent (Constructed wetland, Uganda) 0.24 7.1 Okurut (2000)
Natural wetland (Lake Naivasha) 0.06 1.18 Muthuri et al. (1989)
Municipal sewage (Nakivubo wetland) 0.21 1.3 Kansiime et al. (2003)
Natural wetland (Upemba swamps) 0.06 1.18 Thompson et al. (1979)
Domestic wastewater (Constructed Wetlands) 0.14 3.01 Brix (1994)

Other macrophytes

Phragmites australis  (Infiltration wetland) 0.22 2.14 Okurut (2000)
Eichhomia crassipes  (diverse wastewater) 0.2-2 1.6-6.6 Okurut (2000)

Type of Wastewater Reference
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Okurut (2000) found nutrient removal from wastewater via plant uptake to show 

variability at different growth phases. The growth rate of Cyperus papyrus is the 

highest in juvenile plants and the lowest in mature plants and the nitrogen uptake rate 

by Cyperus papyrus is the highest in juvenile plants and the lowest in mature plants. 

Uptake was correlated with the biomass yields exhibited in the different phases. The 

total nitrogen content was the highest in the juvenile plants and decreased with 

increasing age. This enables the plant to recycle nutrients from the old portions to new 

growth (Boyd, 1970). Generally, (a) the rate of nutrient uptake by macrophytes is 

limited by its growth rate and the concentration of nutrients within the plant tissue and 

(b) nutrient storage is dependent on the plant-tissue nutrient concentration and 

potential for biomass accumulation (Greenway, 2007).   

2.3 Wastewater treatment with Cyperus papyrus  

C. papyrus  plays an important role in the water quality enhancement, the effects of 

which can be readily observed in terms of dissolved oxygen (DO), pH and redox 

potential of their surroundings and the attenuation of pollutant parameter profiles 

from influent to effluent (Okurut, 2000; Huang, 2010).  For constructed wetlands to 

be effective in water pollution control, they must function as "pollutant" sink for 

organics, sediments, nutrients and metals, i.e. these pollutants must be transformed, 

degraded or removed from the wastewater and stored within the wetland either in the 

sediment or the plants. Although there is still debate about the relative importance of 

macrophytes versus microbes in nutrient removal, plant biomass still accounts for 

substantial removal and storage of nitrogen and phosphorus (Brix, 1997; IWA, 2000).  

 
Macrophytes can contribute directly through uptake (nutrients and heavy metals), 

sedimentation, adsorption or phytovolatilization or indirectly to pollutant removal in 

constructed wetlands. Indirect processes are related to biofilm growth around roots, 

evapotranspiration, and the pumping of oxygen towards the rhizosphere that changes 

the redox conditions (Imfeld et al., 2009; Kadlec and Wallace, 2009; Carvalho et al., 

2012). Some of these mechanisms are addressed in the sections below. 

 
 
 
 



28 

 

2.3.1  Root oxygen release into the rhizosphere 

Papyrus-dominated wetlands like all other natural wetlands are characterized by low 

dissolved oxygen concentrations (Okurut, 2000). The main reason for this state is that 

surface aeration and photosynthetic oxygen transfer mechanisms are poor or non 

existent due to the dense plant canopy. On the other hand oxygen leakage to the 

rhizosphere is important in constructed wetlands with subsurface flow for aerobic 

degradation of oxygen-consuming substances and nitrification (Brix, 1994). The 

photosynthetic characteristics of wetland species can affect their ability to provide 

oxygen, and this ultimately influences their disposal efficiencies.  

 
The peak photosynthetic quantum efficiency, i.e. the amount of CO2 that is fixed or 

the amount of O2 that is released via assimilation when the photosynthetic apparatus 

absorbs one photon (Huang, 2010) for C. papyrus has been reported to range between 

26 and 40 µmol CO2 m
−2 s−1 (Jones, 1987; 1988; Saunders and Kalff, 2001). In their 

work on plant photosynthesis and its influence on removal efficiencies in constructed 

wetlands, Huang et al. (2010) published the photosynthetic rates of five wetland 

plants, Phragmites, Ipomoea, Canna, Camellia, and Dracaena, at light saturation. 

These ranged between 11.6 and 31.32 µmol CO2 m−2 s−1. C. papyrus presents a 

comparable potential for oxygen production via photosynthesis. Kansiime and 

Nalubega (1999) estimated oxygen release rates of 0.017 g m-2 day-1 by C. papyrus 

plants. The oxygen released is available for microbiota within the rhizosphere.  

 
2.3.2  Surface for microorganism's attachment 

In natural and constructed wetlands, macrophyte root structures provide microbial 

attachment sites. In an experimental microcosm set-up, Gagnon et al. (2007) found 

that microbes were present on substrates and roots as an attached biofilm and 

abundance was correlated to root surface throughout depth. Indeed planted 

wastewater treatment systems outperform unplanted ones, mainly because plants 

stimulate below ground microbial populations (Gagnon et al., 2007). Plant species 

root morphology and development seem to be a key factor influencing microbial–

plant interactions. Kyambadde et al. (2004) measured a higher root surface and 

microbial density in a constructed wetland planted with C. papyrus (average root 

surface area 208.6 cm2) compared to Miscanthidium violaceum (average root surface 
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area 72.2 cm2). C. papyrus and Miscanthidium violaceum differed in their root 

recruitment rate and root number in a microcosm constructed wetland. The root 

recruitment rate per constructed wetland unit was 77 and 32 roots per week for C. 

papyrus  and Miscanthidium violaceum, respectively, and C. papyrus  had more 

adventitious roots and larger root surface area than Miscanthidium violaceum 

(Kyambadde et al., 2004b). Further, C. papyrus  seems to promote greater nitrogen 

removal efficiencies, through nitrification and denitrification rates of bacteria 

associated with it roots (Morgan et al., 2008).  

 
2.3.3 Evapotranspiration 

The average daily water vapour flux from the papyrus vegetation through canopy 

evapotranspiration in a wetland located near Jinja (Uganda) on the Northern shore of 

Lake Victoria was approximated by Saunders et al. (2007) as 4.75 kg H2O m-2 d-1     

(= 4.75 mm/d), which was approximately 25% higher than water loss through 

evaporation from open water (approximated as 3.6 kg H2O m2 d-1). Jones and Muthuri 

(1985) reported an evapotranspiration rate of 12.5 mm/day at the fringing papyrus 

swamp on Lake Naivasha, while Kyambadde et al. (2005) reported 24.5±0.6 mm/d for 

a subsurface horizontal flow wetland in Kampala (Uganda). Evapotranspiration rates 

vary sharply since they depend on numerous factors influencing the ecosystem's 

prevailing micro-climate, as listed by Kadlec and Wallace (2009). For example, 

common reed transpiration rates oscillate between 4.7-12.4 mm/day depending on 

meteorological conditions (Holcová et al., 2009). Evapotranspiration (ET) by plants 

can significantly affect the hydrological balance of treatment wetlands. The water lost 

through ET concentrates pollutants within the wetland, while the volume reduction 

results in longer hydraulic retention times (Kadlec and Wallace, 2009 ). For low-

loaded systems or systems with longer retention times, such evapotranspiration rates 

can exceed the influent wastewater flow, leading to a zero discharge.  

2.4 Cyperus papyrus harvesting and regeneration potential 

In order to achieve a permanent nutrient removal from wetland systems, C. papyrus 

harvesting is encouraged, but this requires careful timing (Kiwango and Wolanski, 

2008). Total nitrogen in aerial biomass of C. papyrus decreases from the juvenile 

plants to older plants (Mugisha et al., 2007). Hence, to minimize internal nutrient 
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cycling and eventual export of the nutrients from wetland systems, sustainable 

harvesting of aerial biomass at different growth stages can be used as a strategy to 

reduce nutrients, especially in wastewater treatment wetlands. The regeneration 

potential of C. papyrus,  i.e. the inherent capacity for natural re-growth and 

replenishment, on a site after a disturbance has been found to be highly reliable 

(Osumba et al., 2010). However, overharvesting (within less than one 6-months 

growing season) of C. papyrus  can reduce this regeneration potential leading to weak 

spatial connectivity, papyrus stand fragmentation and increased landscape patchiness 

in natural wetlands (Osumba et al., 2010). Modeling studies of papyrus wetlands by 

van Dam et al. (2007) have proposed a harvesting rate between 10% and 30% of the 

total biomass per year. At higher harvesting rates, nutrient uptake and retention by 

papyrus does not increase proportionally because of reduction in plant biomass, 

leading to lower uptake (van Dam et al., 2007). Muthuri et al. (1988) established a 

ceiling aerial biomass of 2,731 g m-2 after six moths, at a previously harvested section 

of a swamp at Lake Naivasha (Kenya), while for the undisturbed sections of the 

swamp an aerial biomass of 3602 g m-2 was recorded. Water levels after harvesting 

are thought to affect biomass yield. Osumba et al. (2010) found that flooded sites give 

the least regenerated biomass yields.  

2.5  Conclusion  

This literature survey reveals that the macrophyte C. papyrus has found application in 

constructed wetlands for remediating a variety of pollutants in wastewater from 

different sources. The majority of the application of the C. papyrus macrophyte in 

constructed wetlands is found in the developing tropical countries, where papyrus is 

occurring locally. The macrophyte possesses a robust morphology and metabolism, it 

is easy to establish and manage, thus making constructed wetlands incorporating C. 

papyrus wetland vegetation a promising wastewater treatment option for wider 

application. The production and harvesting of vegetation biomass from these 

treatment wetlands can provide a permanent route for the removal of nutrients, with 

economic benefits for communities that engage in the trade of papyrus products. 
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Abstract 

The lack of information on constructed wetland performance in the tropics is among 

the factors that have hindered the adoption of low-cost natural wastewater treatment 

technologies as alternative to conventional wastewater treatment. A pilot scale study 

was undertaken in Juja (Kenya) to assess the performance of horizontal subsurface 

flow constructed wetlands (HSSF-CWs) under tropical conditions. Primary domestic 

wastewater effluent was continuously fed into three replicate wetland cells each with 

an area of 22.5 m2 (7.5 x 3 m) and with gravel as substrate. The study revealed 

successful performance of the wetlands in terms of compliance with local discharge 

standards with respect to COD, BOD5, TSS and SO4-S at a percentage average mass 

removal efficiency between 58.9% and 74.9%. Moderate removal of NH4
+-N and TP 

were recorded. The estimated first order aerial-rate constant and the BOD5 

background concentration showed the HSSF-CW to be area requirement competitive. 

The good performance in organic matter and suspended solids removal reveals that 

HSSF-CW can help to alleviate the current environmental pollution problems 

experienced in developing countries due to the discharge of partially treated or 

untreated domestic wastewater. 

3.0 Introduction 

One of the commonly encountered environmental problems in developing countries is 

water pollution caused by direct disposal of untreated or partially treated wastewater 

(Mara, 2004; Tsagarakis et al., 2001). The discharge of polluted wastewater from 

households and industries is a threat to nature and humans in these low and middle 

income economies because it causes eutrophication of surface waters and 

transmission of water-borne diseases. Often the reason for the lack of wastewater 

treatment is financial, but it is also due to the lack of the application of low-cost 

wastewater treatment technologies.  

For developing countries, short-term and medium-term solutions lie in the use of 

cheap and robust wastewater treatment technologies (Okurut, 2000). Constructed 

wetlands, particularly horizontal subsurface flow systems, are well established for the 

priority treatment of domestic wastewater (Wiessner et al., 2005). Constructed 

wetland utilization can provide sustainable wastewater treatment: because they rely on 
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natural processes, they are less expensive to build, operate and maintain compared to 

conventional sewage treatment systems. The purified water is suitable for re-use and 

harvested plants can have economic value. All these are benefits for the application 

this wastewater treatment technology in developing countries facing social-economic 

challenges.  

The use of this technology is unfortunately still limited in developing countries due to 

poor understanding of the constructed wetland potential (Diemont, 2006; Kivaisi, 

2001; Mashauri et al., 2000). This is caused by a lack of information on constructed 

wetland performance in tropical regions (Bojcevska and Tonderski, 2007). 

Nonetheless, it can be assumed that constructed wetlands are even more suitable for 

wastewater treatment in tropical than in temperate areas because a warm climate is 

conducive to year-round plant growth and microbiological activity, which in general 

have a positive effect on a wetland's treatment efficiency (Bojcevska and Tonderski, 

2007; Haberl, 1999; Kivaisi, 2001). 

In the developed, temperate climate countries, constructed wetlands with horizontal 

sub-surface flow (HSSF-CW) have been successfully used for treatment of various 

types of wastewater for more than four decades (Vymazal and Kröpfelová, 2009). 

Their application has been driven by a rising cost of energy associated with 

conventional wastewater treatment systems and increasing concerns about climate 

change which provide a financial incentive, as well as public support, to the 

implementation of this low energy consumption ‘green’ technology. (Lee et al., 

2009). In this sense the constructed wetland wastewater technology is deemed a 

potential alternative to reduce both greenhouse gas emissions and power 

consumption.  

Most systems have been designed to treat municipal sewage and  are generally 

efficient in removal of organic matter (BOD) and suspended solids (SS), but the 

removal of nitrogen and phosphorus is often relatively poor (Tanner et al., 1999; 

Verhoeven and Meuleman, 1999; Vymazal, 1996, 2005). The degradation of 

wastewater contaminants within these systems takes place through a number of 

physical, chemical and biological processes that occur simultaneously, and is 

enhanced by the interactions between water, granular media, macrophytes, litter, 
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detritus and microorganisms. Organic matter reduction in HSSF-CW is mainly 

achieved by microorganisms attached to the substrate media and to plant roots 

through aerobic, anoxic and anaerobic processes (Faulwetter et al., 2009), while its 

removal efficiency is influenced by the loading rate, residence time, which is a 

function of bed volume and flow rate; plant type and environmental factors including 

temperature (Kadlec and Wallace, 2009). Nitrogen undergoes several transformations 

in wetlands, including ammonification, nitrification, denitrification, adsorption, 

bacteria and plant uptake (Vymazal, 2007). Plants in wetlands play a major role in 

providing additional media onto which microorganisms can attach, help maintain 

aerobic microsites in the wetland bed through oxygen transfer via roots and rhizome 

systems, and control growth of algae by restricting sunlight penetration (Tanner, 

2001). A recent state-of-the-art review and discussion on contaminant removal 

processes in subsurface-flow constructed wetlands is provided by García et al. (2010).  

In Kenya, sustainable wastewater management has not yet been achieved as a result of 

population growth, rapid urbanization and a surge towards a higher standard of living 

in the context of economic constraints (AMCOW, 2006; Nzengy'a and Wishitemi, 

2001). Although substantial progress has been made in the provision of services for 

collection, treatment and disposal of wastewater in urban areas, sanitation 

infrastructure in non-urban areas is characterized by low levels of access, inadequate 

or non-functioning wastewater treatment facilities (WB-WSP, 2012). The estimated 

sewer coverage and connection rate is between 12-19 % and only 5% of the national 

sewerage is effectively treated due to low operational capacity of utilities (Pokorski 

and Onyango, 2010). Discharge of untreated or partially treated domestic wastewater 

in the city suburbs, mushrooming townships, remotely located institutions and 

industries, and rural areas, have been identified as major causes of fresh water 

resource contamination and degradation in the form of deteriorating water quality of 

groundwater, rivers and lakes, and the spread of waterborne diseases (Mogaka et al., 

2006; Pokorski and Onyango, 2010). Difficulties involved in securing finances to 

solve this problem has brought the need to search for cheaper and appropriate 

solutions suitable to Kenyan conditions (Abira, 2007; Bojcevska and Tonderski, 2007; 

Nyakang'o and van Bruggen, 1999).  
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Like other developing tropical countries, the need for appropriate low-cost wastewater 

treatment technology in Kenya is evident. In particular a noticeable difference could 

be achieved by ensuring improvement of domestic sewage effluent before discharge 

into natural water courses.  Nyakang'o and van Bruggen (1999), Nzengy'a et al. 

(2001), Bojcevska and Tonderski (2007) and Abira (2007), showed that the use of 

constructed wetlands can help alleviate the problems of discharging partially or 

untreated wastewater into aquatic systems. For Kenya to meet the current wastewater 

treatment requirements and achieve the millennium development goal of clean safe 

water and sanitation by 2015, the option of constructed wetlands should be considered 

as a sustainable technology for improving effluent quality. Thus, the objective of the 

present study was to assess the removal capacity of a pilot scale HSSF-CW planted 

with the tropical macrophyte Cyperus papyrus as a low-cost technology for treating 

domestic sewage.  We used an existing pilot scale HSSF-CW built in 2003, at the 

Jomo-Kenyatta University of Agriculture and Technology (JKUAT), Juja (Kenya)  

receiving a continuous gravity feed of primary effluent from a facultative pond 

treating domestic wastewater (Kibetu, 2008). This study seeks to contribute 

performance data and information for the HSSF-CW with Cyperus papyrus 

macrophyte performing secondary treatment of domestic wastewater in the tropics. To 

test the influence of the macrophyte native Cyperus papyrus, an unplanted control 

unit was included in the set-up. 

3.1 Methodology 

3.1.1 Study area 

The pilot scale HSSF-CW was sited within the JKUAT sewage treatment works, 40 

km north east of Nairobi city (Kibetu, 2008). The area is at an altitude of 1463 m 

above sea level at coordinates 1o05'45'' S and 37o1'25'' E.  JKUAT sewage works 

treats domestic wastewater by use of a set of 5 wastewater stabilization lagoons: 2 

primary facultative ponds and 2 secondary facultative ponds in parallel and 1 

maturation pond in series to all. The mean monthly temperature, precipitation and 

potential evaporation (Eo) values for Juja area are given in Table 3.1.  
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Table 3.1.  Mean monthly temperature and precipitation for Juja area (Data from Wanjogu and 
Kamoni, 1986) 

 
 

3.1.2 Design of the pilot scale HSSF-CW 

The pilot scale wetland system consisted of three cells set in parallel, each 22.5 m2. 

The macrophyte Cyperus papyrus was growing in two of the cells, referred to as Cyp1 

and Cyp2, while one cell remained unplanted and acted as the control (Ctrl). Cyperus 

papyrus, a common tropical wetland plant (Okurut, 2000), is locally occurring in the 

study area. The sizing of the wetland was in accordance with Kadlec and Knight 

(1996) and the design considerations were based on the total area necessary to remove 

BOD5. The cells were built in such a way that controlled and measurable quantities of 

wastewater and rain were the only inputs into the system. The wetland received a 

continuous gravity feed of primary effluent from the primary facultative pond at the 

JKUAT sewage works. The desired flow rate of the influent wastewater was 

maintained manually by regulating a gate valve at the inlet works of the HSSF-CW 

system, while the water depth was maintained at 0.5 m within the gravel bed with the 

aid of fixed outlet pipes (collecting effluent from the floor level of the wetland cell). 

The wetland cells were 7.5 m long and 3 m wide with vertical masonry sides, 0.95 m 

deep, and a concrete floor sloped at one percent. The cells were filled with granite 

type gravel to a depth of   0.6 m, ranging in size from 9-37 mm, with a porosity of 45 

%. The larger size gravel was placed near the inlet and outlet of the wetland to help 

with uniform distribution of the influent wastewater stream and drainage of the 

wetland, respectively. The macrophyte Cyperus papyrus was established into two of 

these cells (Cyp1 and Cyp2), using rhizome fragments at a spacing of 0.75 m by 0.75 

m. Routine maintenance involved weeding the HSSF-CW bed, grass cutting around 

the pilot HSSF-CW site and cleaning of the inlet works of large floating solids. Non-

routine maintenance work involved patching the masonry with plaster mortar to stop 

detected leaks in the wetland masonry.    

 

Month  Jan  Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

Mean Temp. (oC) 20.3 21 21.3 20.7 19.9 19 18.4 18.6 19.4 20.1 20.1 19.9 19.7 

Precipitation (mm) 33 34 99 202 126 34 19 22 21 61 128 77 856 

Eo (mm) 124 124 124 99 87 87 74 74 74 124 99 111 1856 
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3.1.3 Monitoring of wetland performance and standing biomass 
 
Data sets for the performance of the pilot HSSF-CW were obtained over the period 

October 2008 - January 2011. All wastewater samples were grab samples taken 

manually. Sampling and sample handling was as given in the Standard Methods and 

Procedures for the Examination of Water and Wastewater (APHA, 1998). Samples 

were taken at the influent and effluent points of the pilot scale HSSF-CW cells, while 

simultaneously determining the flow rate by the volumetric method. The parameters  

measured to assess the performance of the HSSF-CW included COD, BOD5, TSS, 

NO3
--N, NH4

+-N, TP, PO4
3--P, SO4

2--S. 

Environmental and some physical-chemical parameters were measured in-situ at the 

inlet and outlet of the HSSF-CW, respectively, for the influent wastewater and the 

treated effluent. pH, electrical conductivity (EC) and total dissolved solids (TDS) 

were determined with a HACH ECO 40 multi-probe, whereas dissolved oxygen and 

temperature were measured using a dissolved oxygen meter; model HACH HQ40d 

multi probe.  

Standing biomass was estimated monthly by counting the number of shoots within a 1 

m2 quadrant at the mid-section of the wetland bed and cross-checking between the 

two planted cells. The numbers obtained were used to compute the plant shoot density 

per unit area. 

3.1.4 Data analysis 

Characterization of the HSSF-CW performance was achieved by computation of input 

(mi) and output (mo) mass loading rates (as the product of concentration and influent/ 

effluent flow rate respectively) for each individual constituent at sampling events. 

Mass removal rates were calculated as a difference between input and output mass 

loading rates. Percentage mass removal for each constituent was calculated as mass 

removal (%) 100 i o

i

m m

m


  . The hydraulic loading rates were calculated based on the 

wastewater inflow rates while the hydraulic retention times were based on the 

averages between the inflow and outflow rates. Statistical analysis was performed 

using MINITAB 15 and Microsoft Excel 2007 software. Comparison of variables was 

performed using the analysis of variance technique (ANOVA), the Tukey's multiple 
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comparisons was used to test differences in the means and the Anderson-Darling test 

was used for testing normality. First-order area-based removal rate constants (k), 

assuming exponential removal to non-zero background concentrations (C*), were 

estimated for COD and BOD5 removal. Fitted values of k and C* were derived from 

the following equation (Kadlec and Knight, 1996): 
*

*
ln O

i

C C k

C C q

 



 where k is the 

area-based first-order removal rate constant (m/d), q is the hydraulic loading rate (m 

/d), Co is the outlet concentration (mg/ l), Ci is the inlet concentration (mg/ l), and C* 

is the irreducible background concentration in the wetland. The fittings were 

performed using the non-linear regression procedure of Statgraphics Centurion XVI 

version 16.1.11. 

3.2 Results 

3.2.1 General treatment performance 

The results obtained from the laboratory analysis of influent-effluent wastewater 

samples, together with the environmental parameters, and the wastewater discharge 

guidelines to surface water courses in Kenya, according to NEMA (2003), are 

summarized in Table 3.2. The concentrations of analyzed parameters in the influent 

varied considerably during the study period. They were significantly higher than in 

the effluent except for TP, PO4
3--P, NO3

--N, and NH4
+-N. The influent wastewater to 

the pilot scale HSSF-CW can be classified as weak strength domestic wastewater in 

terms of BOD5, COD, TSS, TDS, TP and PO4
3--P; medium strength in terms of NH4

+-

N and strong  in terms of SO4
-2-S  according to Metcalf and Eddy (2003).  

Analysis of the performance of the pilot scale HSSF-CW system is presented in Table 

3.3. The warm temperatures experienced in the study periods are typical for tropical 

climates, with the measured water temperatures of the influent ranging between     

19.4 oC and 26.6oC. The range of influent wastewater pH was 7.22 - 8.67, while that 

of the effluent wastewater from the HSSF-CW system remained rather circum-

neutral.  Low values of below 2.0 mg/L dissolved oxygen were measured from the 

pilot HSSF-CW effluent (Cyp1: 0.65-0.95 mg/L, Cyp2: 0.31-1.06 mg/L, Ctrl: 0.53-1 

mg/L), while the influent wastewater registered between 0.2-18.5 mg/L dissolved 

oxygen. An apparent increase in TDS concentration and EC in the effluent of the 
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HSSF-CW system was determined to be not statistically significant: TDS (Ctrl, 

p=0.155; Cyp1, p=0.174; Cyp2, p=0.092) and EC (Ctrl, p=0.163; Cyp1, p=0.181; 

Cyp2, p=0.094).  

3.2.2 Plant growth and HSSF-CW maintenance 

The Cyperus papyrus macrophyte established well without the need for soil on the 

gravel-based HSSF-CW cells loaded with primary effluent of domestic wastewater 

(Fig. 3.1a). A progressive increase in plant density, shoot length and stem diameter 

was observed. The macrophyte grew vigorously from about 2-3 rhizhome fragments 

m-2 to an average of 100 shoots m-2 in eight months (Fig.3.2), with a height up to 3 m, 

and formed a dense stand covering the wetland surface extensively (Fig.3.1b). 

Senescence and re-growth of above ground plant parts occurred concurrently during 

the study period. During a renovation exercise to fix water leakage, the roots of the 

macrophytes were found to have penetrated within the gravel bed up to a depth of 0.4 

m (Fig.3.1c). The macrophyte regenerated successfully from rhizomes on three 

occasions after harvesting but performed poorly on the fourth occasion and had to be 

re-established with rhizome propagules.    
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Fig. 3.1: Planted pilot wetland cells showing (a) successful establishment of tropical macrophyte 
Cyperus papyrus in the pilot gravel beds, (b) progressive increase in plant density, shoot length and 
stem diameter and (c) root penetration within the gravel bed 

 

 

Fig.3.2. Variation of Cyperus papyrus shoot density over the period October 2008 (start-up) to July 
2009 (harvest) 

 
3.2.3 Water balance 

The mean hydraulic loading rates during the study period were 195 ± 80 mm/d, 193 ± 

86 mm/d and, 176  ± 90 mm/d for the wetland cells Cyp1, Cyp2 and Ctrl, 

respectively, yielding mean theoretical hydraulic retention times of  1.6 ± 1.4 days in 

Cyp1, 1.95 ± 1.0 days in Cyp2 and 1.96 ± 0.8 days in the Ctrl cell. The difference in 

hydraulic loading rates in the course of the study was found not to be statistically 

significant (Cyp1& Ctrl, p=0.117; Cyp1 & Cyp2, p=0.103; Cyp2 & Ctrl, p=0.907). 

The mean water loss (and range) from the pilot wetland cells amounted to 19.8 ± 10.4 

mm/d (4.0-30.4 mm/d), 13.6 ± 8.4 mm/d (4.4-31.4 mm/d) and 8.6 ± 8.4 mm/d (0-17.8 

mm/d) in Cyp1, Cyp2 and Ctrl, respectively, based on direct inflow-outflow 

measurements. Evapotranspiration rates from the individual planted cells were not 

significantly different from each other (p=0.559). However, the water loss in the 
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control cell was significantly different from the planted cell (Ctrl & Cyp1: p=0.033, 

Ctrl & Cyp2: p=0.012). 

3.2.4 Temperature and pH 

The influent wastewater temperature range (19.4-26.6 oC) correlated well with the 

ambient air temperature averages (Table 3.1). Effluent wastewater temperatures for 

the pilot HSSF-CW cells were significantly lower (0.5-3.5oC) in the effluent than 

influent (p<0.05), with an effluent wastewater temperature range of 17.2-25.9 oC in 

Cyp1, 17.2-24.2 oC in Cyp2 and 17.3-26.2 oC in Ctrl. Side by side comparison showed 

no significant differences in effluent temperature among the pilot cells (Cyp1& Ctrl, 

p=0.696; Cyp1 & Cyp2, p=0.412; Cyp2 & Ctrl, p=0.774).  

The outflow wastewater pH was circum-neutral (Cyp1: 7.01-7.47; Cyp2: 7.12-7.42; 

Ctrl: 6.99-7.32) and dropped 0.55-0.69 pH units in the pilot HSSF-CW cells.  The 

influent and effluent pH was determined significantly different only for the planted 

cells (Influent & Cyp1, p=0.028; Influent & Cyp2=0.03; Influent & Ctrl, p=0.09)  

3.2.5 Performance 

3.2.5.1 COD and BOD5   

The BOD5:COD ratio in the influent wastewater to the pilot HSSF-CW ranged 

between 0.13 - 0.83, indicating that the primary effluent from the facultative pond had 

a variable biodegradability over the course of the study. Table 3.3 gives the COD and 

BOD5 surface loading rates (LR), removal rates (RR) and removal efficiencies for the 

three cells. Statistical analysis showed there was no significant difference in the 

organic matter loading rates among the cells (Cyp1 & Ctrl, p = 0.194; Cyp1& Cyp2, p 

= 0.169; Cyp2 & Ctrl, p = 0.930). The organic matter removal efficiency varied from 

time to time in the same cell as a result of the variation in surface loading rate and 

residence time (Fig.3.3).  
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Fig. 3.3. Effect of hydraulic loading rate and hydraulic retention time on COD removal in the planted 
cells, Cyp1 and Cyp2 (pooled data) 

 

COD and BOD5 mass removal efficiencies ranged between 24-74.7% and 61.5 - 

80.9% in Cyp1, 31.5-87.7% and 44.2 - 91.8% in Cyp2, 15-81% and 36.9 - 90.6% in 

the Ctrl cell, respectively. No significant difference was observed in the removal 

efficiencies for both COD and BOD5 between the pilot HSSF-CW cells (p>0.05). 

The relationship between the COD loading and removal rates for the three cells is 

shown in Fig.3.4. Figure 3.4 shows the relationship was strong (R2= 0.70-0.92) and 

linear, with removal rates increasing as the loading rates increased. However, beyond 

a COD loading rate of approximately 20 g m-2d-1 and 30 g m-2d-1 in the Ctrl and 

planted cells, respectively, the relationship appears rather variable (data points do not 

lie close to the regression line).  

 

 

 

 

 

Fig. 3.4. Linear regression analysis of observed mass removal rates on mass loading rates for COD  

 
During the whole study period, effluent concentrations with zero mg/l BOD5 or COD 

were not obtained from the pilot HSSF-CW cells. The residual background 

concentration or the amount of organic matter produced by the wetland system itself 
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was estimated for the planted cells using the first order k-C* equation as described in 

Kadlec and Knight (2006). The estimated first order aerial-rate constant (k) and the 

background concentration (C*) for COD and BOD5, were Cyp1 (k=0.31 m/d, 

C*=70.3 mg/L), Cyp2 (k=0.35, C*=82.3 mg/L) and Cyp1 (k=0.10 m/d, C*=10.0 

mg/L), Cyp2 (k=0.169, C*=17.1 mg/L), respectively.  

3.2.5.2 TSS 

Only the planted HSSF-CW cell Cyp2, showed a better TSS removal in terms of 

effluent quality (Table 3.2), compared to the unplanted Ctrl cell (p=0.007). The 

difference in TSS effluent concentrations was not significant between the Cyp1 and 

Ctrl cells (p= 0.087). TSS mass removal efficiencies ranging between 32.3-86.1%, 

25-96.8 %, and 0-95.5% were achieved in Cyp1, Cyp2 and Ctrl cells of the HSSF-CW 

pilot cells, respectively. The difference in the TSS removal rates (Table 3.3) among 

the cells was not significant (Cyp1 &Ctrl, p= 0.651; Cyp1 &Cyp2, p=0.668; Cyp2 

&Ctrl, p=0.300). The mass removal rates showed a strong positive linear relationship 

with the mass loading rates in three cells (Fig. 3.5).  Figure 3.5 shows that the 

relationship was variable beyond a TSS loading rate of about 10 g m-2d-1 and            

20 g m-2d-1, in the Ctrl and planted cells, respectively.  

 

 

 

 

 

Fig. 3.5. Linear regression analysis of observed mass removal rates on mass loading rates for TSS 
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Discrepancies between inlet and outlet measurements of NH4
+-N and NO3

--N were 

evaluated. Moderate mean mass NH4
+-N removal efficiencies ranging between 21.2-

53.6 %, 20.1-72.5 % and 14.4-60.1 % were observed in Cyp1, Cyp2 and Ctrl cell of 

the HSSF-CW, respectively. There was no significant difference in the NH4
+-N 
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determined in the Cyp1, Cyp2 and Ctrl cells of the HSSF-CW, respectively (Cyp1 

&Ctrl, p=0.730; Cyp1&Cyp2, p=0.668; Cyp2&Ctrl, p=0.239). In the course of the 

study, the nitrate concentration both in the influent and effluent did not exceed 3 mg/L 

and in some cases was non-detected (Cyp1: 0.12-2.31 mg/L, Cyp2: 0.11-2.58 mg/L, 

Ctrl: 0-2.8 mg/L); at the same time not showing a significant difference between the 

influent and effluent concentration (Cyp1, p=0.813; Cyp2, p=0.545 and Ctrl, 

p=0.767).   

3.2.5.4 Phosphorus 

Modest TP mass removal efficiencies ranging between 29.2-42.7 %, 30-63.3 5% and 

39.7-57.4% were achieved in the Ctrl, Cyp1 and Cyp2 cells, respectively. The effluent 

TP concentration in the planted cells Cyp1 (1.3-2.8 mg/L) and Cyp2 (2.3-3.1 mg/L) 

did not have a significant difference (p=0.073), whereas the effluent TP concentration 

from the unplanted cell, Ctrl (2.9-3.5 mg/L) showed a significant difference with the 

planted cells Cyp1 (p=0.002) and Cyp2 (p=0.000).  

Removal of the soluble reactive phosphorus (PO4
3--P) was only observed in the 

planted cell at mass efficiencies ranging between 25-76.9% (Cyp1) and 17.1-69.7 % 

(Cyp2), whereas in the unplanted cell, there was mainly an increase of PO4
3--P 

effluent concentration with removal efficiencies of -35.5 - 3.7%. 

3.2.5.5 Sulphates 

There was a significant difference in the influent and effluent SO4
-2-S concentration 

(3.3) in the three cells (p=0.000). A high correlation coefficient (R2 = 0.92-0.95) was 

determined for the linear relationship between mass SO4
-2-S loading and removal 

rates in the pilot scale cells (Fig.3.6). The mean removal efficiencies (Table 3.3) of 

66.2±26.5% (13.8-93.6%) in Cyp1, 74.9±25.4 (7.7-96.2%) in Cyp2 and 71.9±26 (3.1-

96.2%) in Ctrl did not show any significant difference (Cyp1 & Ctrl, p=0.526; Cyp2 

& Ctrl, p=0.728; Cyp1 & Cyp2, p=0.329). 
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Fig. 3.6. Linear regression analysis of observed mass removal rates on mass loading rates for SO4
-2-S 

 
3.3 Discussion 
 

3.3.1 Environmental factors and estimated water balance 
 
This study contributes performance information for the HSSF-CW performing 

secondary treatment of domestic wastewater in the tropics. The influent wastewater to 

the wetland (Table 3.2) is within the influent range classification for secondary 

treatment of 30-100 mg/L BOD (Kadlec and Wallace, 2009 ). The fluctuation of the 

abiotic factors, namely temperature, dissolved oxygen and temperature in the influent 

wastewater varied according to the outdoor conditions and treatment factors in the 

upstream facultative lagoon. The mean temperatures recorded for the influent 

wastewater was above 20oC (Table 3.2) and the temperature range (19.4-26.6 oC) was 

optimal for removal of nutrients and organic matter (Kadlec and Reddy, 2001).  

The observed wide range of dissolved oxygen concentration in the influent to the 

constructed wetland system (0.2-18.5 mg/L) was attributed to algal growth and 

photosynthetic activity in the non-shaded environment of the facultative pond. Indeed, 

the mean influent DO of 6.3±0.6 mg/L is high compared to treatment wetlands that 

receive wastewater from septic tanks or anaerobic systems. However, the mean 

dissolved residual oxygen concentrations did not exceed 1.0 mg/L in the effluents of 

the pilot HSSF-CW cells, suggesting high oxygen consumption among competing 

aerobic processes within the HSSF-CW bed. Oxygen consumption in this bed is 

mainly related to the differences between inlet and outlet BOD and ammonia. 
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oxygen demands have essentially no DO in their effluents (Kadlec and Wallace, 

2009).  

The difference between the inlet and outlet pH was only significant in the planted 

units (Table 3.2), suggesting an influence of pH buffering by the macrophytes. The 

pH results for the constructed wetland cells are consistent with the behavior of 

wastewater pH in other treatment wetlands, which is circum-neutral unless influents 

are strongly basic or acidic (Kadlec and Knight, 1996).  

The water balance showed that in all the cells, differences in flow existed between 

inflow and outflow, as a result of physical evaporation and plant transpiration. The 

evapotranspiration rates for this study are, however, higher than those reported in a 

fringing papyrus swamp on Lake Naivasha of 12.5 mm/day (Jones and Muthuri, 

1985), but within the range of those reported for a subsurface horizontal flow wetland 

of 24.5±0.6 mm/d in Uganda (Kyambadde et al., 2005). In the course of the study, 

repairs were undertaken to fix leaks detected in the masonry walls of the HSSF-CW 

which could have affected the overall water balance estimation.   

3.3.2 Removal of COD and BOD5 

The BOD5 and COD removals efficiencies are lower than the average values of 85% 

and 75% removal for different countries reported by Vymazal (2005) but similar to 

the results obtained by Mashauri (2000) who found 57-74% (at a low infiltration rate) 

and 42-59% (at a high infiltration rate) reduction in COD by using a 0.75 m depth 

HSSF-CW planted with Typha latifolia reeds. On the other hand, the HSSF-CW 

showed potential to achieve > 80% COD removal at low hydraulic loading rates (Fig. 

3.3). This result coincide with that found by Okurut (2000) who assessed the effect of 

hydraulic loading rate on organic matter removal in a HSSF-CWs planted with a 

Cyperus papyrus. 

Compared to the oxygen demand of the wastewater (12-105 mg BOD5/l), the oxygen 

concentration in the influent, with a mean of 6.3 ± 0.6 mg/L, is insufficient, especially 

for the higher range of organic loading.  Therefore, a large proportion of the COD and 

BOD5 removal probably occurred by anoxic and anaerobic process, among others 

denitrification and sulphate reduction. This is supported by the observation that 
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nitrates did not accumulate (Table 3.2), notwithstanding the modest nitrification, and 

significant sulphate removal in the pilot HSSF-CW cells (Table 3.3). In this study, the 

effluent SO4
2--S concentrations were significantly lower than those in the influent for 

all the three pilot HSSF-CW cells (Table 3.2), suggesting that sulphate reduction was 

important. Indeed, sulphate reduction is the most effective biochemical reaction in 

removing dissolved organic matter measured as COD (36–100% of the total removal) 

in wetlands with a depth of 0.5 m (Garcia et al., 2004). The observed sulphate 

removal efficiency in both the planted and unplanted cells, ranging between 66.2 ± 

26.5 % to 74.9 ± 25.4 %, agrees well with those reported in literature. For instance, a 

laboratory scale HSSF-CW test with a median influent SO4
2--S concentration of 

75±16 mg/L,  achieved a median sulphate removal efficiency of 71±32% and 79±25% 

for planted and unplanted set-ups, respectively (Baptista et al., 2003).  

The organic matter loading rate had an inverse relationship with the removal 

efficiency (not shown), highlighting the importance of the organic loading and 

retention time (Fig.3. 3) on the treatment of organic matter. The organic matter 

loading rate is a variable that combines the effect of the COD or BOD5 concentration, 

wetland area and retention time. The retention time determines the contact between 

the pollutants and the removal processes. The mean retention time of 1.6 -2.0 days in 

the pilot wetland cells is actually a little low for a HSSF-CW, and may have 

contributed to the fair performance of the pilot wetland cells. A plot of organic matter 

removal versus nominal retention time in Fig. 3.3 suggests a retention time of at least 

2 days would be optimum for the system, under the applied experimental conditions.  

Although, there was no significant difference in the organic matter removal 

efficiencies  between the unplanted and planted cells, the planted cells were able to 

sustain a high organic loading rate (up to 30 g m-2 d-2), compared to the control cell, 

while  maintaining a linear relationship with the removal rate (Fig. 3.4). This suggests 

a positive influence of the plants on the wetland performance. It has been proposed 

that the planted rhizosphere stimulates the microbial community density and activity 

by providing root surface for microbial growth, carbon sources through root exudates 

and a micro-aerobic environment via root oxygen release (Baptista et al., 2003; 

Gagnon et al., 2007; Kadlec and Wallace, 2009).  
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The outlet concentrations of the planted cells were fitted to the first order k-C* model. 

The obtained C* values for COD and BOD5 were within the typical range (10-100 

mg/L for COD and 1-10 mg/L for BOD5) reported by Kadlec and Wallace (2009), 

except for cell Cyp2 where the C* value for BOD5 was 17.1 mg/L. It was, however, 

within the range cited by Okurut (2000) for pilot wetlands in Uganda, planted with 

Cyperus papyrus (12 mgBOD5/L) and Phragmites mauritianus (17mgBOD5/L). The 

non-zero background levels of both BOD5 and COD processed by wetlands could be 

of importance to environmental regulators, as it tends to limit the extent of organic 

matter removal that can be obtained in treatment wetlands. The land area requirement 

for secondary treatment (based on BOD5 removal) was estimated as 2.0 m2 per 

population equivalent (p.e), estimated from the obtained area-based first order rate 

constant for BOD5 removal k = 0.1 m d-1, a BOD contribution assumed at 50 g p.e-1 d-

1, a wastewater flow rate of 100 l p.e-1 d-1, a 40% reduction of organic load in the 

primary treatment and an effluent quality requirement of below 40 mg/L BOD5. This 

indicates that HSSF-CWs are area-requirement competitive when compared to the 

widely applied waste stabilization pond system in the tropics. Indeed a facultative 

pond achieving BOD removal efficiencies of 75-80 % in the tropics would require 

2.0-5.0 m2 p.e-1 (Kivaisi, 2001). 

3.3.3 TSS removal 

The effluent TSS concentrations were found to have a poor relationship (not shown) 

with the TSS loading rate, in agreement with observations in literature that outlet 

concentrations are not generally related to inlet concentrations (Kadlec and Wallace, 

2009), as internal wetland processes, i.e. plant detritus material and microbial films 

present on media particles result in a TSS contribution and thus irreducible 

background TSS concentrations. However, the mean effluent concentrations from the 

planted cells (Table 3.2) achieved levels well below the recommended 35 mg/L 

maximum permissible limit for discharge to surface water courses in Kenya (NEMA-

Kenya, 2003). The removal of TSS in HSSF-CWs is usually effective with most of 

the suspended solids filtered out and settled within the first few meters beyond the 

inlet zone (Vymazal, 2005). In this study, we used coarse gravel without fine 

particles. Suspended solids in HSSF-CW are mainly removed by physical 

mechanisms, such as filtration, interception and sedimentation processes (Kadlec and 
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Wallace, 2009). Manios et al. (2003) found that beds with gravel performed better 

concerning TSS removal than beds with soil, sand and compost. Incase of high 

loading rates and poor biodegradability, the entrapment of particulate matter within 

the filtration media in HSSF-CW may however lead to problems of hydraulic 

conductivity (Kadlec and Wallace, 2009; Knowles et al., 2011). 

Reduction in TSS effluent concentration was significantly higher only for the effluent 

of the planted wetland cell Cyp2 compared to that of the unplanted cell (p< 0.007). 

While the mass TSS removal rates showed a strong positive linear relationship with 

TSS mass removal rates in the pilot cells up to some point (Fig. 3.5), the vegetated 

cells sustained the linear relationship better than the unplanted cell up to a TSS 

loading rate of about 20 g m-2 d-1, suggesting a positive influence by the emergent and 

rooted Cyperus papyrus macrophyte. The main contribution of emergent macrophytes 

to TSS removal in HSSF-CW is through the growth of their roots and rhizomes, 

which stabilize the wetland bed and minimizes the  resuspension of sediment 

particles, moreover, at constant hydraulic loads, the rhizosphere  contributes to 

increased interception and sedimentation (Bojcevska and Tonderski, 2007; 

Karathanasis et al., 2003). Nevertheless, other studies have found no difference in 

TSS removal between planted and unplanted beds (Konnerup et al., 2009; Manios et 

al., 2003).  

3.4 Nitrogen removal 
 

Ammonia and nitrate are the most important inorganic forms of nitrogen in wetlands. 

The ionized form of ammonia (NH4
+ ) is predominant in most wetland systems 

because of moderate pH and temperature (Kadlec and Wallace, 2009). The main 

mechanism by which treatment wetlands remove nitrogen from wastewater is 

identified by many authors to be microbial mediated sequential nitrification-

denitrification and thus depends much on the environment inside the system (Trang et 

al., 2010; Vymazal and Kröpfelová., 2009). The nitrification process requires about 

4.3 g of O2 per g of ammonium nitrogen oxidized (Schäfer et al., 1998) and the 

availability of sufficient amounts of oxygen is often the limiting factor for ammonium 

removal in treatment wetlands. The mean ammonium removal or nitrification rates 

obtained in the study, ranging from 2.1 ± 0.43 g m-2 d-1 to 2.7 ± 1.9 g m-2 d-1 in the 
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planted cells (Table 3.3) were probably to the  maximum capacity for NH4
+-N in the 

studied pilot cells, when compared with those found in the literature for nitrification 

rates in wetlands, ranging between 0.01–2.15 g N m−2 d−1 with the mean value of 

0.048 g N m−2 d−1 (Mayo and Bigambo, 2005; Vymazal, 2007).  

NO3
--N concentration levels showed no significant difference in the influent and 

effluent concentrations, suggesting that all nitrate formed from nitrification of 

ammonia was consumed within the wetland, probably as an electron acceptor in 

anoxic respiration processes (denitrification) that results in reduction of nitrate to 

nitrogen gas (N2). Evaluating the nitrification scenario assuming the decrease in 

ammonium concentration was solely due to oxidation, the corresponding amount of 

oxygen required for the observed nitrification rates in the planted cells is computed to 

be 7.2-19.8 g m-2 d-1. However, the oxygen consumption is much higher than that 

which can possibly be transferred by the influent wastewater and Cyperus papyrus 

roots considering the reported oxygen release rates of only 0.017 g m-2 d-1 (Kansiime 

and Nalubenga, 1999). This suggests that other mechanisms such as adsorption, 

sedimentation, assimilation into microbial and plant biomass, were playing a 

substantial role in nitrogen removal in the pilot HSSF-CW. Further, it is plausible in 

the oxygen-limited situation of the pilot HSSF-CW cells that other microbial pathways 

for nitrogen removal were active i.e.,   partial-nitrification of ammonium to nitrite 

combined to  anaerobic ammonium oxidation (ANAMMOX) are possible (Dong and 

Sun, 2007). Ammonia volatilization is not expected to have contributed to ammonia 

removal as the mechanism is only significant for ammonia removal when the pH 

exceeds 10 (Garcia et al., 2010), while in this study, the effluent pH of the HSSF-CW 

cells was circum-neutral (Table 3.2).    

The potential rate of nutrient (ammonium and nitrate) uptake by plants is limited by 

their net productivity (biomass) and the concentration of nutrients in plant tissues, 

while nitrate uptake by wetland plants is presumed to be less favored than ammonium 

uptake (Kadlec and Wallace, 2009). The Cyperus papyrus macrophyte nutrient uptake 

value for nitrogen amounts to 0.135 g m-2 d-1 in natural wetlands (Muthuri et al., 

1989), with a  high content of nutrients observed in the aerial biomass of Cyperus 

papyrus, an indication of active translocation and storage of nutrients to sites where 

they are needed for primary growth, e.g. synthesis of amine acids and enzymes 
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(Kansiime et al., 2007; Kyambadde et al., 2005). In tropical regions, seasonal 

translocation activity is very low, and several harvests can be made during the year, so 

plant uptake could play a significant role in nitrogen removal, especially in lightly 

loaded systems (Vymazal, 2007).  

3.5 Phosphorus removal 

The media used for HSSF-CW (e.g. pea gravel, crushed stones) usually do not contain 

great quantities of Fe, Al or Ca for ligand exchange reactions with phosphate and the 

HSSF-CW are rarely operated at low enough phosphorous loading rates to allow for 

phosphorous removal processes. Therefore, removal of phosphorus is generally low 

(Vymazal, 2005). The low TP removal rates observed in this study (Table 3.3) are not 

different from what is reported in literature. As indicated in a worldwide experience 

of phophorus removal in HSSF-CW described in Vymazal (2005), phosphorus 

removal rates are rather low in CW systems: at an average mass removal rate of 0.12 

g P m−2 d −1  (45 g P m−2 year −1) and an average mass-based efficiency of 32%. 

Indeed, phosphorus removal is usually not a primary design consideration of most 

HSSF-CW that are rather designed for BOD5 and TSS removal. In subsurface flow 

wetlands, soluble phosphorus will move with the water flow, while phosphorus 

associated with particulate matter will be influenced by filtration and interception 

mechanisms present in the wetland bed (Kadlec and Wallace, 2009).  

The low PO4
3--P removal rates observed in this study (Table 3.3) are not different 

from what is reported in the literature. For example, Okurut (1999) determined an 

average o-PO4
- removal rate of 0.05 g m-2 d-1 in a Cyperus papyrus constructed 

wetland in Uganda. Removal of the soluble reactive phosphorus (PO4
3--P) was only 

observed in the planted cells of the pilot HSSF-CW, indicating that plants play a role 

in the removal of phophorus (by uptake of soluble reactive phosphorus with 

conversion to tissue phosphorus). Muthuri et al. (1989) reported Cyperus papyrus 

phosphorus uptake values of   0.0192 g m-2 d-1 in the Lake Naivasha wetlands. Other 

studies also show that plants remove phosphorus from the wastewater through plant 

uptake, but the quantity is often small compared with the loading rates (Bojcevska and 

Tonderski, 2007; Garcia et al., 2010; Konnerup et al., 2009). The observed increase of 
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PO4
3--P concentration in the effluent of the unplanted and unshaded control cell may 

have been contributed by the death and decay of algae.  

3.6 Conclusion 

This study revealed successful performance of the tropical HSSF-CW for the 

secondary treatment of domestic wastewater with respect to organic matter (BOD5 

and COD) and TSS removal. For these parameters the effluent met the admissible 

local standards for discharge into surface water courses, at fairly short hydraulic 

retention times. The influence of Cyperus papyrus rhizosphere oxygen release may 

not have been sufficient to meet the oxygen demand of the wastewater. Indeed, 

anaerobic conditions prevailed in the HSSF-CW bed, as evidenced by high sulphate 

removal and moderate nitrification rates. The organic matter removal rates showed the 

HSSF-CW to be area requirement competitive, with a potential (at optimum hydraulic 

loading rates) of achieving high effluent quality for the secondary treatment of 

domestic wastewater under tropical conditions.  

The tropical constructed wetland merits as a viable alternative to conventional 

treatment of domestic wastewater. Given the minimal maintenance requirements, the 

ease of operation and the good removal performance of bulk pollutants, the 

inexpensive constructed wetland technology can help to alleviate the current 

wastewater management problem in developing countries of discharging partially 

treated or untreated domestic wastewater into freshwater resources.  
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Abstract 
 

The performance, effluent quality, land area requirement, investment and operation 

costs of a full-scale waste stabilization pond (WSP) and a pilot scale horizontal 

subsurface flow constructed wetland (HSSF-CW) at Jomo Kenyatta University of 

Agriculture and Technology (JKUAT) were investigated between November 2010 to 

January 2011. Both systems gave comparable medium to high levels of organic matter 

and suspended solids removal.  However, the WSP showed a better removal for Total 

Phosphorus (TP) and Ammonium (NH4
+-N). Based on the population equivalent 

calculations, the land area requirement per person equivalent of the WSP system was 

3 times the area that would be required for the HSSF-CW to treat the same amount of 

wastewater. The total annual cost estimates consisting of capital, operation and 

maintenance (O&M) costs were comparable for both systems. However, the 

evaluation of the capital cost of either system showed that it is largely influenced by 

the size of the population served, local cost of land and the construction materials 

involved. Hence, one can select either system in terms of treatment efficiency. When 

land is available other factor including the volume of wastewater or the investment, 

and O&M costs determine the technology selection. 

4.0 Introduction 

Conventional treatment plants are widely used for the treatment of domestic and 

industrial wastewater in developed countries. Even though very efficient, they are 

expensive to construct, intensive to maintain and require skilled personnel for their 

operation. In developing countries, very few well working conventional treatment 

plants can be found (Diaz and Barkdoll, 2006). Possible alternatives are those systems 

that provide a cheap, effective, reliable and sustainable way of treating wastewater. 

This includes the waste stabilization ponds (Babu, 2011) and constructed wetlands 

(Mburu et al., 2013). Both are well-established methods for wastewater treatment in 

tropical and subtropical climates (Machibya and Mwanuzi, 2006). Some of the 

advantages of these natural treatment systems over conventional wastewater treatment 

plants include: no need for skilled labour and therefore low operation and 

maintenance costs (Kayombo et al., 2000). Additionally, their zero-energy demand for 

the removal of organics and pathogenic organisms is contributing as a valuable tool 

for sustainable development (Thurston et al., 2001; Mashauri and Kayombo, 2002). It 
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is particularly the case when topography allows gravity feeding. However, one of the 

disadvantages of these natural systems is their space requirement (Bastos et al., 2010).  

The main expenses related to sewage services are capital cost, operation and 

maintenance (O&M) costs and the procurement of land (Tsagarakis et al., 2003). 

These are thus important parameters for selecting an appropriate treatment system 

(Tsagarakis et al., 2003; Sato et al., 2007; Rousseau et al., 2008). In this sense, 

appropriate technology should be affordable (capital cost), have a low operation and 

maintenance cost (sustainability), be effective in meeting the discharge standards 

(efficiency), give the least nuisance (public acceptability) and be environmentally 

friendly (Mara, 2004; Mara et al., 2007). Thus natural wastewater treatment processes 

(i.e., non-electromechanical, using physical and biological processes) that are simple, 

low-cost and low-maintenance are preferred as appropriate alternatives for 

conventional wastewater treatment by any country, but especially in developing 

countries in the tropical areas (Mara, 2006; Sato et al., 2007).  

Waste stabilization ponds (WSPs) and horizontal subsurface flow constructed 

wetlands (HSSF-CWs) are not equally applied in hot climates, as the latter technology 

has been recently embraced in the developing countries (Kivaisi, 2001; Mara, 2004; 

Li, 2007).  Comparing land area requirements and costs to achieve a required effluent 

quality can be useful in deciding whether to use a HSSF-CW or a WSP (Mara, 2006). 

The aim of this chapter is to compare the two technologies in terms of pollutant 

removal efficiency, land area requirement, as well as investment, operation and 

maintenance costs. Such a comparison based on available data and facilities could 

offer technical and economic insights that would simplify technology selection 

processes. This deserves consideration and is especially relevant to small 

communities where the need for a reliable treatment of wastewater not only integrates 

with the selection of an economically and environmentally viable wastewater 

treatment technology, but also with social attributes such as workforce education level 

and available land. In this study, domestic wastewater was send to a pre-existing 

treatment system consisting of three interconnected waste stabilization ponds- a 

primary facultative and secondary facultative pond, followed by a maturation pond. 

An experimental pilot scale HSSF-CW was introduced and fed from the outflow of 

the primary facultative pond.  
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4.1  Experimental set-up 

4.1.1 Study area 
 

The pilot scale HSSF-CW and the WSP were located within the premises of the Jomo 

Kenyatta University of Agriculture and Technology (JKUAT) sewage works, in Juja 

town, Kenya. The sewage works are at a global position of 1o05'49.28"S 

37o01'21.91"E and an altitude of 1463 m, some 40 km North East of Nairobi City.  

JKUAT sewage works treats the university campus’ domestic wastewater of about 

5000 inhabitants by a set of 5 stabilization ponds. The final effluent is discharged to a 

near-by river via a natural waterway (Fig.4.1). 

 
4.1.2 Description of the systems  

The system described has an operational WSP and an experimental pilot scale HSSF-

CW. The WSP system designed for a 2700 population equivalent, consisted of 2 

primary facultative ponds (PFP), 2 secondary facultative ponds (SFP) and a 

maturation pond (MP) that are aligned in series (Fig. 4.1). The primary facultative 

ponds also act as the sedimentation pond receiving raw wastewater from the septic 

tank effluent pump. The septic tank (located 600 m away from the waste stabilization 

ponds) receives wastewater from the students' hostels, staff quarters, cafeterias and 

laboratories at JKUAT. The ponds were periodically covered with duckweed (Lemna 

sp.) and Fern (Azolla pinnata) and attracted ducks and goose. The mean flow rate into 

the PFP and SFP was 349 m3/d and that into the MP was 698 m3/d, resulting into a 

hydraulic retention time (HRT) of 14.6, 6.9, and 19.5 days respectively, giving a total 

HRT of 41 days. 
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Fig. 4.1. Waste stabilization ponds and the pilot scale horizontal subsurface flow constructed wetlands 
schematic layout at the JKUAT sewage treatment works 

 

The constructed wetland system, described in details by Mburu et al. (2013), 

consisted of two pilot scale cells of HSSF-CW receiving primary effluent from the 

outflow of one of the PFP. In one of the HSSF-CW cells, the macrophyte Cyperus 

papyrus was planted (1 plant per m2), while the second cell acted as a control. At the 

time of this study, C. papyrus had senescenced, but below-ground biomass was 

present. The mean flow rate for the control and planted cell was 3 m3/d, resulting in a 

HRT of 1.5 days.  

 
In WSP holding basins or lagoons, wastewater is stabilized in a confined 

environment. Area requirements are based on volumetric and surface organic loading 

rates (Mara, 2006). In the HSSF-CW, water flows through a porous medium such as 

gravel in which plants are rooted. The porous media provide anchorage for the 
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emergent macrophyte and surface area for microbial growth which consequently 

enhances the transformation or removal of chemical and biological constituents in 

wastewater (García et al., 2010). Determination of area requirements for constructed 

wetlands is based on the rules of thumb or first order design equations (Kadlec and 

Wallace, 2009). The wastewater has to be pretreated prior to the HSSF-CW (a 

minimal acceptable level being equivalent to primary treatment), to reduce the risk of 

clogging from solids. The biological conditions in these systems are similar in certain 

aspects; water near the bottom is in an anoxic/anaerobic state, while a shallow zone 

near the water surface tends to be aerobic. The source of oxygen is atmospheric re-

aeration, photosynthesis (in facultative pond) and root oxygen leaching (in wetlands). 

These natural treatment systems promote the development of microorganisms which 

are responsible for much of the biological treatment occurring in the systems. The 

operation of the two systems does not involve material input (chemicals) and energy 

consumption, as treatment mechanisms are natural and wastewater flow within the 

systems is entirely driven by gravity. 

 
4.1.3 Analysis of the physico-chemical parameters 

Physico-chemical variables were measured in-situ. pH, conductivity and total 

dissolved solids  were measured with a HACH, ECO 40 multi-probe, whereas 

dissolved oxygen and temperature were measured with a dissolved oxygen meter 

(Model HACH, HQ40d multi probe).  

Wastewater samples were collected for analysis of ammonium-nitrogen (NH4
+-N), 

total phosphorus (TP), chemical oxygen demand (COD), biological oxygen demand 

(BOD5) and total suspended solids (TSS). All were analyzed using standard methods 

as described in APHA (1998). Mass removal efficiencies were calculated as a 

difference between input and output mass loading rates. Statistical analysis was 

performed using MINITAB 15 and Microsoft Excel 2007 software. Comparison of 

variables was performed using the analysis of variance technique (ANOVA) and the 

Tukey's multiple comparisons was used to test differences in the means. 
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4.1.4 Cost evaluation 

The costs of the two systems were calculated based on land requirement, capital, 

operation and maintenance costs for the treatment of domestic wastewater at JKUAT 

sewage works, and expressed per population equivalent (PE). Comparative costing 

was based on undiscounted (and annualized) capital, O&M cost estimates at the time 

of the study, and ignoring the need for expenditures to earn a rate of return on the 

investment. Capital cost included the cost of land and the estimated construction cost 

for both the WSP (earthworks, lining the bottom and embankments, inlet and outlet 

structures) and the HSSF-CW (masonry and concrete works, plumbing, gravel media 

and establishing the macrophyte). O&M costs included those of personnel and 

maintenance (routine and arising repairs, inlet-outlet inspection, landscaping, 

desludging and macrophyte harvesting (for the HSSF-CW)). A design period of 20 

years for the HSSF-CW and WSP systems was used. The initial cost calculation for 

the HSSF-CW is based on the pilot plant sizing of 12 PE, which is eventually 

extrapolated to a full size HSSF-CW for 2700 PE and with a corresponding area of 

the sedimentation pond included in the costing as well.  

4.2  Results and discusion 
 

4.2.1  Quality of influent and effluent 

The main results for the water quality parameters (BOD5, COD, TSS, NH4
+-N, and 

TP) are given in Table 4.1 for the PFP, SFP, MP and the HSSF-CWs. The WSP 

removed almost or more than 90 % of the BOD, COD and TSS, only 21 % of the TP 

and 50 % of the NH4
+-N. The HSSF-CW removed more than 84 % of BOD5, COD 

and TSS. NH4
+ -N was not removed while, TP removal was 13 % in the unplanted 

(control) and 26 % in the planted HSSF-CW.  

 
The WSP effluent values are within the Kenya National Environmental Management 

Authority (NEMA) effluent discharge guidelines, except for NH4
+-N and TP (NEMA-

Kenya, 2003). The planted and the unplanted HSSF-CWs exceeded the discharge 

limit values for NH4
+-N and TP as well. For the planted HSSF-CW, it must be noted 

that the plants (above ground biomass) were harvested and only below-ground plant 

parts, i.e. live Cyperus papyrus roots and rhizomes, were present in the HSSF-CW 

during the study. Compared with the planted HSSF-CW, effluent values for pollutants 
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from the unplanted HSSF-CW are relatively high (Table 4.1). This is an indication 

that plants play a role in the wastewater purification processes of the HSSF-CW 

(Kadlec and Knight, 1996; Stottmeister et al., 2003). 

Table 4.1. Effluent water quality values and removal efficiencies of the different systems  

 
Values in bold don't comply with the NEMA standards. (NEMA guidelines for effluent discharge into surface waters are: less than 120, 40, 35, 1 and 1 mg l 

for, COD, BOD5, TSS and ammonium compound, TP, respectively (NEMA 2003)).SD: Standard deviation 

 

It also should be noted that in this set-up the HSSF-CW are providing up to secondary 

treatment only. Nevertheless the HSSF-CW achieved a better effluent quality with 

regard to the bulk pollutants, i.e. organic matter and the suspended solids compared to 

the WSP (Table 4.1). This is attributed to the difference in the type of treatment (i.e. 

biofilm attached to the gravel media in the HSSF-CW and suspended growth in the 

WSP) and the generation of secondary BOD and TSS from algal and duckweed 

biomass in the WSP. Thus despite the low HRT of only 1.5 days in the HSSF-CW, 

compared to the recommended up to 8 days for acceptable removal efficiency of 

organic matter (Akratos and Tsihrintzis, 2007), the HSSF-CW was found to provide a 

comparable treatment performance with the WSP. The WSP included an extra 

treatment (tertiary) step and an overall longer retention time.  

The higher NH4
+-N concentration (Table 4.1) and the resulting poor removal 

performance observed in the HSSF-CW compared to the WSP effluent are attributed 

to the inadequate re-oxygenation capacity in the subsurface flow environment of the 

HSSF-CW system (Okurut, 2000; Mburu et al., 2012). Indeed, the direct contribution 

by atmospheric re-aeration and algal photosynthesis, as is the case for a WSP is 

insignificant in the global aeration process of the HSSF-CW. This reduces the extent 

of possible nitrification and subsequently limits denitrification due to a lack of 

nitrates. This was clear from the consistent drop in dissolved oxygen (DO) between 

the influent and effluent, with a mean effluent DO concentration of 0.6 mg/l, in 

contrast to an increase to 3.2 mg/l DO at the WSP effluent (data not shown).   

mg/l SD % mg/l SD % mg/l SD % mg/l SD % mg/l SD % 
Influent  232 133.3  424  277.4 118 87.6 39 13.6 4  0.9 
PFP 74 17.7  68  216  110.9 49 56 14.9 52 34 10.6 14 4  0.7  5 
SFP 48 14.6  79  160  77.3 62 39 22.9 67 35 13.8 11 3  0.6  21 
MP 20 16  91  100  37 76 10 20 91 17 11 56 3  0.6  21 
HSSF-CW (Planted)  29 9  87  58 17.4 86 19 8.7 84 36 8 8 3  0.3  26 
HSSF-CW (Unplanted) 39 14.5  83  98 17.6 77 34 15 71 39 5.6 0 3  0.6  13 

System TPBOD5  COD TSS NH4
+-N
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Kadlec and Knight (1996) further stress that a HSSF-CW system is good in nitrate 

removal (denitrification), but not for ammonia oxidation since oxygen availability is 

the limiting step in nitrification. On the other hand, similar poor ammonia removal 

was observed for the secondary facultative pond (SFP) despite the high mean oxygen 

concentration in its effluent (mean 10.2 mg/l) compared to the influent wastewater 

(1.3 mg/l). There was only a slight decrease in ammonium concentration in the SFP, 

which was finally reduced to 17 mg/l in the MP effluent. The results, nonetheless, are 

comparable to the findings of Babu (2011), who reported an increase in the 

ammonium concentration in the facultative pond effluent and a reduction in the 

ammonium concentration in the MP effluent. The mineralization of organic 

compounds within the aerobic layer of the SFP due to the supply of oxygen from 

algae could be responsible for the high NH4
+-N concentration observed in the SFP 

effluent (Senzia et al., 2003; Shammas et al., 2009). Further, lack of attachment 

surfaces for the nitrifiers could be responsible for the high NH4
+-N concentration in 

the effluent of WSP (Zimmo et al., 2003; Babu, 2011). Several studies have shown 

that the introduction of attachment surface for nitrifiers in the ponds improves 

nitrogen removal (Pearson, 2005; Babu, 2011). 

Phophorus removal through assimilation by algae to support cell synthesis seems to 

have been considerable in the WSP judging from the higher removal rate calculated at 

2.54 g TP m-2d-1 compared to 0.13 g TP m-2d-1 achieved in the HSSF-CW. Reasons 

for the lower phophorus removal efficiency of the HSSF-CW system may be related 

to the lower sorption and retention capacity of the granitic gravel media and the 

saturation of phosphorus uptake by plants. 

4.2.2  Performance of the systems based on area and HRT 

The WSP receives the wastewater of 2700 PE and has a total area of 22350 m2 and a 

hydraulic loading rate of 698 m3/day, resulting in a HRT of 41 days, and an area of 

8.3 m2 per PE. Since the HSSF-CW is receiving the influent from the PFP, it does not 

need a sedimentation pond in this setup, and therefore the area per PE is rather small 

at 1.9 m2. The sedimentation pond is of utmost importance to avoid clogging the 

HSSF-CW filter bed which results directly on the accumulation of suspended solids 

introduced with the influent (solids entrapment and sedimentation). In the calculations 
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for cost, we assumed the need of a sedimentation basin, and therefore the area per PE 

increased from 1.9 to 3.4 m2/PE. This area for the HSSF-CW is somewhat low 

compared to the applied hydraulic loading and to values in the literature for secondary 

wastewater treatment with  HSSF-CW estimated at 6 m2/PE (Mara, 2006). This can 

be part of the explanation of the rather fair performance by the HSSF-CW. However, 

as the overall performance for both systems is comparable, it can be deduced that the 

area requirement for the HSSF-CW is 2.5 times less that of the WSP. 

4.2.3  Cost evaluation   

The cost for construction and maintenance of the WSP and the HSSF-CW at JKUAT 

have been calculated and Table 4.2 gives a detailed overview. The costs are based on 

a lifetime of 20 years and 2700 PE. Initially, the cost for the small pilot HSSF-CW 

(12 PE) is given, for which an extrapolation is made to match the 2700 PE to enable 

direct comparison with the WSP costs. The operation and maintenance tasks are 

supposed to be necessary in order to achieve optimal treatment and attain the expected 

durable and reliable performance (Rousseau et al., 2008). For example after 

desludging, these systems are ready to perform a new cycle of operation without 

having to change any electro-mechanical equipment. This ensures a lower operation 

cost as well as a reliability of performance which is not negatively affected by the 

occasional malfunctioning of such equipment.  

Ninety-eight % of the construction cost of the WSP goes to the cost of land and the 

lining.  Therefore, costs will be less when land is cheap and no liner is needed (e.g. 

due to soil conditions). For maintenance of the WSP the main costs are personnel and 

desludging. For the HSSF-CW, 93 % of the construction cost is in the purchase of 

land, the masonry and the concrete works. Thus land is an important cost factor, while 

a construction not involving concrete and masonry structures can save upto 40 % in 

construction cost. Indeed for both systems, the variability of the soil conditions at 

various different sites and the need to prevent leakage of the wastewater into the 

ground water will influence the cost that goes into the preparation of the sides and 

bottom.  Again desludging is costly in the maintenance cycle of HSSF-CW 

accounting for 40 % of the operation and maintenance cost. The construction costs of 

the HSSF-CW are lower than those of the construction of the WSP, but the annual 
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maintenance costs are higher. The overall costs per PE for the two systems are in the 

same range (Table 4.3). For the HSSF-CW it should be noted that both the area and 

costs have been extrapolated from the pilot scale system to a potential full scale 

systems, and in reality the total cost will be less considering the extensive concrete 

and masonry works in the experimental pilot scale HSSF-CW. Nevertheless, the costs 

for some tasks such as plant harvesting cannot be easily reduced because the type of 

equipment necessary is the same and this operation has to be done manually.  

The determined land area requirement for the HSSF-CW to serve 2700 PE is three 

times less compared to that for the WSP. Such a footprint is especially an advantage 

in countries with high land prices. These results corroborate with those of Senzia et al. 

(2003), who also reported that a WSP needed more land area than a HSSF-CW based 

on the same effluent quality. However, Mara (2006) computed a higher land area 

requirement for a secondary HSSF-CW compared to a secondary facultative pond. 

The comparisons were made at three levels of effluent quality in the UK i.e. (i) that 

specified in the Urban Waste Water treatment Directive (UWWTD) of 25 mg filtered 

BOD l-1 and 150 mg suspended solids (SS) l-1 for WSP effluents, and 25 mg unfiltered 

BOD l-1 for CW (and all other) effluents, (ii) two common requirements of the 

Environment Agency (the environmental regulator for England and Wales) for small 

works (a) the “40/60” requirement i.e. 40 mg BOD l-1 and 60 mg SS l-1 and (b) the 

“10/15/5” requirement i.e. 10 mg BOD l-1, 15 mg SS l -1 and 5 mg ammonia-N l-1. 

Yet, it is difficult for WSP systems to meet such requirements, especially those for 

SS, so WSP effluents must be ‘polished’ (Johnson et al., 2007). In Brazil, Bastos et al. 

(2010) indicated that HSSF-CW and WSP require similar land areas to achieve a 

bacteriological effluent quality suitable for unrestricted irrigation (103 E. coli per 100 

mL), but HSSF-CW would require 2.6 times more land area than ponds to achieve 

quite lenient ammonia effluent discharge requirement (20mg NH3 L-1), and, by far, 

more land than WSP to produce an effluent complying with the WHO helminth 

guideline for agricultural use (≤1 egg per liter). 

Table 4.3 compares the area requirement and cost of the WSP and HSSF-CW. The 

investment cost for the WSP is 3 times more than for the HSSF-CW. However, the 

maintenance cost for the WSP is much less, making the total cost about equal. 
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Expressed per PE, the cost is about 13 euro per PE per year for maintenance and 

investment (based on a 20 years lifetime). 

Table 4.2. Capital, operation and maintenance costs (EUROs) of WSP and HSSF-CW for 2700 PE at 
JKUAT (design lifetime of 20 years) 

 

 
Table 4.3. Comparison of costs (Euros) and area (m2) of the WSP and HSSF-CW based on population 
equivalent (PE) 

 

 

Capital/ investment cost Unit Rates Quantity Amount %

Land cost m2
15 22350 335250 47.6

Excavation m3
0.5 28600 14300 2.0

Lining-sides+Bottom m2
5 17640 352800 50.1

Inlet-outlet structure No. 250 10 2500 0.4

704850

Annual Recurrent Cost

Personnel Manpower 86.4 2 172.8 61.1

Repair works piecework 10 1 10 3.5

Desludging every 5 years piecework 500 0.2 100 35.4

282.8  

Capital/ investment cost

Land cost m2
15 39.9 598.5 50.6

Excavation m2
0.5 40 20 1.7

Masonry and  Concrete works No. (Piecework) 500 1 500 42.2

Cost of gravel t 10 6 60 5.1

Planting Piecework 5 1 5 0.4

1183.5

Annual Maintenance Cost

Maintenance (hired labour) Piecework 5 6 30 30.0

Repairworks Piecework 10 2 20 20.0

Plant harvesting Piecework 10 1 10 10.0

Desludging every 5 years piecework 200 0.2 40 40.0

100

WSP (based on 2700 PE)

Total investment cost (Euros) 

CW (based on 11.6 PE)

Total annual  recurrent (Euros) 

Total investment cost (Euros) 

Total cost (Euros) 

WSP HSSF-CW
Area 22350 39.9
Design PE 2700 11.6
Area per PE 8.3 3.4
Area for 2700 PE 22350 9287.1
Total Investment (2700 PE) 704850 275872
Investment/ yr (2700 PE) 35242 13747
Maintenance/yr (2700 PE) 283 23300
Total cost/yr (2700 PE) 35525 37047
Total cost/PE.yr 13.2 13.7

System
Area/ Cost
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Table 4.4 compares the JKUAT results with Ahmed and van Bruggen (2010), where a 

WSP, various constructed wetland combinations and a floating wetland system were 

compared.  Table 4.4 also includes data from a HSSF-CW and WSP in Uganda and an 

activated sludge (AS) system in The Netherlands (personal communication).  The 

total cost of the "green" systems (WSP and CW) ranges from 12 - 33 Euro/PE.yr, with 

an average of 14.4 Euro/PE.yr, whereas the cost for the activated sludge wastewater 

treatment (AS) system is at least three times higher. Their area needed per PE ranges 

from 1.5 to 10.1 m2/PE compared to 0.4 m2/PE for the AS. 

Although the "green" systems are not capable of achieving the same consistent 

treatment performance efficiency as activated sludge plants, many studies report quite 

acceptable levels of effluent quality of both WSPs and HSSF-CWs (Kadlec and 

Wallace, 2009; Vymazal, 2011). These good performances are also indicated by the 

data presented in this work (Table 4.1). However, what the decision makers are most 

interested in is the reliability of performance. For both the WSPs and HSSF-CWs, this 

is not as dependent on complex and strict operational constraints as it is for many 

conventional/intensive processes. Once they are properly designed, built, operated and 

maintained, the probability of malfunctioning of WSP and CWs is low (Rousseau et 

al., 2008; Kadlec and Wallace, 2009; Ahmad and Van Bruggen, 2010). Further, these 

technologies are quite suitable for the tropical and subtropical regions where 

temperature is normally high (Yu et al., 1997). It can be expected that biofilm 

formation in these regions will be higher and probably provide diverse 

microenvironments for effective wastewater treatment (Babu, 2011). As such, the 

systems can achieve the required effluent quality at treatment works serving either 

large populations or small communities (≤ 2,000 PE). 

Table 4.4.  Comparison of the WSP and CW with various systems 

 

System  HRT PE  Area/PE Euro/PE.yr
WSP  41 2700  8.3 13.2
HSSF-CW  1.5 12  3.4 13.7
CW1 24.3 105  5.3 19.4
CW2 38.3 53  10.1 33.3
CW3 21.4 97  5.1 20.9
F-W 10.6 13  1.5 11.8
WSP  73.4 65  9.4 12.8
CW-Uganda  1.8 2
WSP-Uganda 2.1 2.5
AS Netherlands  0.4 50

Constructed wetland combination          [a]

Constructed wetland combination          [a]

Description
Waste stabilisation pond (This work) 
Planted constructed wetland (This work)
Constructed wetland combination          [a] 

CW without liner and concrete          [a]

Waste stabilization ponds without liner           [b]

Activated sludge wastewater treatment plant              [*]

Floating wetland system         [a]

Waste stabilisation pond        [a]

[a]: Ahmed and van Bruggen (2010)     [b]: Okurut (2000)     [*]: personal communication
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4.3  Conclusion 

Comparable medium to high levels of organic matter and suspended solids removal 

were attained in both the WSP and HSSF-CW systems investigated. However, the 

WSP attained a better removal for NH4
+-N.   The total annual cost estimates 

consisting of capital, operation and maintenance costs had little difference between 

both systems. However, the evaluation of the capital cost of either system showed that 

it is largely influenced by the cost of land and the required construction materials. The 

HSSF-CW showed less land requirement per unit volume of treated wastewater 

compared to that of the WSP.  Hence, one can select either system in terms of 

treatment efficiency. When land is abundantly available, other factor including the 

volume of wastewater to be treated and the economies of scale, determine the final 

costs. 
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Chapter 5: Reactive transport simulation in a tropical 
horizontal subsurface flow constructed 
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Abstract 

A promising approach to the simulation of flow and conversions in the complex 

environment of horizontal subsurface flow constructed wetlands (HSSF-CWs) is the 

use of reactive transport models, in which the transport equation is solved together 

with microbial growth and mass-balance equations for substrate transformation and 

degradation. In this study, a tropical pilot scale HSSF-CW is simulated in the recently 

developed CWM1-RETRASO mechanistic model. The model predicts organic matter, 

nitrogen and sulphur effluent concentrations and their reaction rates within the   

HSSF-CW. Simulations demonstrated that these reactions took place simultaneously 

in the same (fermentation, methanogenesis and sulphate reduction) or at different 

(aerobic, anoxic and anaerobic) locations. Anaerobic reactions occurred over large 

areas of the simulated HSSF-CW and contributed (on average) to the majority (68%) 

of the COD removal, compared to aerobic (38%) and anoxic (1%) reactions.  To 

understand the effort and compare computing resources needed for the application of 

a mechanistic model, the CWM1-RETRASO simulation is compared to a process 

based, semi-mechanistic model, run with the same data. CWM1-RETRASO 

demonstrated the interaction of components within the wetland in a better way, i.e. 

concentrations of microbial functional groups, their competition for substrates and the 

formation of intermediary products within the wetland. The CWM1-RETRASO 

model is thus suitable for simulations aimed at a better understanding of the CW 

system transformation and degradation processes. However, the model does not 

support biofilm-based modeling, and it is expensive in computing and time resources 

required to perform the simulations.  

5.0 Introduction 

The constructed wetland technology has become useful in mitigating environmental 

pollution by taking advantage of natural processes for wastewater treatment (Hench et 

al., 2003; Kivaisi, 2001). However, constructed wetlands (CWs) exhibit a high 

complexity in their pollutant removal processes and mechanisms (Faulwetter et al., 

2009; García et al., 2010; Ojeda et al., 2008; Reddy and D'Angelo, 1997; Wu et al., 

2011).  Lately, mechanistic models for CWs have become promising tools for a better 

description and an improved understanding of constructed wetland treatment 

processes and performance (Langergraber et al., 2009a; Moutsopoulos et al., 2011). 
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Their application involves the simulation of reactions and flow in the heterogeneous 

environment of subsurface flow CWs by the use of the advective–dispersive transport 

equations solved together with the microbial growth and mass-balance reaction 

equations for substrate transformation and degradation, i.e. the biokinetic models. A 

few CW biokinetic models have been formulated with different levels of complexity 

in terms of their mathematical structure, i.e. constitutive laws and equations, number 

of variables or components and parameters, etc. (Langergraber and Šimůnek, 2012).  

An example of these mechanistic models is the Constructed Wetland Model N°1 

(CWM1), which main aim is to provide a widely accepted model formulation 

describing  biochemical transformation and degradation processes for organic matter, 

nitrogen and sulphur in subsurface flow CWs (Langergraber et al., 2009c). 

 
Mechanistic numerical models can be used to determine the relationships between the 

different wetland wastewater treatment processes and weigh their relative 

contributions (Ojeda et al., 2008). Compared to the empirical models and first order 

models, the mechanistic models for constructed wetlands are more versatile and 

accurate predictive tools over a much larger range of operating conditions (Bezbaruah 

and Zhang, 2004; Langergraber, 2007; Rousseau et al., 2004). Together with being 

resilient to perturbations, the mechanistic models offer the opportunity of testing the 

sensitivities of the pollutant removal processes in different operational conditions 

when the evaluated scenarios cannot be easily tested physically (Langergraber, 2011; 

Langergraber and Šimůnek, 2012; Liolios et al., 2012; Llorens et al., 2011b; Min et 

al., 2011; Rousseau, 2005).   

 
In order to simulate the reactive transport and treatment performance in CWs, the 

biokinetic models have been coupled to hydrodynamic models (Langergraber et al., 

2009b) and implemented in software to solve the differential equations for dynamic 

simulations (Mburu et al., 2012). One recent work implemented the CWM1 processes 

within the finite element code RetrasoCodeBright (RCB), obtaining the CWM1-

RETRASO model (Llorens et al., 2011a). This 2D mechanistic model simulates 

hydraulics and reactive transport as well as the main microbial reactions for organic 

matter, nitrogen and sulphur biodegradation and transformation in horizontal 

subsurface flow constructed wetlands (HSSF-CWs) (Llorens et al., 2011b). 
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Generating and fitting data for a diverse and wide range of pollutant loading rates and 

hydraulic retention times will illustrate the robustness and predictive power of such 

mechanistic models for CWs. In this work, the CWM1-RETRASO model was used to 

simulate the treatment performance and reactive transport in a tropical HSSF-CW.  

 
A mechanistic approach, although physically sound and straightforward, requires a 

great deal of effort and skill to implement, as well as considerable computing 

resources for its application (Brooks and Tobias, 1996; Langergraber, 2011). A 

fundamental challenge for wetland scientists is determining the appropriate level of 

complexity for mechanistic models to effectively simulate the fate and behavior of 

target pollutants in wetlands (Min et al., 2011). Some investigators claim that simple 

models (closer to the empirical approach) have a higher practical value (Kadlec and 

Wallace, 2009), because mechanistic models are not able to explain the infinite 

complexity of the underlying phenomena, and that significant uncertainties are 

introduced in estimating a large number of model parameters. Others emphasize that 

more complex mechanistic models have a robust theoretical basis and are thus with 

better predictive potential (Min et al., 2011).  Hence, the question is whether or not 

more complex, but also less manageable, models offer a significant advantage to the 

designer (Rousseau et al., 2004). To appreciate these aspects, the application of the 

CWM1-RETRASO model to simulate the reactive transport of a tropical pilot scale 

HSSF-CW system is compared to that with a semi-mechanistic biokinetic model 

implemented by Ojeda et al. (2008) in the RCB finite element code. The latter model 

features simplified descriptions of organic matter, nitrogen and sulphur transformation 

processes in HSSF-CWs, with fewer model parameters.  

5.2 Methodology 

5.2.1  2D simulation models  
 

The two-dimensional simulation model CWM1-RETRASO is based on the work of 

Llorens et al. (2011a), in which the CWM1 model was implemented into the two-

dimensional finite-element code RCB. Within the CWM1-RETRASO model, RCB 

provides the knowledge related to reactive transport and flow properties, while 

CWM1 provides the knowledge related to biochemical processes (Llorens et al., 

2011a). In the model, physical oxygen transfer from the atmosphere to the water is 
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included. Phosphorus transformations, biofilm growth, oxygen leaking from 

macrophytes and processes linked to clogging (i.e. solids accumulation) were not 

considered. In the RCB code, the concentration of primary and secondary species and 

aqueous complexes are expressed in mol/kg water (Saaltink et al., 2005). The 

molecular weight of O2, is applied as the conversion factor from mg/l of COD and 

BOD to mol/kg units, whereas the molecular weight of N and S is used to convert the 

concentrations of nitrogen compounds and sulphate from mg/l to mol/kg units, 

respectively. The reaction rates are computed in per time (seconds) and expressed as 

mol/s kg water. For a detailed description of CWM1 implementation in RCB and 

utilization of these units, see Llorens et al. (2011a).  

 
The CWM1-RETRASO and the semi- mechanistic model, developed in the work of 

Ojeda et al. (2008) have the same mathematical and functional form, but they 

compare and contrast in the following ways: 

 
 CWM1-RETRASO uses Monod type expressions for substrate removal as a 

function of the bacterial concentrations. Six bacterial functional groups 

(facultative heterotrophs, autotrophs, fermenters, methanogens, sulfate reducers 

and sulfide oxidisers) are identified and associated with their respective organic 

matter transformation-degradation pathways in the CWM1-RETRASO model. In 

contrast, four simple generic microbial kinetic reaction equations are employed in 

the semi-mechanistic model to simulate microbial transformation and degradation 

processes for organic matter (aerobic respiration, denitrification, sulphate 

reduction and methanogenesis), without an explicit consideration of bacterial 

biomass growth. Bacterial biomass is regarded as not limiting the microbial 

kinetics. The organic matter degradation rates in the semi-mechanistic model are 

described by first-order kinetics with multiplicative saturation terms for the 

electron acceptors, and with multiplicative inhibition terms. This followed from 

the work of Van Cappellen and Gaillard (1996) that considered aerobic, anoxic 

and anaerobic degradation processes occurring at the same time in aquatic 

sediments (Van Cappellen and Gaillard, 1996). 

 
 The explicit consideration of bacterial growth and lysis processes in the reaction 

scheme of the CWM1-RETRASO model makes it more detailed compared to the 
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reaction scheme of the semi-mechanistic model. Nevertheless, the RCB code 

architecture does not consider fixed biomass and therefore does not allow to 

conduct biofilm based-modeling. Hence, a constant bacterial concentration 

(estimated by fitting) is introduced into the influent and assumed to be transported 

with wastewater through the HSSF-CW bed similarly to the solute components 

and in this way maintaining an active microbial population within the filter. 

There is a significant difference in the number of kinetic parameters, each of 

which has a specific mechanistic interpretation: CWM1-RETRASO needs 51, 

compared to 12 parameters for the semi-mechanistic model. The CWM1-

RETRASO model is thus complex when focusing on the number of adjustable 

parameters, model variables and inputs. 

  
 In the semi-mechanistic model, the reactions are assumed to use only dissolved 

organic matter as a substrate (measured in terms of dissolved COD), which is 

readily biodegradable by the four microbial reactions considered. An unspecific 

hydrolytic step to represent the conversion of influent particulate organic matter 

into dissolved organic matter is included. The CWM1-RETRASO model 

considers both dissolved and particulate organic matter. Furthermore, CWM1-

RETRASO considers the non-biodegradable soluble and non-biodegradable 

particulate organic matter components in both the influent and effluent. This 

recognizes that part of the non-biodegradable organic matter in the system is 

debris associated with endogenous decay of bacterial biomass (Langergraber et 

al., 2009c; Llorens et al., 2011a).  

 
 In both models, the slowly biodegradable fraction of COD (characterized as XS 

and CODX in CWM1-RETRASO and the semi-mechanistic model, respectively) 

represents the bulk of the biodegradable substrate and the most important input of 

hydrolysable substrate to the CW. Hydrolysis, which is an important process to 

initiate the degradation of slowly biodegradable substrate in wastewaters 

(Vymazal and Kröpfelová, 2009a), is formulated in CWM1-RETRASO by means 

of a surface-saturation-type of reaction, described in two reactions each one 

influenced by the heterotrophic bacteria (XHF) or the fermenting bacteria (XFB) 

(Llorens et al., 2011b). The hydrolysis by fermenting bacteria is assumed to be 
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slower than by  heterotrophic bacteria (Langergraber et al., 2009c). In the semi-

mechanistic model, the hydrolysis process is described by first-order kinetics and 

a multiplicative exponential function that recognizes that most particulate organic 

solids are retained near the inlet.   

5.2.2 Data for reactive transport simulation 

The data used in this work were obtained from a pilot scale HSSF-CW located at the 

Jomo-Kenyatta University of Agriculture and Technology, Juja, Kenya (Mburu et al., 

2013). Sampling was conducted between 2008 and 2011. The HSSF-CW consisted of 

three replicate wetland cells, each with an area of 22.5 m2 (7.5 m x 3 m) and filled 

with granite type gravel (size 9 - 37 mm and porosity of 45 %) to a depth of 0.6 m.  

The primary effluent of a facultative pond treating domestic wastewater was 

introduced into the cells by continuous gravity feeding. The water depth was 

maintained at 0.5 m within the gravel bed with the aid of fixed outlet pipes.  Data 

from two pilot cells, Cyp1 and Cyp2, planted with Cyperus papyrus was used. The 

data from the pilot cell Cyp2 were used for the model's calibration and those from the 

cell Cyp1 were used in the validation simulation. The mean hydraulic loading rates 

for the cell Cyp1 and cell Cyp2 during the study period were 195 ± 80 mm/d and 193 

± 86 mm/d, respectively. The mean theoretical hydraulic retention times were 1.6 ± 

1.4 days in cell Cyp1 and 1.95 ± 1.0 days in cell Cyp2. The results obtained from the 

laboratory analysis of influent-effluent samples are summarized in Table 5.1.  

 
Table 5.1. Influent and effluent characteristics in the period of the study (2008-2011) 

 
  n: number of successfully analyzed samples 

                                                    Influent                                                                       Effluent 
 

Quality 
Parameter  Unit 

  

Range Mean n   Cyp1 n Cyp2 n 

DO mgL-1 0.21-18.5 6.32 ±  0.6 9 0.85 ±  0.12 5 0.72 ±  0.22 9

Temp oC 19.4-26.6 23.3 ±  1.22 10 23.2 ± 1.7 5 22.6 ± 0.8 9

pH pH 7.22-8.67 7.8 ± 0.2 10 7.04 ± 0.0 5 7.11 ± 0.11 9

NO3
--N mgL-1 0.1-3 1.1 ± 1.1 21 1.1 ± 0.8 16 0.9 ± 0.9 19

NH4
+-N mgL-1 18-33 25.8 ± 4.5 19 18.8 ± 3.2 13 19.0 ± 5.8 19

BOD5 mgL-1 12-105 73.6 ± 17.7 10 34.6 ± 12.3 7 28.9 ± 9 9

COD mgL-1 52-354 159.5 ± 75.8 48 89.5 ± 45.1 22 91 ± 31.8 46

SO4
2- mgL-1 18.5-100 66.7 ± 25.4 20 29.3 ± 12.2 17 20.1 ± 16.2 19
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5.2.3 Hydraulic calibration  

The definition of various aspects such as the spatial discretization of the wetland 

geometry (the grid), the initial water pressure in each node, the boundary conditions 

(inlet and outlet) and the hydraulic parameters (liquid longitudinal and transversal 

dispersion coefficients) is required to model the wetland hydraulics. The 2D grid 

consisted of 720 trapezoidal finite elements (60 columns and 12 rows) and 793 nodes. 

The dimensions of the grid were 7.5 m for the upper and lower bases (slopped at 1%), 

and 0.5 m and 0.575 m for the lateral sides at the inlet and the outlet, respectively. 

The partial pressures of the 793 nodes in the mesh were assigned after defining three 

outlet nodes, located at prescribed liquid pressures of 0.1064, 0.1058 and 0.1052 MPa 

yielding a mean water level of 0.489 m, which matched well with water depth 

observations at observation ports installed within the HSSF-CW bed. 

  
The numerical hydraulic model was validated using a HRT distribution test with 

lithium in cell Cyp2. The tracer test conducted at an average flow rate of 2.54 m3/d for 

261 h yielded an experimental hydraulic retention time (HRT) of 70.2 h, whereas the 

simulated HRT was 71.6 h. The normalized variances of the experimental and 

simulated break through curves were 0.65 and 0.71, respectively. The difference in 

numerical and experimental tracer curves are attributed to the fact that RCB considers 

the HSSF-CW granular medium as homogeneous, ignoring filter medium 

heterogeneity and non-perfect subsurface flow conditions in the HSSF-CW. The 

liquid longitudinal and transversal dispersion coefficients were estimated by curve 

fitting in the RCB code, at 0.15 m and 0.07 m, respectively.   

5.2.4 Reactive transport calibration, validation, inputs and model comparison 
 

Biokinetic model calibrations and validations were performed against the observed 

concentrations of COD, NH4
+-N, NO3

--N and SO4
2--S in the effluent over five 

different influent wastewater flow rates and compositions (Table 5.2).  
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Table 5.2. Parameter set of the influent wastewater used for the calibration and validation simulations 
with the CWM1-RETRASO and semi-mechanistic model  

 
[ ] Validation flow rate 
 
To run CWM1-RETRASO, 19 inputs characterizing the influent (dissolved oxygen, 

COD fractions, NH4
+-N, NO3

--N and SO4
2--S, initial bacterial concentrations, pH and 

alkalinity) and one input for the water flow rate and one for the hydraulic retention 

time are necessary. Fractionation of the influent wastewater COD was based on 

standard ratios given in the activated sludge models (Henze M. et al., 2000). The 

wastewater used in the pilot experiment was primary effluent with a wide range of the 

BOD5:COD ratio (0.13 - 0.83) (Mburu et al., 2013) . The fractionation of COD was 

conducted as follows:  SA (Acetate) = 15%, SI (Inert soluble COD) = 5%, XI (Inert 

particulate COD) =5%, XS (Slowly biodegradable particulate COD) = BOD21-BOD5 

(BOD21 approximated at 90% COD), and SF (Fermentable, readily biodegradable 

soluble COD) = BOD5-SA. Default values for the biokinetic model parameters as 

reported by Llorens et al. (2011b) were used in the simulations. 

 
The calibration of the semi-mechanistic model involved the optimization (by trial and 

error as RCB does not provide tools for automatic parameter estimation using 

measured data) of the first order kinetic constants (found to be the most sensitive) for 

aerobic respiration, sulphate reduction and methanogenesis. Default model values for 

the half-saturation constants and inhibition constants were used. To run  the model,  9 

inputs characterizing the influent (dissolved oxygen, COD fractions, NH4
+-N, NO3

--N 

and SO4
2--S, pH and alkalinity) and one input for water flow rate and one for the 

hydraulic retention time are required. The parameter and rate constants associated 

with the kinetic equations for organic matter degradation are available in Ojeda et al. 

(2008). As the reactions in the model are assumed to use dissolved COD as a 

substrate, the fractionation of the influent COD was implemented as: CODX 

(particulate slowly biodegradable COD) = 60% of COD, and CH2O (dissolved 

biodegradable COD) = 40% of COD.  

Parameter (mg/l) 1.7 [2.3] 2.0 [2.2] 2.4 [2.7] 3.0 [4.0] 4.2 [5.3]
COD 127 256 96 157 141
BOD5 85 64 66 105 80

NH4
+-N 33 26 34 34 25.3

NO3
--N 0 0.2 0.1 0.1 2.1

SO4
2--S 37 68 93 68 100

Flow rate (m3/d)
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The results provided by the validation simulations were treated and used in the 

comparison of the organic matter transformation and degradation rates, as well as of 

the relative contribution to organic matter removal by the different microbial 

pathways in the model.  To measure how well the models predict the observed 

effluent concentrations of the cell Cyp1 (validation simulations), the prediction 

residual sum of squares (PSS), defined as the sum of squared difference between the 

observed and predicted values (Cox et al., 2006), was used. 

5.3 Results  

5.3.1 Reactive transport simulations 
 

Figure 5.1 shows the measured and simulated effluent concentrations of total COD in 

the calibration and validation simulations from CWM1-RETRASO (Top) and from 

the semi-mechanistic model (Bottom). The values were obtained with the defined 

initial bacterial concentrations for CWM1-RETRASO model (Table 5.3) and 

optimized kinetic constants for the semi-mechanistic model (Table 5.4). The 

simulated values obtained for the effluent COD corresponded well with the measured 

data. Accordingly, both models predicted the HSSF-CW performance well.  However, 

the CWM1-RETRASO model showed a better predictive performance for COD 

(PSS=40.6) than the semi-mechanistic model (PSS=61.8).  
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Fig. 5.1. Measured influent and effluent COD, and predicted effluent concentrations in the calibration 
and validation simulations from the CWM1-RETRASO (Top), and from the semi-mechanistic model 
(Bottom) 
 
 
Table 5.3. Definition of initial bacterial concentrations for the CWM1-RETRASO model over five 
wastewater flow rates during calibration 

 
SF= Fermentable, readily biodegradable soluble COD  
SA= Fermentation products as acetate 
BM=Bacterial biomass 
 

Table 5.4. Values of the semi-mechanistic model kinetic parameters optimized in this work 

 
 
 

 

Bacteria function group 1.7 m3/d 2.0m3/d 2.4m3/d 3.0m3/d 4.2 m3/d
 Heterotrophic bacteria that consume SF  44 113 111 100 100
 Fermenting bacteria  435 226 283 339 305
 Heterotrophic bacteria that consume SA  44 113 111 100 100
 Autotrophic nitrifying bacteria  10 10 10 10 40
 Acetotrophic methanogenic bacteria  735 961 961 1130 960
 Acetotrophic sulphate reducing bacteria  509 735 735 1074 735
 Sulphide oxidising bacteria  2 2 2 2 5

Bacterial concentration (mg CODBM/l) 

First order kinetic rate constant (s -1 )  Ojeda et al. (2008)       1.7 m         3     /d       2.0m         3     /d        2.4m           3       /d       3.0m        3     /d      4.2 m        3     /d
Aerobic respiration ( k O 2) 7.50E-06 7.50E-08 7.50E-06 7.50E-06 1.00E-05  1.00E-05 
Sulphate reduction ( k SO 4

2-) 3.00E-06 3.00E-06 3.00E-06 3.00E-06 3.60E-05  3.00E-05 
Methanogenesis ( k CH 4)  2.20E-06 2.20E-04 2.20E-06 2.20E-06 2.20E-05  2.20E-05 
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Figure 5.2a and 5.2b shows the measured influent and effluent, and simulated effluent 

concentrations of NH4
+-N and SO4

2--S from the calibration and validation simulations 

using both models. The predicted effluent ammonia and sulphate concentrations fitted 

well with the experimentally determined effluent concentrations. The residual sum of 

squares from the validation simulations for the CWM1-RETRASO model were 21.0 

and 77.3 for NH4
+-N and SO4

2--S, respectively. Those for the semi-mechanistic model 

were 34.6 and 178.3, respectively. The CWM1-RETRASO showed a better predictive 

potential for NH4
+-N and SO4

2--S, notwithstanding the fact that it entailed the fine 

tuning of different parameter sets to obtain a match of the effluent concentrations by 

both models. 
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Fig. 5.2. (A and B):  Influent, and measured and simulated NH4

+-N and SO4
2--S effluent, 

concentrations from the calibration and validation with the CWM1-RETRASO (a) and the semi-
mechanistic (b) model 
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5.3.2 Transformation and degradation reaction rates 
 

For comparison of transformation and degradation rates in the kinetic pathways of the 

two biokinetic models, the validation results from simulations with the influent data at 

the flow rate of 2.2 m3/d (Table 5.2) are presented in this section. The CWM1-

RETRASO predicted effluent concentrations (in mg L-1) were COD, 80.9; XI, 34.3; 

SI,12.1; XS, 5.3; SA, 20.7; SF, 8.6; NH4
+-N, 25.2; NO3

--N, 0 and SO4
2--S, 15. The main 

part of the predicted effluent COD is inert, i.e. soluble inert (SI) and particulate inert 

(XI) COD. The semi-mechanistic  model effluent concentrations (in mg L-1) were 

COD, 104.7; CODX, 46.5; CH2O, 58.1; NH4
+-N, 15.2; NO3

--N, 0 and SO4
2--S, 27.1. 

 
5.3.2.1  Hydrolysis and fermentation 

The hydrolysis processes were found to take place mainly near the inlet zone of the 

simulated HSSF-CW (Fig. 5.3). The largest hydrolysis rates were found to be within 

the first meter of the wetland length. Maximum hydrolysis rates of 0.004 mol 

substrate/2.0E5 s·kg water and 0.001 mol substrate/2.0E5 s·kg water were observed in 

the simulation results for heterotrophic bacteria and fermenting bacteria, respectively, 

in the simulations with the CWM1-RETRASO model. A similar pattern of the 

hydrolysis activity (i.e. near the inlet) was observed with the semi-mechanistic model, 

achieving hydrolysis rates up to 0.006 mol substrate/2.0E5 s·kg water. A low residual 

concentration (< 20 mg/l) of the hydrolysable substrate (i.e. the slowly biodegradable 

COD fraction, XS in the CWM1-RETRASO and CODX in the semi-mechanistic) 

remained in the wetland towards the outlet. An internal production of readily soluble 

COD with a maximum concentration of 45 mg/l by the XHF and 10 mg/l by the XFB 

hydrolysis in CWM1-RETRASO and 81 mg/l in the semi-mechanistic model were 

simulated.  

The fermentation process is observed to start away from the inlet and the top of the 

water column, but extending up to midway along the length of the simulated wetland 

(Fig. 5.3). The location of the highest activity of organic matter fermentation is 

observed to be near the output of the readily biodegradable COD (SF) fraction by the 

hydrolysis process and near the inlet, where there is a direct input of SF via the 

influent wastewater. 
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Fig. 5.3. Simulated changes along the wetland length of the concentration of slowly biodegradable 
substrate (XS and CODX) and of the rates [mol substrate/2.0E5 s·kg water] of the hydrolysis and 
fermentation processes with the CWM1-RETRASO (left) and semi-mechanistic (right) model at the 
wastewater flow rate of 2.2 m3/d 

 
5.3.2.2 Aerobic and anoxic (denitrification) processes 

Figure 4 shows the distribution patterns of the concentrations of dissolved oxygen 

(DO), ammonia and nitrates along the depth and length of the simulated HSSF-CW in 

the validation simulations using the CWM1-RETRASO and the semi-mechanistic 

models. The simulation of the oxygen distribution in the wetland shows that oxygen 

was limited to the inlet and the top of the water column, following the main sources of 

oxygen included in the CWM1-RETRASO and semi-mechanistic models namely, 

physical re-aeration and oxygen in the influent wastewater. The dissolved oxygen 

concentration was low in the influent and dropped rapidly within the first meter of the 

simulated HSSF-CW (Fig. 5.4). The ammonia concentration slightly decreased from 

the inlet to the outlet. The decrease especially coincided with regions of higher 

oxygen concentrations and potential for nitrification (at the surface of the water 

column in the wetland). Nitrates were simulated to be present at the influent of the 
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HSSF-CW and in regions with higher dissolved oxygen concentrations. However, the 

nitrate concentrations remained very low throughout the wetland (Fig. 5.4). Note that 

ammonia and nitrate plant uptake was not considered in the simulations. 

 
 Fig. 5.4. Simulated changes of DO, NH4

+-N and NO3
--N concentrations along the length of wetland in 

the CWM1-RETRASO (left) and semi-mechanistic (right) model at the wastewater flow rate of 2.2 
m3/d 
 

The simulation results showed that the aerobic processes took place close to the 

oxygen sources (Fig. 5.5). The highest nitrification rates were mainly simulated at the 

top of the water column (with oxygen transfer from the atmosphere) and the HSSF-

CW inlet (with influent DO).  The nitrification rates were very similar in both models 

in the order of magnitude 2E-5 and 6E-5 mol substrate/2.0E5 s·kg water (Fig. 5.5). 

However, the ammonium concentration did not vary significantly along the length of 

the wetland (Fig.4). Its removal was limited because the aerobic conditions necessary 

for nitrification were not spread enough throughout the wetland. In both models 

aerobic respiration (modeled as aerobic growth of heterotrophic bacteria XHA and XHF 

on acetate and on readily biodegradable organic matter respectively in the CWM1-

RETRASO model) was only observed in a thin layer of water on the surface of the 

wetland and at the inlet (Fig. 5.5). In the simulations from both models, denitrification 

was located where nitrates were present, reaching a maximum especially near the 
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inlet, due to the available influent nitrate concentration. Very low denitrification rates 

were detected along the rest of the length of the simulated wetland.  

5.3.2.3   Anaerobic processes 

The simulations of the anaerobic degradation of organic matter with both models 

showed that methanogenesis and sulphate reduction processes took place 

simultaneously at the same location within the wetland (Fig. 5.6). The sulphate 

reduction and methanogenesis rates showed the same pattern and the same order of 

magnitude in both models. The rates declined towards the outlet of the wetland which 

could be a result of substrate limitation. 

  

 
Fig. 5.5. Simulated changes of the process rates [mol substrate/2.0E5 s·kg water] of nitrification, 
denitrification and aerobic respiration along the wetland length in the CWM1-RETRASO (left) and 
semi-mechanistic (right) model at the wastewater flow rate of 2.2 m3/d. XHA refers to heterotrophic 
bacteria that consumes acetate (SA) and XHF refers to heterotrophic bacteria that consumes readily 
biodegradable organic matter (SF) in the CWM1-RETRASO model 
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Fig. 5.6. Simulated changes of the concentration of acetate and sulphates and rates [mol 
substrate/2.0E5 s·kg water] of methanogenesis and sulphate reduction along the wetland length in the 
CWM1-RETRASO (left) and semi-mechanistic (right) model at the wastewater flow rate of 2.2 m3/d 
 

5.4          Relative importance of the microbial reactions to organic matter 

degradation 

The microbial pathways for organic matter degradation simulated in the two models 

contributed unevenly to organic matter removal in the simulated HSSF-CW (Table 

5.5). Further, varying the wastewater flow rate at a constant influent concentration (as 

is the case in calibration-validation simulations) modified the relative contributions to 

COD removal by the microbial processes (Table 5.5), especially for the aerobic 

respiration, methanogenesis and sulphate reduction processes. Methanogenesis 

remained, however, the main organic matter removal pathway in the simulated HSSF-

CW, contributing on average 37% and 49% COD removal in the simulations with the 

CWM1-RETRASO and semi-mechanistic model, respectively. In most of the 
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simulations, the contribution of anaerobic bioconversion to organic matter removal 

was larger than that by anoxic and aerobic bioconversions. 

Table 5.5. Relative average contribution (%) of the different microbial reactions to COD removal in 
the CWM1-RETRASO and semi-mechanistic model at the wastewater flow rate of 2.2 m3/d 

 

5.5          Discussion 

5.5.1  Use of 2D mechanistic models for HSSF-CW simulation  

The application of the two 2D mechanistic models to simulate transport and reactions 

of organic matter, nitrogen and sulphur in a tropical HSSF-CW attempts to overcomes 

the limitations of available empirical and first order models for constructed wetlands, 

i.e. modeling of contaminant degradation as a function of wetland type (subsurface or 

free water surface flow) and operating conditions (Bezbaruah and Zhang, 2009; 

Kadlec, 2000) by using rational models for both water flow and the biochemical 

reactions. In the CWM1-RETRASO model, the flow field is first calculated over a 

grid that describes in detail the geometry of the wetland and the hydrodynamic 

behavior of the wastewater flow through the porous media. The calculated flow 

variables are then used in computing the reactive transport in the wetland (Saaltink et 

al., 2005). The actual flow conditions in the wetland are approximated by using the 

residence time distribution obtained by experimental tracer test data. This approach 

considers the non-ideal flow conditions in HSSF-CW caused by effects of 

longitudinal dispersion, short-circuiting, dead zones and roots resistance in the 

reaction volume of the HSSF-CW bed (Toscano et al., 2009). However, the RCB code 

is not able to perfectly reproduce the receding limb of the experimental tracer curve, 

CWM1 Semi-mechanistic  Model

Aerobic respiration on SF 19.3 N/A 
Aerobic respiration on Acetate 19.1 N/A
Denitrification on SF 0.3 N/A
Denitrification on Acetate 0.3 N/A
Methanogenesis 37.2 48.8
Sulphate reduction 23.9 34.6
Aerobic respiration N/A 16.2
Denitification N/A 0.3

Aerobic processes 38.4 16.2
Anoxic processes 0.6 0.3
Anaerobic processes 61 83.5

Model percentage [%]
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that should characterize the non-ideal flow in the porous HSSF-CW bed (Llorens et 

al., 2011a) 

5.5.2  Reactive transport simulation and relative importance of microbial 

reaction pathways   

5.5.2.1 Bacterial concentration 

In both models, the wastewater reactive transport in the pilot HSSF-CW is governed 

by biodegradation.  The CWM1-RETRASO model adjustment to experimental data 

(calibration)  yielded bacterial concentrations (Table 5.3) that are the initial bacterial 

concentrations treated as a constant suspended biomass input with the influent 

wastewater. This is necessary because RCB's architecture does not consider fixed 

biomass. The consideration of growth and decay of biomass in suspension is 

acceptable as the biofilms growing in HSSF-CWs are typically very thin and diffusion 

limitations in the biofilm can be omitted (García et al., 2010). However, Langergraber 

and Šimůnek (2012) showed by means of simulations conducted in software with 

fixed biomass (i.e. biofilm-based modeling capability), together with root oxygen 

release from wetland plants that the bacteria concentration profiles in CWs are 

different from those simulated with a constant concentration of influent suspended 

bacterial biomass as is the case with the CWM1-RETRASO. This could possibly 

distort the mechanistic interpretation of transformation and degradation patterns 

within the HSSF-CW bed. Further, whereas anaerobic processes predominate in 

subsurface flow systems, aerobic processes may be found in the proximity of wetland 

plants (Stottmeister et al., 2003). In all likelihood, oxygen release and hence redox 

potential and the diversity of the rhizosphere microbial community vary according to 

the macrophyte plant species and environmental conditions (Faulwetter et al., 2009; 

Llorens et al., 2011a).  Results are, however, not consistent in the literature and no 

mathematical relationships have been developed so far. Thus, the non-inclusion of the 

plant processes into the models may cause some disagreements between the model 

output and experimental measurements, as some processes (e.g. evapotranspiration 

and nutrient uptake) have been reported to be significant in constructed wetlands 

(Kadlec and Wallace, 2009). 
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Indeed, the fact that the bacterial concentration was the only variable that required 

fine-tuning to achieve reactive calibration for the CWM1-RETRASO model in this 

study suggests the importance of biofilm-based modeling for subsurface flow 

constructed wetlands. This indeed represents important phenomena influencing 

microbial reactions such as diffusion limitation as well as the stratification of 

metabolic processes or bacterial profiles across the wetland bed present (Langergraber 

and Šimůnek, 2012). Of importance too is the fact that at the moment there have been 

very few investigations of the distribution of the microbial biomass (Krasnits et al., 

2009) and the actual concentrations of the specific bacterial groups that have been 

defined in biokinetic models, e.g., in CWM1 (Langergraber, 2011). Hence, a 

numerical rather than experimental method of evaluation of the kinetic parameters 

and variables for treatment processes should be acceptable.  

 
The bacterial concentration showed a dominance of the anaerobic acetotrophic 

methanogenic bacteria, acetotrophic sulphate reducing bacteria and fermenting 

bacteria, which seemed to thrive in the oxygen deficient HSSF-CW. The 

heterotrophic bacteria (which are facultative) maintained a modest population, while 

the sulphide oxidising bacteria and the autotrophic nitrifying bacteria were calibrated 

to be present in very low quantities. They may have been outcompeted by 

heterotrophs for oxygen. The estimated values for the initial bacterial concentration 

are comparable to and within the range of those determined from simulation studies of 

subsurface constructed wetlands through a range of temperature, e.g. Llorens et al. 

(2011a, b), Mburu et al. (2012) and Rousseau (2005). Nevertheless, the simulations 

did not show a consistent bacterial concentration trend vis a vis the wastewater flow 

rates (Table 5.3), which seems to be due to the varying concentration of components 

in the influent wastewater arriving at the HSSF-CW from the facultative pond. 

Additionally, Krasnits et al. (2009) reported no significant differences between 

seasons in microbial community distribution in a HSSF-CW. Rather, depth was found 

to have a greater influence on the distribution of microbial communities. Hence, for 

the good performance of HSSF-CW, the design and operation of the wetland such as 

to afford enough contact time with microbial communities that proliferate in the 

biofilms on the surface of the porous media remains key, rather than the consideration 

of climate and seasonal effects.  
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5.5.2.2  Model predictions 

The model predictions were found to be in quantitative agreement with the set of 

experimental data (Fig. 5.1 and 5.2). However, in all the validation simulations the 

CWM1-RETRASO model showed a better predictive performance compared to the 

semi-mechanistic model according to the prediction residual sum of squares. 

Furthermore, the CWM1-RETRASO model demonstrated in a better way the 

interaction of components, i.e. concentrations of microbial functional groups and their 

competition for substrates and the formation of intermediary products within the 

wetland (Fig. 5.5 and 5.6). Thus, the CWM1-RETRASO model meets in a better way 

the need to analyze and understand the biochemical environment in the HSSF-CW 

bed and its relation with the removal of organic matter, ammonia and sulphate. Also it 

has shown to be a useful tool in elucidating quantities (estimates of bacterial 

concentrations) which could not directly be identified from the observed 

concentration data. On the other hand, the semi-mechanistic model was not 

transparent (mechanistic) enough since the first order rate constant represents a 

lumped interaction of substrates and electron acceptors in a microbial catalyzed redox 

reaction.  

The simulation profiles along the length and depth of the HSSF-CW demonstrated 

that the organic matter transformation and biodegradation reactions took place at the 

same time, in different locations (aerobic, anoxic and anaerobic), while others 

occurred in sequence (nitrification-denitrification) or in parallel (fermentation-

methanogenesis-sulphate reduction) (Fig. 5.5 and 5.6). This agrees with the literature 

descriptions of simultaneous co-existence of areas with different redox status in the 

HSSF-CW bed (Faulwetter et al., 2009).  

 
 According to the simulations, the highest rates of organic matter transformation 

(hydrolysis and fermentation (Fig.5.3)) and removal (aerobic respiration, 

methanogenesis, nitrate and sulphate reduction (Fig. 5.5 and 5.6)) occurred in the first 

sections or near the inlet of the evaluated HSSF-CW. This can be associated with the 

availability of ample substrate at this section (directly fed through the influent); 

ultimately, the substrate concentration profiles and removal rates fall towards the 

outlet of the wetland (Trang et al., 2010). Simulations by both models showed the 
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maximum aerobic respiration rates to be larger than those observed for anaerobic 

respiration processes, due to the large aerobic microorganisms growth rates (in 

CWM1-RETRASO) and first order aerobic respiration rates (in semi-mechanistic  

model) compared to the corresponding  anaerobic values. For example the maximum 

rates of aerobic and anaerobic respiration (methanogenesis and sulphate reduction) on 

acetate are 0.004, 0.0005 and 0.0008 mol substrate/2.0E5 s·kg water, respectively, in 

the CWM1-RETRASO model (Fig. 5.5 and 5.6). Nevertheless, because they are 

widespread in the HSSF-CW bed, anaerobic biochemical reactions involved in 

organic matter degradation are the most important (Caselles-Osorio et al., 2007; 

García et al., 2007). The significant contribution of the methanogenic pathway in 

organic matter degradation (Table 5.5) in the simulated HSSF-CW has been observed 

in a similar mechanistic modeling work with the CWM1-RETRASO model (Llorens 

et al., 2011b) and through experimental work with mass balance and stoichiometric 

calculations (Caselles-Osorio et al., 2007) 

 
The low DO concentrations simulated within the wetland and also observed in the 

effluent measurements from the pilot HSSF-CW indicate the presence of reducing 

conditions (Camacho et al., 2007). This circumstance explains the relatively small 

area occupied by aerobic respiration activity compared to that occupied by anaerobic 

processes in the simulated HSSF-CW. Anaerobic processes were located in most of 

the wetland  in agreement with literature observations on HSSF-CWs in which 

aerobic processes only predominate near oxygen sources (roots and on the 

rhizoplane), whereas in the zones that are largely oxygen free, anaerobic processes 

such as denitrification, sulfate reduction and/or methanogenesis take place (Kadlec 

and Wallace, 2009; Vymazal, 2005).  Indeed, HSSF-CW systems are generally 

considered to be anaerobic treatment systems as they have a limited potential for 

aerobic and anoxic conditions but rather strong reducing conditions often prevail 

(García et al., 2010; Vymazal, 2005). The specific mass balance for the removal 

pathways showed that the contribution to organic matter removal by anaerobic 

processes remained higher than that by anoxic and aerobic processes (Table 5.5). 

Aerobic respiration of organic matter and the biological oxidation of ammonium to 

nitrate (for anoxic respiration) with nitrite as an intermediate requires oxygen (García 

et al., 2010; Vymazal, 2007; Vymazal and Kröpfelová., 2009; Vymazal and 
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Kröpfelová, 2009b) which was the most limiting substrate in the simulated HSSF-

CWs.   

5.6  Biokinetic model comparison 
 

The semi-mechanistic model provides an opportunity to inform by comparison how 

well the CWM1-RETRASO model supports the understanding and prediction of 

biochemical transformation and degradation processes in constructed wetlands, and 

the effort together with the computing resources needed in applying the fully 

mechanistic CWM1-RETRASO model. The modeling of the wetland hydraulics is the 

same in both models using a finite element scheme in the RCB software, which also 

provides a spatially and temporally resolved process specific mass balance for 

reactive species (Llorens et al., 2011b; Ojeda et al., 2008; Saaltink et al., 2005). Thus, 

the models can predict time and space dependent concentrations, a fact that makes the 

evaluation and comparison of both biokinetic models easy, by comparing the 

distribution of rates of the different reactions involved in organic matter 

transformation and degradation along the depth and length of the HSSF-CW bed.  In 

both models the organic matter transformation and degradation is influenced by the 

availability of oxygen, nitrates and sulphates, reflecting the potential of aerobic, 

anoxic and anaerobic conditions in the HSSF-CW. The acceptable quantitative 

performance of the semi-mechanistic model is judged interesting because with a 

simplified but robust biokinetic model it is found sufficient to perform the task 

(effluent prediction) comparatively well. Generally, this may assist in the 

identification of potentially unnecessary model complexity in the CWM1-RETRASO 

model, which may be vital to allow for: 

 1) Including other important dynamic effects, such as evapotranspiration, sorption, 

plant processes, biofilm development and media clogging without complicating the 

model further. Non-inclusion of these processes in the CWM1-RETRASO model 

limits its application as a simulation tool for design.   

2) Avoiding the short-comings with high complexity in models, which increases the 

number of unknown parameters and the possible dependencies between them. These 

factors make the accurate estimation of parameter values very difficult. 
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Without employing the rigorous parameters intensive microbial growth-lysis kinetics 

implemented within the CWM1-RETRASO model, the semi-mechanistic  model was 

found computationally less demanding and more easy to run because of the fewer 

processes, components and parameters to be calibrated and computed. This can be 

seen from the simulation time difference between CWM1-RETRASO and the semi-

mechanistic model: by a factor of up to 12, with a Duo CPU T9400 @ 2.53 GHZ and 

3.48 GB RAM PC. This time factor can lead to simulation times deemed too long to 

permit practical use of the model for standard routine simulation purposes.  

 
As it takes quite some time and experience to be able to produce realistic simulation 

results with CW mechanistic simulation models (Langergraber, 2011), it is imperative 

to differentiate modeling approaches for routine design simulation on the one hand 

and the detailed exploration simulation of CWs. Modeling to optimize design and 

operation requires a reasonable balance between a detailed description and practical 

handling of CW systems (Langergraber et al., 2009b). On the other hand, it is 

important that constructed wetland mechanistic models produce a proportional insight 

into the factors affecting pollution removal visa vis the difficulty of estimating a large 

number of parameters (Marsili-Libelli and Checchi, 2005).  

5.7 Conclusion  
 

The importance of mechanistic models in simulating and providing insights into the 

microbial processes involved in organic matter transformation and degradation in 

HSSF-CWs has been demonstrated with the CWM1-RETRASO model using HSSF-

CW performance data from the tropics. Simulated effluent COD, NH4
+-N and SO4

2--S 

concentrations showed a reasonably good fit to the measured concentrations across 

different pollutant loading rates and hydraulic retention times. The calibration of the 

bacterial populations demonstrated significant influence on the model's performance. 

The model correctly showed that anaerobic degradation is the dominant mechanism of 

organic matter removal in HSSF-CW. A comparison of the CWM1-RETRASO model 

with an alternative, less complex model was useful to evaluate the calibration effort 

and computational time required with a fully mechanistic model. The CWM1-

RETRASO model was found suitable for simulation aimed for a better understanding 

of the CW system transformation and degradation processes. The model was, 
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however, found expensive in computing and time resources required to perform the 

simulations. 
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Chapter 6:  Simulation of carbon, nitrogen and sulphur 
conversion in batch-operated experimental 
wetland mesocosms 
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Abstract 

A simulation  model based on Constructed Wetland Model No. 1 (CWM1) using the 

AQUASIM mixed reactor compartment as a platform   was built to study the 

dynamics of  key processes governing COD and nutrient removal in wetland systems. 

Data from 16 subsurface-flow wetland mesocosms operated under controlled 

greenhouse conditions with three different plant species (Typha latifolia, Carex 

rostrata, Schoenoplectus acutus) and an unplanted control were used for calibration 

and validation in this mechanistic model. Mathematical equations for plant related 

processes (growth, physical degradation, decay, and oxygen leaching), physical re-

aeration, as well as adsorption and desorption processes for COD and ammonium 

were included and implemented alongside CWM1 in the AQUASIM software, while 

some CWM1 parameters were adjusted to better fit the model predictions to 

experimental data during calibration.  The simulation results showed that the model 

was able to describe the general trend of COD (R2=0.97-0.99), ammonium (R2=0.85-

0.97) and sulphate (R2=0.71-0.93) removal in the wetland mesocosms and also in 

their controls (unplanted) through the experimental temperature range of 12oC - 24oC. 

Oxygen transfer by physical re-aeration was found to be 0.05 and 0.09 g m-2 day-1 at 

12 oC and 24oC respectively. The amount of root oxygen transfer was the highest for 

the planted mesocosms at 12oC at rates of 1.91, 0.94, and 0.45 g m-2 day-1 in the 

Carex, Schoenoplectus and Typha mesocosmmesocosms respectively, indicating that 

COD of the bulk wastewater was removed mainly by anaerobic processes under the 

specific experimental situations.  Measured COD removal was better in the planted 

mesocosms than in the control; differences were effectively modeled by varying the 

bacteria concentration. The sorption process was found to be important in simulating 

COD and ammonia removal under these experimental conditions.  

 

 

 

 

 

 

 

 



113 

 

Specific Nomenclature 

b_H:           Rate constant for lysis of heterotrophic bacteria [1/d] 

K_H:           Hydrolysis rate constant [1/d] 

K_OAMB:            Oxygen saturation/inhibition coefficient for acetotrophic methanogenic bacteria [mg O2/L] 

K_SAMB:      Acetate saturation/inhibition coefficient for acetotrophic methanogenic bacteria [mg CODSA/L] 

K_SFB:  Fermentable COD saturation/inhibition coefficient for fermenting bacteria [mg CODSF/L] 

K_SOASRB: Sulphate saturation/inhibition coefficient for acetotrophic sulphate reducing bacteria [mg S/L] 

K_X:  Saturation/inhibition coefficient for hydrolysis [g CODSF/g CODBM] 

µ_AMB:         Maximum growth rate for acetotrophic methanogenic bacteria [1/d] 

µ_ASRB:         Maximum growth rate for acetotrophic sulphate reducing bacteria [1/d] 

µ_H:    Maximum aerobic growth rate on fermentable COD and acetate for heterotrophic bacteria[1/d]       

µ_FB:       Maximum growth rate for fermenting bacteria [1/d] 

Y_AMB:  Yield coefficient for acetotrophic methanogenic bacteria [gCODBM/gCODSA]   

Y_ASRB:         Yield coefficient for acetotrophic sulphur reducing bacteria [gCODBM/gCODSA] 

Y_FB:  Yield coefficient for fermenting bacteria [g CODBM/g CODSF] 

Y_H:  Yield coefficient for heterotrophic bacteria [gCODBM/gCODSF] 

 

 
6.0 Introduction 
 
Constructed wetlands (CWs) are an increasingly important technical option for 

wastewater treatment and re-use in both developing and developed countries (Haberl 

1999; Kivaisi 2001; Solano et al. 2004). They are potential alternative sanitation 

systems as they are treatment cost-effective with a potential for resource re-use and  

recovery (Puigagut et al. 2007). However, the technical development of these systems 

in terms of design guidelines is limited as the design equations of these systems are 

still based on empirical rules of thumb and or simple first-order decay models (Kadlec 

2000; Moutsopoulos et al. 2011; Rousseau et al. 2004). These design models, mainly 

based on input-output data from CWs, provide limited insights into the performance 

aspects of CWs. The models are significantly site specific as they have parameters 

that have been derived from experiments with pilot CWs. Thus, the parameters are 

only valid for the specific boundary conditions for which they have been obtained. 

This defeats the goal of sound designs and successful replication and optimization of 

CW systems, an important aspect if the systems are to have public and institutional 

support. Consequently, the desire for a model that can be applied widely to various 

conditions encountered in the design and evaluation of constructed wetland systems 
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has recently led to the pursuit of process-based models that describe the main 

processes in constructed wetlands in detail.  

 
By describing the pollutant transformation and elimination processes taking place 

within the CWs, coupled to the hydraulic behavior of the CW's flow field, process-

based or mechanistic models are a promising tool for understanding the parallel 

processes and interactions occurring in wetlands (Kumar and Zhao 2011; 

Langergraber 2007, 2008; Llorens et al. 2011a). This is anticipated to promote an 

increased understanding of the performance aspects and a sound conceptualization 

and design of constructed wetland systems. One such processes based model is the 

Constructed Wetland Model No.1 (CWM1) whose formulation is based on previous 

experiences of modeling processes in subsurface flow constructed wetlands as 

reviewed in Langergraber (2008). CWM1 is a general biokinetic model to describe 

biochemical transformation and degradation processes for organic matter, nitrogen 

and sulphur in subsurface flow constructed wetlands. The mathematical structure of 

CWM1 is based on the mathematical formulation of Activated Sludge Models 

(ASMs) as introduced by the IWA task group on mathematical modeling for design 

and operation of biological wastewater treatment. The reaction scheme, rate equations 

and kinetic constants of CWM1 describe aerobic, anoxic and anaerobic processes, and 

is therefore applicable to both horizontal and vertical flow constructed wetland 

systems; however other extra processes including porous media hydrodynamics 

(effect of dispersion, heterogeneity and dead zones), the influence of plants, the 

transport of particles/suspended matter to describe clogging processes, adsorption and 

desorption processes and physical re-aeration must be considered for the formulation 

of a full model of constructed wetlands (Langergraber et al. 2009; Llorens et al. 

2011b). 

 
The main scope of this study was to implement CWM1 in the software for 

identification and simulation for aquatic systems, AQUASIM (Reichert 1995), to 

simulate carbon, nitrogen and sulphur removal in constructed wetland systems. 

Besides the biochemical transformation and degradation processes described in 

CWM1, the influence of plants, physical re-aeration, adsorption and desorption 

processes have been considered. The model is used here to analyze the interactions 
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between water, the granular substratum, macrophytes, and microorganisms for 

pollutant transformation and degradation, in batch-operated constructed wetland 

mesocosms, under a range of temperatures. Batch operation has the advantage of 

simplifying the hydraulics when integrating transport and transformation processes in 

porous media that are otherwise solved with advection-dispersion-reaction equations 

in 1D or 2D. The calibration of the CWM1-AQUASIM model is achieved here by 

adaptation of the model to fit actual data from constructed wetland mesocosm 

experiments, with the aid of sensitivity analysis and parameter estimation tools in 

AQUASIM. Biofilm development is not considered in the present work. 

 
6.1  Materials and methods 
 
6.1.1 The experimental constructed wetlands 

The experimental constructed wetlands were operated under controlled greenhouse 

conditions at Montana State University in Bozeman, Montana, USA. Details of 

column design, construction and planting, as well as sampling and measurement, are 

fully described in Allen et al. (2002) and Stein et al. (2006). Briefly, 16 subsurface 

constructed wetland mesocosms were constructed from polyvinyl chloride (PVC) pipe 

(60 cm in height × 20 cm in diameter) and filled to a depth of 50 cm with washed pea-

gravel (0.3–1.3 cm in diameter). Four columns each were planted with Carex 

utriculata (Northwest Territory sedge), Schoenoplectus acutus (hardstem bulrush) and 

Typha latifolia (broadleaf cattail), while four were left unplanted as controls. A series 

of 20-d incubations with artificial wastewater was conducted over 20 months at 

temperatures ranging from 4 to 24oC at 4oC steps. A synthetic wastewater simulating 

secondary domestic effluent was used with mean influent concentrations of 470 mg/l 

COD, 44 mg/l N (27 Org-N, 17 NH4
+–N), 8 mg/l PO4

3-–P, and 14 mg/l SO4
-2–S. 

Columns were gravity drained 3 days prior to each incubation and then again at the 

start of each incubation. Upon each emptying, columns were refilled from above with 

new wastewater. Sampling from all 16 columns occurred at days 0, 1, 3, 6, 9, 14 and 

20 of each incubation and those sub-samples were analyzed afterwards for the 

constituents.  
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6.1.2 Model description and implementation 

Testing of the experimental data was performed by means of sensitivity analysis, 

parameter estimation and uncertainty analysis using AQUASIM computer program 

for the identification and simulation of aquatic systems developed by the Swiss 

Federal Institute for Environmental Science and Technology (Reichert 1998). The 

academic software AQUASIM is extremely flexible in allowing the user to specify 

transformation processes and to perform simulations for a user-specified model. The 

mixed reactor compartment configuration in AQUASIM was used and defined by the 

volume of the wetland mesocosm, active variables, active processes, initial conditions 

and inputs. Parameters in AQUASIM were set as fixed, dynamic state, list or formula 

variables. Dynamic processes were used for the growth and decay rate of all bacteria 

groups as included in the CWM1. When implementing CWM1 in AQUASIM, the 

subsurface-flow wetland mesocosms are assumed to act as single continuous stirred-

tank reactor, supposing that all incoming constituents are evenly mixed throughout the 

entire mesocosm volume. This was corroborated by the fact that solution samples 

collected from 5, 15, and 30 cm depths during preliminary incubations showed no 

measurable vertical gradients for COD, dissolved organic carbon (DOC), or SO4
-2–S 

(Allen et al. 2002). Default parameter values of CWM1 were adopted as published in 

Langergraber et al. (2009). Five plant processes (growth, physical degradation, decay, 

and oxygen leaching), physical re-aeration, as well as adsorption and desorption 

processes for COD and ammonium nitrogen, were also included as dynamic processes 

and are shown in Tables 1 and 2 in the appendix.  

 
Plant growth is modeled by means of ‘relative growth rates’ as there are many data 

available in the literature. Plant growth is not zero-order, but depends on ammonium 

and nitrate concentrations (Rousseau 2005; Sanchez et al. 2004). Plant 

decay/senescence and physical degradation equations are based on the work of Wynn 

and Liehr (2001) and most importantly, plant material is no longer expressed as 

carbon but as COD, which is rather unusual but allows for a smooth integration with 

the COD-based microbial processes (Rousseau 2005). Adsorption of COD is modeled 

by a chemical non-equilibrium adsorption of the slowly biodegradable particulate 

COD, with a linear adsorption isotherm following the work of Henrichs et al. (2007). 

The time dependency of adsorption is described by the concept of two-site sorption. 
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Sorption is instantaneous on one part of the exchange sites whereas it is considered to 

be time-dependent on the remaining sites (Henrichs et al. 2007). Ammonium nitrogen 

sorption is described using a reversible Freundlich isotherm (McBride and Tanner 

1999). Temperature impact on microbiological process rates and on plant growth is 

modeled via the Arrhenius relationship.  

 
To run the model, 19 inputs characterizing the influent (Oxygen, COD fractions, N 

compounds, S compounds, and bacterial concentrations) and one input for water 

temperature are necessary. Fractionation of the influent wastewater COD was based 

on standard ratios given in the ASM models. Because the synthetic wastewater used 

in the experiment was mixed from sucrose, low molecular weight hydrolyzed meat 

protein and other chemicals for nutrients, the section for particulate inert organic 

particles was set to zero, therefore the fractionation was modified as follows:  S_A 

(Acetate) = 10%, S_I (Inert soluble COD) = 4%, X_S (Slowly biodegradable 

particulate COD) = 61% of the measured influent COD, S_F (Fermentable, readily 

biodegradable soluble COD) = 25%. X_I (Inert particulate COD) was set to zero. S_O 

(dissolved oxygen) in the influent was estimated to be the saturation concentration at 

the set temperature. S_NO (Nitrate and Nitrite Nitrogen), and S_H2S 

(Dihydrogensulphide sulphur) were assumed not to be present in the influent.  

 
6.1.3 Sensitivity analysis 

A sensitivity analysis was carried out to recognize the most important parameters 

influencing the prediction of carbon, nitrogen and sulphur concentrations and the 

growth of different microbial biomass in CWM1. In AQUASIM, the sensitivity 

analysis feature enables calculation of linear sensitivity functions of arbitrary 

variables with respect to each of the parameters included in the analysis (Reichert 

1995). The sensitivity analysis results described in this study are those of the absolute-

relative sensitivity function of AQUASIM (Eq. 6.1) that computes the absolute 

change in a model output variable, y, for a 100% change in any parameter of interest, 

p. This makes quantitative comparisons of the different parameters on a common 

variable possible. 

,
,

a r
y p

y
p

p
 




         (6.1) 
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The uncertainty is determined by using the error propagation formula (Eq. 6.2), which 

is based on the linearized propagation of standard deviations of the parameters of 

interest, neglecting their correlation. 

2

2

1
i

m

y p
i

y

p
 



 
   
         (6.2) 

Where ip  are the uncertain model parameters, 
ip are their standard deviations, 

( ......... )i my p p is the solution of the model equations for a given variable at a given 

location and time, and y is the approximate standard deviation of the model result. 

Identifiability of the model parameters was evaluated by use of parameter correlation 

matrix in AQUASIM. 

 
6.1.4 Model calibration 

Model parameters for CWM1 were adopted as described by Langergraber et al. 

(2009). The model requires the values of 51 kinetic parameters (16 first-order kinetic 

constants, 22 half-saturation coefficients and 13 inhibition constants) and 14 

stoichiometric parameters (Llorens et al. 2011a). To optimize the parameter sets, the 

result of the sensitivity analysis was used to guide the selection and calibration of 

some kinetic coefficients. Data based on bulk measurements of COD, NH4
+–N and 

SO4
-2–S at 12oC, 16oC, 20oC and 24oC from the unplanted (control) mesocosms were 

used for calibration of the microbial pathways. At this time the matured experimental 

units had been receiving synthetic wastewater for 17 to 20 months. To adjust 

parameter values, the parameter estimation tool of AQUASIM (secant and simplex 

algorithms) and trial-and-error approach was used. The measured data of incubation at 

12oC was used to estimate the initial bacterial concentration, the oxygen re-aeration 

coefficient, initial amount of sorbed ammonia and the COD adsorption parameters by 

simultaneous fitting of predicted COD, NH4
+–N and SO4

-2–S profiles to experimental 

data. Then, the final concentrations for each of the bacterial group at the end of 20 

days were inputted as initial concentrations for the following 3-day refreshing 

incubation. Finally, the concentrations at the end of the 3-day refreshing incubation 

were used as the input for the next batch, i.e. incubation temperature.  
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6.1.5 Simulation and validation 

The simulations were conducted with data from planted mesocosm, at 12oC, 16oC, 

20oC and 24oC. Only the temperature, root oxygen loss parameter, ammonia and COD 

sorption parameters, and the initial bacterial concentration were changed in each 

simulation run. When estimating the initial bacterial concentrations, the lower limit 

values provided to AQUASIM were those obtained during calibration at the 

respective incubation temperatures with the unplanted mesocosms. For validation 

purposes, the model was run with a data set from a separate experimental campaign 

with higher sulphate concentrations in the mesocosms planted with Schoenoplectus 

(Stein et al. 2007). 

 
6.2 Results  
 
6.2.1 Sensitivity  

The biokinetic parameters (kinetic rate constants, stoichiometric and composition 

parameters) and initial conditions were directly selected for sensitivity analysis. A 

sensitivity ranking of the most sensitive parameters according to the average absolute 

value of the “absolute relative” sensitivity function in AQUASIM is shown in Table 

6.1. According to Table 6.1, the yield coefficients for methanogenic, sulphate 

reducing, fermenting and heterotrophic bacteria, saturation/inhibition coefficients for 

oxygen, sulphate, acetate, fermentable COD and hydrolysis, plant growth rate 

constant,  rate constant for lysis of heterotrophic bacteria and the COD sorption 

coefficients are among the most sensitive and distinct parameters affecting the 

predicted concentrations.  
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Table 6.1. Sensitivity ranking and mean values of the relative sensitivity function of predicted effluent 
concentrations  

 
S_A: Fermentation products as Acetate; S_F: Fermentable readily biodegradable soluble COD; S_NH: Ammonium and ammonia 

nitrogen; S_SO4: Sulphate sulphur; X_S: Slowly biodegradable particulate COD 

 

6.2.2 Model calibration, identifiability and uncertainty 

Default parameter values were implemented as proposed for CWM1 in Langergraber 

et al. (2009). Only 5 parameters needed to be adjusted during calibration as shown in 

Table 6.2. The correlation matrix (Table 6.2) shows minimal linear dependency 

between calibrated parameters, which increases their identifiability within the range 

of available data. It was found necessary to adopt low value for hydrolysis rate 

constant (through parameter estimation in AQUASIM) to be able to satisfactorily 

match the measured COD and NH4
+ data. The remarkable difference between the 

hydrolysis rate constant value K_H in CWM1 and this work suggest low hydrolysis 

activity in the wetland mesocosm, which is conceivable considering that the 

constituents of the synthetic wastewater were mainly of low molecular weight. The 

estimated bacterial concentrations obtained during calibration at the different 

incubation temperatures, together with the percentage upper and lower bounds around 

the estimated bacteria concentrations are given in Table 6.3. It was found that 

acetotrophic methanogenic bacteria (X_AMB), fermenting bacteria (X_FB) and 

heterotrophic bacteria (X_H) become the most abundant organisms in the control 

mesocosm. The percentage concentration bounds suggest a low to medium 

uncertainty for the estimated initial bacterial concentrations. The correlation matrix 

(not shown) indicated a minimal linear correlation among the estimated initial 

bacteria concentration values, except for the heterotrophic and the acetotrophic 

methanogenic bacteria that had a significant negative correlation of 0.84. The 

S_SO4 X_S

<1
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goodness of fit between the observed and simulated concentrations in the calibrated 

model (control mesocosms) was evaluated with the coefficient of determination (R2). 

The R2 values for COD (0.97-0.99), NH4
+–N (0.85-0.97) and SO4

-2-S (0.71-0.93) 

indicate that the simulated data fit well with the observed data after calibration.  

 
Table 6.2. Optimized parameters values and their correlation matrix 

 
Table 6.3. The initial bacterial concentrations obtained in the model calibration with the upper and 
lower bounds around the estimated bacteria concentration (mgCOD/l) 

 
6.2.3 Simulations results  

Root oxygen transfer rates obtained from the model simulation are listed in Table 6.4. 

Oxygen transfer through diffusion or physical re-aeration were found to be at a low 

rate, calibrated at 0.05 g m-2 day-1 at 12oC and 0.09 g m-2 day-1 at 24oC in the control 

mesocosm. According to the simulations, appreciable plant root oxygen release 

occurred at 12oC at rates of 1.91, 0.94, and 0.45 g m-2 day-1 in the Carex, 

Schoenoplectus and Typha mesocosms, respectively. This can be explained by the fact 

that availability of oxygen is temperature dependent, since solubility of oxygen 

increases with decreasing temperature, which influences concentration gradients and 

internal transport of oxygen in the plants by molecular diffusion. Indeed besides the 

mesocosm planted with Carex at 16oC, no meaningful root oxygen leaching was 

obtained for all the tests in the planted columns at 16°C, 20°C and 24°C. The rate of 

root oxygen release decreased with an increase in temperature. 

Parameters 
Value in CWM1 

(at 20oC) 

Value in this 
work (at 

20oC) 
K_H µ_ASRB µ_FB Y_AMB Y_ASRB 

K_H 3.00 0.58 1.00 
µ_ASRB 0.18 0.31 -0.18 1.00 
µ_FB 3.00 3.77 0.00 -0.33 1.00 

Y_AMB 0.03 0.04 -0.10 -0.13 -0.04 1.00 
Y_ASRB 0.05 0.04 -0.20 0.21 -0.47 -0.14 1.00 

 

  
Temp 
(oC) 

Bacteria group 
Total 
conc.   X_Aini X_AMBini X_ASRBini X_FBini X_Hini X_SOBini 

  

12 67.1 58.8 14.4 1.2 363.3 2.9 507.6 

16 79.4 58.3 6.7 55.4 138 2.1 339.8 

20 37.9 71.3 7 37 83.7 2.7 239.6 

24 35 95.3 5 50.3 45 1 231.6 

% Upper bound 8.6 33.3 3.3 18.2 10 21.2 

% Lower bound 8.6 39.9 3.3 18.6 10 21.2   
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Table 6.4. Root oxygen transfer rates in the planted wetland mesocosms  
Root oxygen transfer (as g O2 per m2 wetland area day-1) 

  120C 160C 200C 240C 

Carex 1.91 0.47 2.13E-05 2.65E-05 
 
Schoenoplectus 0.94 2.60E-04 2.13E-05 2.66E-05 
 
Typha 0.45 3.68E-02 5.38E-03 2.60E-04 

     

 

Model simulations of COD, SO4
-2-S and NH4

+–N were compared to the observed data 

to demonstrate the degree of agreement and to discuss the most important phenomena 

visible in the data. Figures 6.2, 6.3 and 6.4 show the simulation profiles of COD, 

NH4
+–N and SO4

-2–S in the unplanted and planted wetland mesocosms at the various 

incubation temperatures. The simulation results demonstrated that the model was able 

to describe the general trend of COD, ammonium and sulphate removal in both 

planted and unplanted (control) mesocosms throughout the experimental temperature 

range of 12oC - 24oC. The estimated bacterial concentrations obtained during the 

simulations at the selected incubation temperatures, are given in Table 6.5. It was 

found that acetotrophic methanogenic bacteria (X_AMB), fermenting bacteria 

(X_FB) and heterotrophic bacteria (X_H) become the most abundant organisms in the 

simulated wetlands (planted mesocosms).  

 
Table 6.5. Initial bacterial concentrations (mgCOD/l) values of planted wetland mesocosms defined 
during simulations  

 

 

 

Set-up 
Temp 
(oC)

Bacteria group Total conc. 
(mgCOD/l)X_Aini X_AMBini X_ASRBini X_FBini X_Hini X_SOBini 

Carex 

12 52.6 202.0 15.3 15.2 296.6 30.4 612.2

16 79.5 185.8 6.7 56.5 138.0 17.0 483.5 

20 38.4 135.0 6.7 63.4 45.3 4.4 293.1 

24 35.0 95.3 5.0 50.3 45.0 1.0 231.6 

Schoenoplectus 

12 53.4 167.1 21.0 11.3 297.7 38.4 588.9

16 79.4 131.1 6.7 55.4 138.0 9.0 419.6 

20 38.4 94.4 6.7 55.4 48.3 16.4 259.6 

24 10.0 110.1 6.7 55.4 68.2 10.8 261.2 

Typha 

12 52.8 102.6 16.7 10.2 297.1 82.3 561.7

16 79.4 90.7 7.4 55.4 155.8 17.4 406.1

20 42.0 103.0 6.7 43.8 86.4 2.4 284.2 

24 10.3 61.4 5.1 50.6 45.7 2.9 267.0 
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6.2.3.1 COD 

Analyses of COD degradation pathways are shown in Fig. 6.1. The rates predicted by 

the model show that anaerobic degradation plays a major role on the COD removal 

both in the planted and unplanted mesocosm. Removal of COD through the aerobic 

pathway varied between 14.2 - 43.5 %, only 0 - 0.2 % was removed by anoxic 

reactions (denitrification), while 45.6 - 80.4 % of the COD removal was via the 

anaerobic pathway. The simulated residual was found to lie between 4.9 - 26.0 %. 

Larger removal of COD by aerobic processes (>30%) occurred at 12oC and 16 oC in 

the Carex and Schoenoplectus planted wetlands coinciding with higher root oxygen 

transfer rates as deduced in the simulation. 

 

 
Fig. 6.1.  Percentage contribution to COD degradation by aerobic, anoxic and anaerobic pathways from 
model simulations.  
 
 
Fig. 6.2 compares simulated (with and without adsorption) and measured COD 

concentrations for both planted and unplanted mesocosms. The graphs show that 

COD predictions with adsorption on the gravel media were generally in good 

agreement with the measured data. However, in some instances there are moderate 

over/under estimations which seem to indicate that the mathematical model has a 

much faster/slower COD removal rate than experimental units. The difference 

between measured COD removal and simulated COD removal excluding adsorption is 

generally much larger than when adsorption is considered. This difference decreases 

with increase in the incubation temperature in the planted columns, however this trend 

is not observed in the simulated results of the unplanted columns.  The adsorption 
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pattern tends to follow that of the simulated bacterial concentrations. In practice it is 

often assumed that COD is adsorbed onto the biofilm covering the substrate from 

where it is further processed. Table 6.6 shows the coefficient of determination values 

(R2) for the goodness of fit with and without adsorption processes during the 

simulation. 

 
Table 6.6. R2 for the goodness of fit for COD with (active) and without (inactive) COD adsorption 
processes 

 

 

 
Fig.6.2. Simulated COD concentration compared with measured concentrations. Symbols are means 
(±S.D.) of observed concentrations from four replicates for each treatment. Solid lines are CWM1-
AQUASIM simulation curves, dotted lines are CWM1-AQUASIM simulations without sorption. 
 

Temp(oC) 

Control Carex Schoenoplectus Typha 

Active  Inactive Active  Inactive Active  Inactive Active  Inactive 

12 0.984 0.781 0.997 0.671 0.993 0.645 0.932 0.843 

16 0.995 0.813 0.994 0.713 0.979 0.843 0.893 0.892 

20 0.996 0.769 0.997 0.869 0.976 0.857 0.907 0.898 

24 0.979 0.729 0.975 0.975 0.961 0.882 0.893 0.905 
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6.2.3.2 SO4
-2–S 

Measured and simulated SO4
-2–S concentrations are compared in Fig.6.3. Model      

SO4
-2–S predictions generally agree well with the measured data, except for some 

overestimation at the earlier days of incubation in some cases. The observed and 

simulated SO4
-2–S removal profiles have got a pattern similar to those of COD i.e. a 

high removal rate within the first 3 days suggesting that sulphate was used as an 

electron acceptor for organic carbon removal. 

 
Fig.6.3. Simulated SO4

-2–S concentration compared with measured concentrations. Symbols are means 
(±S.D.) of observed concentrations from four replicates for each treatment. Solid lines are CWM1-
AQUASIM simulation curves. 
 
 
6.2.3.3 NH4

+–N 

Fig.6.4 shows the simulated NH4
+–N concentration compared with the measured 

NH4
+–N concentration in the wetland mesocosms. The observed rapid initial decline 

of NH4
+–N in planted columns and increase of NH4

+–N in unplanted columns are 

predicted well, and those can be achieved only with a sorption process included in the 

model. To do so, the process of reversible sorption of ammonium onto the gravel was 
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set to be active and an initial concentration of sorbed ammonium was also fitted. 

According to the simulations, the initial sorbed ammonium (X_NHini) concentration 

was found to be almost the same at different incubations for a specific column as 

shown in Table 6.7. This suggests that the full sorption potential of the gravel would 

be available after every 3 day refresh incubation, implying the ammonia adsorbed on 

the gravel was partly removed during the short period of draining and refilling of the 

wastewater between batches when the gravel was exposed to air. The variability of 

X_NHini between the mesocosms is explicable only as a combination of the root 

oxygen release potential of individual plant species and the below ground biomass 

characteristics i.e. root density, depth and thickness. The contribution by nitrification, 

plant uptake and the sorption processes to the observed decline in NH4
+–N 

concentration in the planted mesocosms was computed as listed in Table 6.8.  

 
Table 6.7. Initial concentration of adsorbed ammonia (g/Kg gravel) 

Temp oC Control Carex Schoenoplectus Typha 

12 13.9 3.2 5.0 6.0 

16 14.0 3.0 5.4 5.8 

20 14.3 3.0 6.0 6.0 

24 13.8 3.0 6.7 6.0 
 

 
Table 6.8. Percentage contribution to the observed decline in NH4

+–N concentration by nitrification, 
plant uptake and sorption processes 

Set-up TempoC Nitrification 
Plant 

Uptake Sorption 

Carex 

12 2.0 20.5 70.2 

16 1.0 4.3 89.1 

20 0.1 4.0 89.8 

24 0.0 4.0 92.0 

Schoenoplectus 

12 0.1 30.0 55.0 

16 0.7 0.5 81.0 

20 0.1 0.3 74.7 

24 0.0 0.1 82.0 

Typha 

12 0.0 10.4 69.6 

16 0.0 1.5 75.0 

20 0.0 0.4 77.0 

24 0.0 0.3 75.0 
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Fig. 6.4. Simulated NH4

+–N concentration compared with measured concentration. Symbols are means 
(±S.D.) of observed concentrations from four replicates for each treatment. Solid lines are CWM1-
AQUASIM simulation curves, dotted lines are CWM1-AQUASIM simulations without sorption.  
 

6.2.3.4 Validation 

For validation purposes, the model was run with a data set from a separate 

experimental campaign utilizing mesocosms planted with Schoenoplectus and higher 

sulphate concentrations (69.01 and 74.79 mg/l SO4
-2–S) mesocosm (Stein et al. 2007). 

The simulated data fits reasonably well (Fig. 6.5) with R2 values of (0.97, 0.92) and 

(0.64, 0.83) for   COD and SO4
-2-S at 14oC and 24oC respectively. 
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Fig.6. 5. Simulated COD and SO4

-2–S concentration compared with observed concentration during 
model validation. Symbols are means (±S.D.) of observed concentrations from four replicates for each 
treatment. Solid lines are CWM1-AQUASIM simulation curves. 

 

6.3 Discussion 

Mechanistic models have become promising tools for understanding the parallel 

processes and interactions between water, granular media, macrophytes, litter, detritus 

and microorganisms occurring in constructed wetlands. The goal of this work was to 

implement within AQUASIM software the reaction model CWM1 and to yield 

simulation results comparable to concentrations actually measured for a constructed 

wetland mesocosm system operated in batch mode. The implementation of CWM1 

with adsorption, physical oxygen re-aeration and plant processes into AQUASIM was 

done freely. This requirement of freedom in specifying a model in simulation 

software is essential to eliminate barriers for potential model users, while producing 

realistic simulation results (Meysman et al. 2003). Considering the large number of 

parameters in CWM1 defining different microbial pathways, colinearity prevented a 

high identifiability for some parameters of the six microbial groups considered in the 

model. Deviations between predicted and experimental data especially at low 

temperatures, may be caused by the non-identification of some CWM1 bacteria 

groups due to a compensation effect, underlining the need for higher resolution 

experimental data, for example a narrow difference between incubation temperatures 

at lower temperatures and/ or sampling time steps.  Further, the use of synthetic 

wastewater as was the case in this study may give rise to uncertainty in wastewater 

characterization i.e. fractionation while following the standard ASM ratios. Changes 
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in the feed solution configuration would affect the predicted bacterial concentration 

and consequently the relative contribution of microbial reactions to organic matter 

removal.  Nevertheless the constituents of the synthetic wastewater were both 

constant and known making the application to the model easier.  

 
6.3.1 Oxygen transfer 

The extension of CWM1 to include physical re-aeration and root oxygen release from 

macrophytes among other processes has been recommended for the formulation of a 

full model for constructed wetlands (Langergraber et al. 2009). As oxygen 

consumption is very rapid in wastewater treatment technologies, and hence difficult to 

determine by direct measurement (Tyroller et al. 2010), indirect estimation of the 

oxygen transfer rate by both physical re-aeration and plant root oxygen release was 

attempted through inverse modeling. Direct oxygen transfer from air to water in the 

mesocosm is modeled in relation to an oxygen deficit as is usually considered in 

running waters. Low values obtained for the physical re-aeration rate could perhaps 

be explained by the fact that the air-water interface was subsurface and static, and 

neither the liquid nor gaseous phases were turbulently well mixed. However 

atmospheric oxygen diffusion is affected by a range of atmospheric conditions 

including temperature and relative humidity and wide range of  oxygen diffusion, 0 to 

28.6 g/m2.d has been reported using different techniques and configurations of 

constructed wetlands (Wu et al. 2001).  

 
Root oxygen release is a continuing subject of debate in subsurface flow CW research 

(Ojeda et al. 2008). Root oxygen release processes are said to depend on among 

others factors, plant species, plant biomass and season (Brix 1999; Caffrey and Kemp 

1991), which could explain the difference in the oxygen release rates obtained 

between the three plant species and at the different incubation temperatures. 

Considering that the mesecoms had the same electron acceptor availability, the 

simulated root oxygen transfer at the lower temperatures potentially explains the 

observed greater COD removal in the Carex and Schoenopletus mesocoms but the 

absence of this temperature response in the Typha and the control mesocoms (Allen et 

al. 2002).While the root oxygen release rates determined this way (i.e. estimation by 

fitting measured data) are comparable to values obtained by other methodologies 
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(Table 6.9), it is generally recognized that wetland plants do not generate enough 

oxygen to fully remove pollutants from wastewater (Brisson and Chazarenc 2009; 

Brix 1997; Tanner 2001). Recent studies have shown that aerobic respiration plays 

only a minor role to the overall organic matter decomposition while anaerobic 

processes generally would play a major role in subsurface flow CWs with minimum 

oxygen renewal capacities (Llorens et al. 2011b; Ström et al. 2005). The depletion of 

SO4
-2–S in both the simulation and measurements as shown in Fig. 6.3 also imply an 

insufficient oxygen supply to the columns because sulphate is reduced by the 

acetotrophic sulphate reducing bacteria only after oxygen and other more 

thermodynamically favorable electron acceptors have been depleted (Allen et al. 

2002; Wiessner et al. 2005). Thus subsurface constructed wetlands with minimal 

oxygen renewal capacities such as horizontal subsurface flow wetlands should be 

designed as an anaerobic or an aerobic–anaerobic hybrid system rather than as an 

aerobic system (Bezbaruah and Zhang 2005). 

 
Table 6.9. Plant oxygen release reported by various researchers 

 

 
6.3.2  Influence of plants and temperature on bacterial biomass 

The removal of wastewater constituents in CWM1 is associated with a specific 

microbial functional group, reflecting a fundamental characteristic of wastewater 

treatment facilities (including wetlands) where their functioning relies heavily on the 

metabolism of microorganisms contained within sludge or biofilm (Ragusa et al. 

2004). Nevertheless microbial activity in constructed wetlands is still largely based on 

assumption and circumstantial evidence as there is a lack of effective indicators of 

biofilm function and health in water treatment systems (Faulwetter et al. 2009; 

Ragusa et al. 2004). By running the model, estimates of the initial concentration of the 

six bacteria group considered in CWM1 were made at different incubation 

temperatures. The sensitivity ranking (not shown) demonstrated that the initial 

Plant  Amount of Oxygen release by plant Remarks Reference 

Schoenoplectus  0.00104-0.00443 (g O2 m
-2d-1) Field and lab study Bezbaruah and Zhang (2005)

0.8 (g O2 m
-2d-1) Based on NH4

-2 -N removal

Typha  0.00384 -0.0064 (g O2  Dry Weight-1 h-1) Lab study Jespersen et al. (1998)

Carex  0.64 ± 0.284(at 4o C)-0.67 ± 0.163(g O2 m
-2d-1) Microcosm Tylor et al. (2009) 
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bacteria concentration as boundary condition was significantly influential on the 

model processes. The estimated values for initial bacteria concentration (found to 

have a low to moderate uncertainty) in the modeled batch systems are comparable to 

and within the range of those determined from simulation studies of subsurface 

constructed wetlands with continuous flow e.g. Rousseau (2005) and Llorens et al. 

(2011). From the simulations, the planted mesocosm required a higher total bacteria 

concentration, compared with the unplanted controls, suggesting that incorporation of 

plant roots into substrate of constructed wetlands enhances microbial populations 

related to the transformation and degradation of pollutants in constructed wetlands.  

 
The model agreed with the assumption that plants can affect bacterial density and 

activities in constructed wetland (Gagnon et al. 2007), with vegetation having a 

positive effect on the treatment efficiency for organics and nutrients such as nitrogen 

and phosphorus. Besides root surface area for microbial growth, it has been suggested 

that plant rhizosphere provides a source of carbon compounds through roots exudates 

and a micro-environment via root oxygen release that can affect microbial species 

composition and diversity (Vymazal 2011).  

 
Temperature impact on microbiological process rates and on plant growth is 

expressed through growth and decay rates, as well as other kinetic parameters in this 

model. It is generally accepted that most bacteria activity will decrease at lower 

temperatures, which may in turn influence the wetland performance. However, both 

the measured and simulated results in this work demonstrate that, the resultant effect 

on the wetland performance may not necessarily be related to temperature. It was seen 

by running the model that the abundance of some bacterial function groups, such as 

heterotrophs is generally higher at lower temperatures compared to high temperatures. 

Low temperatures may cause population shifts by altering growth rates of the 

individual species in different ways changing the competitive situation between 

species (Kotsyurbenko 2005; Lew et al. 2004). The observed trend is in agreement 

with the results of Honda and Matsumoto (1983), who observed the growth capacity 

of a microbial film in a model trickling filter to increase as temperature fell. This is 

due to the autolysis coefficient which becomes lower at low temperatures (Honda and 

Matsumoto 1983). On the other hand calibration simulations indicated that 
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methanogenic bacterial concentrations increased with temperature, apparently because 

in the model they are not limited by a substrate such as sulphate that was removed 

rapidly within the first 3 days of incubation. In this case sulphate deficiency leads to 

minimal utilization of acetate as an electron donor for the sulphate reducing bacteria, 

and acetate is mainly used by methanogenic bacteria (Kalyuzhnyi and Fedorovich 

1998) 

  
6.3.3 COD anaerobic degradation and sorption 

Anaerobic transformation and degradation of COD was the dominant process 

(Fig.6.1) in agreement with other findings on microorganism activity in subsurface 

flow constructed wetlands (García et al. 2005; Imfeld et al. 2009; Llorens et al. 

2011a). Considering that the redox potentials and sulfate concentrations were high 

immediately after filling the columns with fresh wastewater and generally decreased 

rapidly within 24hrs (Allen et al. 2002), organic matter degradation was likely 

achieved by anaerobic bacteria (Baptista et al. 2003; García et al. 2005). The 

widespread occurrence of anaerobic reactions in CWs has also been shown by Llorens 

et al. (2011b) with methanogenesis contributing 58–73% to the COD removal.  

 
The greatest difference in performance (for COD) among the mesocosms was at lower 

temperature as reported in Stein and Hook (2005). At low temperatures the planted 

columns seem to have an enhanced capacity for COD adsorption coupled to a 

relatively active root oxygen release rate.  Some previous studies have indicated that 

the measured behavior of wetland systems can only be modeled if COD adsorption is 

considered as an additional process (Henrichs et al. 2007).  The model simulations of 

the current study indicate that the impact of adsorption-desorption processes is more 

significant at lower temperatures (12oC and 16oC) especially in the planted 

mesocosms, and that at these temperatures  biochemical processes alone could not 

account for the observed COD removal (Fig. 6.2). This result underlines the 

importance of a COD adsorption-desorption process in batch operated constructed 

wetlands. Contribution by plant physical degradation and decay to increase of organic 

matter in the planted mesocosms was found to be insignificant within the 20 days 

simulation period. 
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6.3.4 NH4
+–N removal mechanisms 

Nitrogen transformation and removal mechanisms in constructed wetlands include 

mineralization (ammonification), ammonia volatilization, nitrification, denitrification, 

plant and microbial uptake, nitrogen fixation, nitrate reduction, anaerobic ammonia 

oxidation (ANAMMOX), adsorption, desorption, burial and leaching (Vymazal 

2007). In this study the estimated contribution by plant uptake to the decline of NH4
+–

N concentration ranged between 0.1 % and 30% (Table 6.8). Plant uptake of nitrogen 

is typically seen as a less significant nitrogen removal mechanism (Tunçsiper 2009). 

Contribution by nitrification was also found to be low. This could have been 

influenced by the ammonia held and released by sorption process and the fact that 

available oxygen in the wastewater is quickly utilized by heterotrophic bacteria for the 

metabolism of organic carbon. This can also be seen from the results of the sensitivity 

analysis (Table 6.1) that shows sorption and heterotrophic bacteria rather than 

autotrophic bacteria growth rate and yield parameters as having the largest impact on 

simulated NH4
+–N concentration. A high ammonia reduction rate in constructed 

wetlands with minimum oxygen renewal capacities is often less likely because the 

amount of oxygen available for bacterial oxidation of ammonium, or nitrification, is 

usually limited (Wu et al. 2001). The simulation highlights the significance of the 

sorption process for ammonium fate in the batch mesocosms, as also discussed in 

McBride and Tanner (1999). Effluent concentration of NH4
+-N matched the measured 

concentration well only with the sorption process active in the simulation. This 

applied for the controls (unplanted columns) as well where an increase in NH4
+–N 

due to organic nitrogen ammonification was predicted well. 

6.3.5  Model advantages and limitations 

The CWM1-AQUASIM (with adsorption and plant processes implemented) 

positively captured the influence of temperature, and the presence and species of 

macrophyte. The model elucidates the performance attributes and factors that describe 

the observed trends in COD, SO4
-2-S and NH4

+-N; differences in macrophyte oxygen 

transfer rates, density of microbial groups and temperature and the relative 

proportions of removal pathways of organic matter. Valuable insights into the parallel 

and interacting processes of a constructed wetland aid improved conceptualization 

and design of a constructed wetland system. The simplified batch hydraulic regime of 
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the system modeled in this implementation of CWM1 in AQUASIM allowed a focus 

on the biokenetics of CWs. However, porous media hydrodynamics i.e. effect of 

dispersion, heterogeneity and dead zones must be considered for a realistic simulation 

and proper fit of the model to most operating CWs. For this, it is suggested that finite 

elements or finite difference models be used to describe water flow instead of the 

continuous stirred-tank reactor considered in this application (Langergraber et al. 

2009). In pilot wetlands it is desirable that concentrations be tied to their locations, 

thereby creating the possibility of having aerobic, anoxic and anaerobic zones in the 

modeled wetland, as opposed to a "suspended culture". This can be achieved with use 

of biofilm models, with substrate conversion and bacteria growth combined with mass 

transport limitations into and within the biofilm matrix. 

This model provides a promising tool for studying the dynamics of the key processes 

governing COD and nutrient dynamics in the wetland system, which is anticipated to 

promote an increased understanding of the performance aspects and sound 

conceptualization and design of constructed wetland systems. The CWM1 equations 

are based on commonly accepted Activated Sludge Models (ASMs), which enhances 

communication between wetland scientists as it introduces a kind of ‘common 

language’. Due to the widespread application of the ASM models, literature provides 

much guidance for their stochiometric and kinetic parameters values as these models 

already have been applied in many case studies. 

6.4 Conclusion 

CWM1 was successfully implemented in AQUASIM software. The model was 

applied to data from unplanted and planted experimental batch operated constructed 

wetland mesocosms to simulate the transformation and degradation of COD, NH4
+–N 

and  SO4
-2–S. Based on the model output the principal conclusions are:  

(i) The model was able to provide a reasonable fit to experimental data with the 

addition of physical oxygen re-aeration, plant and sorption processes.  

(ii) Sensitivity analysis showed the parameters with the highest sensitivities to be 

those related with micro-organisms kinetics and sorption processes. 
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(iii) Plant root oxygen transfer rate varied with plant species and temperature. 

More oxygen was released to the mesocosms by plants at low temperature. 

Nevertheless, the oxygen transferred to the mesocosms by both plant root release and 

physical reaeration was insufficient compared with the oxygen demand of the 

wastewater. 

(iv) The better performance of the planted mesocosms was simulated well with a 

higher bacterial population than that of the unplanted mesocosms. Higher bacterial 

population was found at low temperature that high temperature.   

 
(v) COD degradation was mainly through anaerobic processes under these 

specific experimental conditions. SO4
-2–S was used as an electron acceptor for COD 

removal and was depleted quickly at the beginning of incubations 

 
(vii)  NH4

+–N was adsorbed on the gravel rapidly and further removed when the 

mesocosms were drained and the gravel exposed to the air. Nitrification and plant 

uptake of NH4
+–N did not contribute significantly to the decline of NH4

+–N in the 

experimental mesocosms 
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Specific Appendix  
 
Table 1. Mathematical equations for plant related process, physical re-aeration, adsorption-
desorption processes as implemented in AQUASIM alongside the CWM1  
Process     Process rate 

Plant Growth NH4
+–N   

_
  

_pl pi
pnh

S NH
K X

d eps K S NH
  

 
1

  

Plant Growth NO3
--N   

 
_

_ _
pnh

pl pi
pno pnh

KS NO
K X

d eps K S NO K S NH
   

  
1

  

Plant Degradation   degrad pdK X
d eps

 

1

 

Plant Decay    p pib X
d eps

 

1

  

Plant oxygen leaching rate     exp _ _ 1rol
sat

K
S O S O

d eps
  


   

Physical reaeration   ( _ - _ )la satK S O S O   

COD Adsorption                                        _ _ _ - _ Adk S COD X S X COD   

Ammonia Adsorption   
1_

* _ - ( )  mX NH
alpha S NH

PartitionCoefficient
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Table  2.  Parameter and variable description and value 
Parameter   Description      Unit  
 Value   

d     Rooting depth       m  0.5 
eps    Matrix material porosity as fraction      0.27 

plK      Plant relative growth rate, function of season    1/d   

 0.033 

pnhK    Ammonium half-saturation coefficient for plant growth  gNH4
+–N /m3  0.3 

 piX    Living plant biomass     gCODplant/m2
  0 - 

300 

pnoK    Nitrate half-saturation coefficient for plant growth  gNO3
--N/m3 0.1 

deg radK    First order plant physical degradation constant  1/d  0.01 

 pdX    Dead standing plant biomass     gCODplant/m2  0 - 

300 

pb    Decay coefficient for living plant material, function of season  

 0.002 

rolK    Root oxygen loss parameter as per day     m/day   

_ satS O   Oxygen saturation concentration   mgO2/l   

laK    Oxygen reaeration coefficient    1/d   

     First-order exchange rate    1/h  0.1-1 

_ _k S COD   Empirical coefficient for COD adsorption  [mgCOD·kgsubstrate
−1]1-3 

_ AdX COD   Concentration of sorbed COD    gCOD/m3  

alpha    Specific sorption rate coefficient    1/day   2 

PartitionCoefficient   Solid-liquid (ammonium) partition coefficient                       l/kg gravel  3 

m    Freundlich isotherm exponent     0.5 
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Chapter 7:  Simulation of batch-operated experimental 
wetland mesocosms in AQUASIM biofilm 
reactor compartment 
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Abstract 

In this study, a mathematical biofilm reactor model based on the structure of the 

Constructed Wetland Model No.1 (CWM1) coupled to AQUASIM's biofilm reactor 

compartment has been used to reproduce the sequence of transformation and 

degradation of organic matter, nitrogen and sulphur observed in a set of constructed 

wetland mesocosms and to elucidate the biofilm growth dynamics of a multispecies 

bacterial-biofilm in a subsurface constructed wetland. Experimental data from 16 

wetland mesocosms operated under greenhouse conditions, planted with three 

different plant species (Typha latifolia, Carex rostrata, Schoenoplectus acutus) and an 

unplanted control were used in the calibration of this mechanistic model. Within the 

mesocosm, a thin (predominantly anaerobic) biofilm was simulated with an initial 

thickness of 49 µm (average) and in which no concentration gradients developed. The 

biofilm density and area, and the distribution of the microbial species within the 

biofilm were evaluated to be the most sensitive biofilm properties; while the substrate 

diffusion limitations were not significantly sensitive to influence the bulk volume 

concentrations. The simulated biofilm density ranging between 105,000 to 153,000 

gCOD/m3 in the mesocosms was observed to vary with temperature, the presence of 

and the species of macrophyte. The biofilm modelling was found to be a better tool 

than the suspended bacterial modeling approach to show the influence of the 

rhizosphere configuration on the performance of the constructed wetlands. 

 

7.0 Introduction 

Subsurface flow constructed wetlands (SSF-CWs) are finding extensive application 

for domestic and municipal wastewater treatment (Haberl, 1999; Neralla et al., 2000; 

Vymazal, 2010; Mburu et al., 2013b) because of their simple and robust configuration 

together with low energy requirements and operating cost. SSF-CWs are generally 

constructed with a porous material (e.g. soil, sand, or gravel) as a substrate for growth 

of rooted wetland plants in addition to various microbes. The microorganisms and 

their extracellular products adhere to the solid support provided by the porous media 

and plant roots, forming a biofilm layer in which the contaminant compounds disperse 

and are degraded by the microorganisms (Wichern et al., 2008; Kadlec and Wallace, 

2009). Thus, the organic content in the wastewater is reduced by biological 
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degradation rather than by simple screening (Krasnits et al., 2009). Aerobic 

respiration, denitrification, sulphate reduction and methanogenesis are the principal 

biochemical reactions involved in the oxidation and net removal of organic matter in 

subsurface flow constructed wetland systems (Baptista et al., 2003; Caselles-Osorio et 

al., 2007; Langergraber et al., 2009). Transformation processes also include abiotic 

chemical reactions, such as adsorption of a solute onto the biomass or the solid porous 

material.  Thus SSF-CWs clearly behave as complex reactors (Ojeda et al., 2008). 

Accordingly, in order to evaluate such a system, mechanistic mathematical models 

could be very helpful to facilitate the interpretation and quantification of the ongoing 

biogeochemical processes. 

 
Despite there is a recognition that the improvement of water quality in  treatment 

wetland applications is primarily due to microbial activity (Faulwetter et al., 2009; 

Kadlec and Wallace, 2009),  the mechanistic understanding of the dynamics of 

microbial biofilm biomass, activity, and community composition in constructed 

wetlands is still evolving, albeit significantly in the past couple of years (Faulwetter et 

al., 2009; Truu et al., 2009; Samsó and Garcia, 2013). These aspects have been 

completely overlooked in traditional wetland models using reaction rate constants 

(Rousseau et al., 2004). Only recently constructed wetland mechanistic modeling 

started to incorporate these aspects (Langergraber, 2001; Langergraber and Šimůnek, 

2005; Rousseau, 2005). However, barely a few of the mechanistic models consider 

multispecies bacterial biofilms (McBride and Tanner, 1999; Langergraber and 

Šimůnek, 2005; Mayo and Bigambo, 2005; Langergraber and Šimůnek, 2012; Samsó 

and Garcia, 2013), but rather are formulated with "suspended cells" (i.e. bacterial 

community without substratum) under batch or continuous flow modes (Wynn and 

Liehr, 2001; Mayo and Bigambo, 2005; Rousseau, 2005; Llorens et al., 2011b; Mburu 

et al., 2012a). Further, there are variations in the modeling of microbial reactions 

including type and number of bacterial populations considered and kinetics of growth 

and processes affecting the bacterial-biofilm growth (Kumar and Zhao, 2011) due to 

the complex nature of constructed wetland systems. In this context, the biokinetic  

Constructed Wetland Model number 1 (CWM1) (Langergraber et al., 2009) is seen as 

the most advanced theoretical biokinetic model developed for SSF-CWs. 
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CWM1 has been implemented in different simulation platforms (Llorens et al., 2011a; 

Langergraber and Šimůnek, 2012; Mburu et al., 2012b; Mburu et al., 2013a; Samsó 

and Garcia, 2013) and the resulting codes have been used to match experimentally 

measured effluent pollutant concentrations. Although these models provide insights 

into the behavior of the SSF constructed wetland, they neglect certain potentially 

important phenomena influencing microbial reactions, such as diffusion limitation or 

the stratification of metabolic processes  in the biofilm when several populations of 

bacteria are present, or the possible influence of macrophyte type on the development 

of biofilm biomass (Gagnon et al., 2007; Zhang et al., 2010). Knowledge on the 

growth dynamics of bacterial biofilms is essential for the design conceptualization of 

treatment processes in constructed wetlands. Compared with reactors with suspended 

bacteria, fixed biofilm bacteria reactors can be operated at high biomass 

concentrations in the reactor. This implies that biofilm units often require less land 

area than suspended bacteria units (Wik, 1999). Thus, the attached bacteria-biofilm 

modeling approach should give better system insights to help to improve the 

performance of constructed wetlands by providing a scientific basis to find the 

optimal design and operating conditions of constructed wetlands systems (Rousseau, 

2005). 

 
A biofilm modeling approach has been used here to reproduce the sequence of 

transformation and degradation of organic matter, nitrogen and sulphur observed in a 

set of constructed wetland mesocosms and to elucidate the biofilm growth dynamics 

in a multispecies bacterial-biofilm. The growth of six microbial groups (heterotrophic, 

autotrophic nitrifying, fermenting, acetotrophic methanogenic, acetotrophic sulphate 

reducing and the sulphide oxidising bacteria) and the subsequent consumption of 

electron donors and acceptors in 16 batch operated subsurface flow wetland 

mesocosms operated under controlled greenhouse conditions with three different plant 

species (Typha latifolia, Carex rostrata, Schoenoplectus acutus) and an unplanted 

control is simulated. The processes occurring in the biofilms attached to the gravel 

and plant roots in the mesocosms are simulated in the one-dimensional (1-D) 

mathematical biofilm model of the simulator AQUASIM (Reichert, 1998), a 

programme for identification and simulation of aquatic systems. For the rate equations 

and kinetics of the microbiological processes, the Constructed Wetland Model No.1 
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(CWM1) biokinetic model as described in Langergraber et al. (2009) is used. The 

results are compared and contrasted with those in the  work of Mburu et al. (2012) in 

which a non-biofilm (i.e. suspended) multipopulation bacterial growth and uptake 

approach together with plant related processes (growth, physical degradation, decay, 

and oxygen leaching), physical re-aeration, as well as adsorption and desorption 

processes for COD and ammonium were applied in the simulation of the 16 

mesocosms to describe the transformation and degradation processes of organic 

matter, nitrogen and sulphur (Mburu et al., 2012a). Thus although biofilm modeling 

may represent a theoretical improvement over the "suspended bacteria" approach in 

constructed wetland modeling, a direct comparison of the two modeling approaches is 

important to determine if the biofilm modeling approach yields new qualitative 

information, specifically on the possible influence of the boundary conditions of 

temperature and macrophyte species on the prediction of substrate removal in 

constructed wetlands. 

 
7.1 Methodology 

 
7.1.1 The experimental constructed wetlands 

The experimental constructed wetlands were operated under controlled greenhouse 

conditions at Montana State University in Bozeman (Montana, USA). Details of 

column design, construction and planting, as well as sampling and measurement are 

described in Allen et al. (2002) and Stein et al. (2006). Briefly, 16 subsurface 

constructed wetland mesocosms were constructed from polyvinyl chloride (PVC) 

pipes (60 cm in height × 20 cm in diameter) and filled to a depth of 50 cm with 

washed pea-gravel (0.3–1.3 cm in diameter). Four columns each were planted with 

Carex rostrata (Northwest Territory sedge), Schoenoplectus acutus (hardstem 

bulrush) and Typha latifolia (broadleaf cattail), while four were left unplanted as 

controls. A series of 3-6-9-20-d incubations with synthetic wastewater was conducted 

over 20 months at temperatures ranging from 12 to 24oC at 4oC steps. A synthetic 

wastewater simulating secondary domestic effluent was used with mean influent 

concentrations of 470 mg/l COD, 44 mg/l N (27 Org-N, 17 NH4
+–N), 8 mg/l PO4

3-–P, 

and 14 mg/l SO4
2-–S. Columns were gravity drained 3 days prior to each incubation 

and then again at the start of each incubation. Upon each emptying, columns were 
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refilled from above with new wastewater. Sampling from all 16 columns occurred at 

days 0, 1, 3, 6, 9, 14 and 20 of each incubation and those sub-samples were analyzed 

afterwards for the constituents.  

 
7.1.2 Model description and implementation 

The constructed wetland mesocosm is mathematically described as a reactor with 

completely mixed bulk water volume and with a biofilm growing on a substratum 

(gravel media and plant roots) surface inside the reactor. The mesocosm was 

implemented into the biofilm compartment of the AQUASIM 2.1d (win/ mfc) 

software (Reichert, 1998).  The biofilm reactor compartment in AQUASIM enables 

the simulation of biofilm systems with several microbial species and substrates. It 

describes the spatial distribution and development in time of dissolved and particulate 

components in the biofilm, as well as the development in time of the biofilm 

thickness. The biofilm is divided into a liquid phase consisting of water (80%) in 

which the dissolved substances are transported by diffusion and a solid matrix (20%) 

consisting of particulate components such as active and inactive bacteria and their 

extracellular polymeric substances (EPS). The compartment was configured as:   

 “Unconfined” reactor (i.e. volume of bulk liquid was assumed constant and 

did not change with biofilm thickness, whereas the biofilm can grow freely as 

may be the case in a trickling filter (Wanner and Morgenroth, 2004)). 

 A rigid structure (there is no diffusive mass transport of solids i.e., the biofilm 

matrix can change its volume due to microbial growth and decay only).   

 No suspended solids in the pore volume (no particle transport through the 

biofilm). 

 No surface or volume attachment or detachment (there is no exchange of 

particulate components between the biofilm solid matrix and the bulk liquid).  

 Diffusivities were taken from Boltz et al. (2011), considering that the 

diffusivity of a solute inside the biofilm is generally lower than that in water 

because of the tortuosity of the pores and minimal biofilm permeability. 

 
The transformation and degradation processes were defined based on the bio-kinetic 

model CWM1. The values of the kinetic and stoichiometric parameters required by 
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the model are available in Langergraber et al. (2009), with the exception of those that 

were modified in Mburu et al. (2012). Dynamic processes were used for the growth 

and decay rate of all bacterial groups as included in the CWM1 model. Because of the 

serial execution of the equation of the heterotrophic bacteria processes as described in 

CWM1, growth failed when switching between readily biodegradable COD and the 

fermentation product acetate, both under aerobic and anoxic conditions. The 

implementation of these process rates as described in Langergraber et al. (2009) was 

thus not possible. Instead, the implementation was carried out as described in the 

work of Llorens et al. (2011), where the solution was to divide the heterotrophic 

bacteria group into two subgroups according to the substrate they consume.  

The biofilm is modeled as a film growing on the spherical surfaces of the gravel 

media inside the mesocosm and assumed to be an ideal biofilm of uniform thickness 

(LF) and density (rho), with the diffusion and kinetic coefficients assumed to be 

constant throughout the wetland unit. The equations to calculate the biofilm growth 

area on the washed pea gravel followed the approach of Wichern et al. (2008). In an 

idealized way, the washed gravel is approximated by spheres which all have the same 

diameter and which can touch each other at up to eight points. Where the spheres 

touch, biomass growth on the surface of the spheres is not possible. Thus, it is 

possible to determine the loss of biofilm surface area (Aloss) between two pieces of 

gravel (considered as spheres) in relation to the radius (r) of the single sphere and the 

thickness of the biofilm (LF) with the equation: 

2(2 2 )  loss F FA B L r L m            (7.1) 

where B represents the number of contact points per sphere. The number of pieces of 

gravel (N) in the mesocosms volume (V) is estimated depending on the porosity ε as: 

 
3
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(2 )
6

V
N

r





          (7.2) 

The remaining surface area of the biofilm Aremaining in relation to the number of 

contact points, the diameter of the spheres, and the biofilm thickness amounts to: 

2 2(2 )remaining lossA N r NA m            (7.3) 

Reduction in concentration of any substrate is modeled as a mass-transfer or boundary 

layer mass transfer resistance, RL (=LL/D), which depends on the diffusivity (D) of a 
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substrate inside the biofilm and an accurate estimate of the mass transfer liquid layer 

of thickness LL. Very low diffusion coefficients will lead to high boundary layer 

resistance and the model will not yield a converging solution. The diffusion 

coefficients of the components in the biofilm were taken as their "effective" values 

approximated as 0.8 times their diffusion coefficient through pure water (Boltz et al., 

2011). Temperature dependency of diffusion coefficients was accounted for according 

to: 

273 (20 )
( ) (20 ). .

273 20 ( )
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T C
D T D C

C T








, [m2d-1]    (7.4) 

where D is the diffusion coefficient, T the temperature in oC, and  µ the dynamic 

viscosity of water in N m-2s (Boltz et al., 2011).  

 
Five plant processes (growth, physical degradation, decay, and oxygen leaching), 

physical re-aeration, as well as adsorption and desorption processes for COD and 

ammonium nitrogen were also included as dynamic processes following the work of 

Mburu et al. (2012).  

 
To run the model, 16 inputs characterizing the influent (Oxygen, COD fractions, N 

compounds, and S compounds), and one input for water temperature are required. 

Other inputs concerning initial data i.e. the biofilm (density, thickness, area and 

volume fractions), the boundary liquid layer thickness, the reactor volume and the 

diffusion coefficients of 13 substrate is necessary. Fractionation of the influent 

wastewater COD was based on standard ratios given in the ASM models (Henze et 

al., 2000) and implemented following the work of Mburu et al. (2012).  

 
7.1.3 Sensitivity analysis 

A sensitivity analysis was carried out to recognize the most important parameters 

influencing the prediction of carbon, nitrogen and sulphur concentrations and the 

development of the biofilm. With the “sensitivity analysis” function in AQUASIM, it 

is possible to investigate whether the time series of the calculated values are affected 

noticeably by a change in the value of a model parameter. The sensitivity analysis 

feature enables calculation of linear sensitivity functions of arbitrary variables with 

respect to each of the parameters included in the analysis (Reichert, 1995).  The 

sensitivity analysis results described in this study are those of the absolute-relative 
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sensitivity function of AQUASIM (Eq. 7.5) that computes the absolute change in a 

model output variable, y, for a 100% change in any parameter of interest, p:  

,
,

a r
y p

y
p

p
 




         (7.5) 

This makes quantitative comparisons of the different parameters on a common 

variable possible. 

The uncertainty is determined by using the error propagation formula (Eq. 7.6), which 

is based on the linearized propagation of standard deviations of the parameters of 

interest, neglecting their correlation: 
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         (7.6) 

Where ip  are the uncertain model parameters, ip
their standard deviations, 

( ......... )i my p p  the solution of the model equations for a given variable at a given 

location and time, and y
is the approximate standard deviation of the model result. 

Identifiability of the model parameters was evaluated by use of the parameter 

correlation matrix in AQUASIM. 

 
7.1.4 Model calibration and simulations 

Data based on bulk measurements of COD, NH4
+–N and SO4

2-–S at 12oC, 16oC, 20oC 

and 24oC from the unplanted (control) mesocosms were used for optimization of the 

microbial biokinetic parameters of CWM1 and the calibration of the biofilm 

parameters. The physical re-aeration coefficient, initial amount of sorbed ammonia 

and the COD adsorption parameters were adopted as determined in the work of 

Mburu et al. (2012). To optimize the parameter sets, the result of the sensitivity 

analysis was used to guide the selection and calibration of the kinetic coefficients and 

the biofilm parameters with the “parameter estimation” function of AQUASIM. The 

function attempts to determine unknown values of model parameters by iteratively 

best-fit matching time-series of calculated and measured values. The simulations were 

conducted with data from planted mesocosm, at 12oC, 16oC, 20oC and 24oC. 
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7.2 Results  
 
7.2.1 Sensitivity and identifiability analysis 

Prior to calibration of the biofilm parameters, the parametric sensitivity of the 

dynamic model was conducted in AQUASIM (Table 7.1). The importance of the 

constructed wetland biofilm structure was reflected in the dependence of the state 

variables on the biofilm density and area. Table 7.1 shows the sensitivities of the main 

bulk liquid concentrations (i.e. COD, NH4
+-N and SO4

2--S) on biofilm characteristics. 

Here, "strong effect", "significant", "moderate" and "insignificant" indicate SF ≥ 1, 1 

> SF ≥ 0.1, 0.1 > SF ≥ 0.01 and SF < 0.01, respectively, where SF is the absolute-

relative sensitivity function (unit of g-COD/m3, g-N/m3 or g-S/m3). 

 
Table 7.1.  Sensitivity of the biofilm parameters on the bulk liquid concentrations  

  Rho D LL LFini A eps_X 

COD +++ - ++ ++ +++ ++ 

NH4
+-N +++ - + ++ ++ ++ 

SO4
2—S +++ - + ++ ++ ++ 

(-) insignificant effect; (+) moderate effect; (++) significant effect; (+++) strong effect; (rho: biofilm density, D:substrate 
diffusivity, LL: liquid layer thickness, LFini

:initial biofilm thickness, A:area of biofilm, eps_X: biomass volume fraction) 

 
The correlation matrix for the biofilm parameters (Table 7.2) shows the biofilm 

density and the biofilm area to be strongly correlated and hence not simultaneously 

theoretically identifiable from the measured data (Petersen et al., 2001). This suggests 

that other factors (e.g. diffusivity or mass transport limitation within the biofilm) may 

have influenced parameter identifiability, especially for parameters that are otherwise 

uncorrelated or with a low linear dependency (Brockmann et al., 2008).  

 
Table 7.2. Correlation matrix during biofilm parameter estimation in AQUASIM  

 

 
7.2.2 Biofilm properties 
 
7.2.2.1  Simulated volume fractions and the activity of microbial species  

The simulated volume fractions of the microbial species within the biofilm at different 

incubation temperatures are presented in Table 7.3. The fractions represent the 

A LFini LL rho

A 1

LFini -7.0E-06 1

LL -7.9E-06 -4.5E-07 1

rho 1 1.7E-01 0.46 1
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interactions within the biofilm depth among the bacteria species involved and their 

competition for existence within the biofilm as a function of the substrate flux. The 

simulated volume fractions were not varying significantly with temperature, while the 

sulphide oxidising bacteria were not growing in the biofilm probably due to oxygen 

and nitrate limitation during the biofilm development.  

 
Table 7.3. Simulated volume fractions of bacterial functional groups of CWM1 in the control 
mesocosms 

Temp oC 

Bacterial Functional group 

X_FB X_ASRB X_AMB X_A X_H X_SOB 

12 0.026 0.047 0.057 0.002 0.047 0.000 

16 0.029 0.047 0.061 0.005 0.038 0.000 

20 0.029 0.047 0.061 0.003 0.039 0.000 

24 0.029 0.048 0.062 0.005 0.037 0.000 
X_FB: Fermenting bacteria; X_ASRB: Acetotrophic sulphate reducing bacteria; X_AMB: Acetotrophic 
methanogenic bacteria; X_A: Autotrophic nitrifying bacteria; X_H: Heterotrophic bacteria;   
X_SOB: Sulphide oxidising bacteria 

 

7.2.2.2 Physical and geometric parameters  

The characterization of the physical and geometrical parameters of the biofilm in the 

control and the planted mesocosms is presented in Tables 7.4 and 7.5, respectively. 

The calibrated values for initial biofilm thickness (LFini), biofilm density (rho), liquid 

boundary layer (LL) and the estimated biofilm area (A) were obtained by fitting the 

model to the experimental measurements of the bulk liquid concentrations of the 

wetland mesocosms set-ups observed at the different incubation temperatures.   

 
Table 7.4. Calibrated values of the initial biofilm thickness (LFini), density (rho), liquid layer (LL) and 
area (A) in the control mesocosms 

Temp oC 

Parameter 

LFini (m) rho (g/m3) LL (m) A (m2) 

12 4.74E-05 134025 6.24E-05 8.42 

16 3.84E-05 132655 6.29E-05 8.41 

20 6.33E-05 105190 5.93E-05 8.4 

24 4.74E-05 108512 3.40E-05 8.43 
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Table 7.5. Calibrated values of the initial biofilm thickness density (rho), and area (A) in the planted 
mesocosms 

Set-up 
Temp 
oC 

Parameter 

rho (g/m3) A (m2) 

Carex 

12 152519 8.55 

16 139877 8.58 

20 143015 8.57 

24 127684 8.57 

Schoenoplectus 

12 150290 8.57 

16 143926 8.58 

20 144135 8.58 

24 143189 8.58 

Typha 

12 148266 8.57 

16 145365 8.55 

20 137446 8.55 

24 130818 8.57 

 
 
The initial biofilm thickness (average 49 µm) was observed to shrink with time during 

the batch simulations without reaching a steady state under the experimental 

conditions, as shown in Figure 7.1. It is clear that the progressive decrease in biofilm 

thickness follows a trend of diminishing substrate availability under the batch loading 

conditions. The thickness of the biofilm is governed by the flux of substrate to the 

biomass, as well as the growth and decay of the micro-organisms in the model. The 

attachment and detachment of cells at the biofilm surface and inside the biofilm was 

not considered in this work. 

 

 

 

 

 
Fig. 7.1. Simulated development of the biofilm thickness in the control mesocosms  
 

7.2.3 Bulk volume simulations  

Model predictions showed a good qualitative agreement with the measured bulk 

volume concentrations of COD, NH4
+-N and SO4

2--S (Figures, 7.2, 7.3 and 7.4). 

However, discrepancies exist between measured and simulated NH4
+–N and SO4
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concentrations.  The simulations of NH4
+–N and SO4

2-–S conversion/consumption 

show an offset (both over-estimation and under-estimation) in the planted mesocosms. 

These discrepancies between the measured and simulated values might be due to the 

fact that the mean density of the biofilm in the model is estimated rather than 

experimentally determined. Ideally, the mean biofilm density is known and is 

considered as an input parameter. Alternatively omitting the the influence of plant 

roots on the biofilm development represents an oversimplification (of the 

mathematical model) in attempting to determine biofilm model parameters based on 

experimental data.  This is possibly the case, as the obtained planted-unplanted 

biofilm density ratio was found to range between 7 to 13 as described in Munch et al. 

(2005). Further, the non-development of the sulphide oxidising bacteria in the biofilm 

(Table 7.3) caused the poor fit for the SO4
2-–S profiles. 

 

 
Fig. 7.2. Simulated compared with measured COD concentrations. Symbols are means (±S.D.) of 
observed concentrations from four replicates for each treatment. 
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Fig. 7.3. Simulated compared with measured NH4

+-N concentrations. Symbols are means (±S.D.) of 
observed concentrations from four replicates for each treatment. 
 

 
Fig. 7.4. Simulated compared with measured SO4

2−-S concentrations.. Symbols are means (±S.D.) of 
observed concentrations from four replicates for each treatment. 
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7.3  Discussion 
 
7.3.1 Biofilm versus Suspended bacterial growth modeling approach for 

simulating constructed wetland performance 

 
The bacterial biofilm modeling approach is more complex than the suspended 

bacterial approach presented in Mburu et al. (2012), because the reactor mass balance 

is coupled with a diffusion reaction equation for the substrate in the biofilm. The 

biofilm model must account for the spatial aspects of biofilms, most notably the 

distribution of bacteria and substrates across the depth of a biofilm (Reichert, 1998).  

 
Substrate gradients in the biofilm as a consequence of diffusion and reaction were not 

observed. The growth of bacterial biomass through substrate consumption is 

essentially under the same conditions or behavior as for the suspended bacterial 

model. Nevertheless, the evaluated bacterial volume fractions (Table 7.3), biofilm 

density and area (Table 7.4) show it was possible to evaluate more clearly how the 

individual functional groups developed in the biofilm of the constructed wetland. For 

example, the reason for the better performance of the planted mesocosm (with respect 

to substrate removal) compared to the unplanted mesocosm, is simulated as an 

increased colonizable surface area on which the biofilms can grow, together with the 

concomitant increase in biofilm density (due to incorporation of the plant). This is not 

obvious from the suspended bacteria model in Mburu et al. (2012), where these 

individual components of bacterial volume fractions, biofilm area and density are all 

lumped together as microbial concentration. Further, the biofilm density among the 

planted mesocosms is varying rather more significantly than the area of the biofilm, 

suggesting that the biofilm density (which is in qualitative agreement with the 

bacterial concentrations of the suspended biomass model) was the more significant 

factor influencing the performance of the wetlands. Hence, the dependence of the 

substrate removal on the rhizosphere configuration, i.e. the extra microbial attachment 

surface area and the potential of enhanced biofilm density provided by different 

macrophyte species strongly determines the constructed wetland performance. 
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7.3.2 Influence of macrophyte species and temperature on the biofilm density 

Biofilm density and thickness are the main design parameters used to evaluate the 

substrate consumption rate in biofilms (Vanhooren, 2002). In this study, the biofilm 

density was observed to vary with the presence and species of macrophyte as well as 

the temperature. Planted mesocosms were found to develop a higher density biofilm 

compared with the unplanted mesocosms. The presence of plants enhanced the 

microbial density and activity in experimental microcosm studies as has been reported 

by Gagnon et al. (2007) with results showing a bacterial density ratio of 10.3 between 

planted and unplanted microcosms. The ratio obtained from the simulations is, 

however, much lower, suggesting the simplifying assumptions made in the 

mathematical formulation of the biofilm with regard to microorganisms-plant 

interactions may cause some disagreements between the model output and field 

observations of the planted versus unplanted wetlands. For example, the estimation of 

the biofilm area (Table 7.2 and 7.3) is based on the surface area provided by the 

gravel (equation 7.3), ignoring the effect of plant root development. It is generally 

assumed that planted wetlands outperform unplanted controls, mainly because the 

plant rhizosphere stimulates microbial communities either through high carbon 

availability in the rhizosphere resulting of root exudates or extra attachment sites of 

the root surface correlated to plant species root morphology and development (Munch 

et al., 2005; Gagnon et al., 2007).  

 
Biofilms are known to vary in their density (Lazarova and Manem, 1995). Biofilms 

with densities from 10 to 130 kg dry mass/m3 wet volume have been reported in 

different aquatic systems including aquifers and wastewater treatment systems (Zysset 

et al., 1994; McBride and Tanner, 1999; Vanhooren, 2002; Melo, 2005). The 

simulated biofilm densities lie in this range, considering bacterial concentrations may 

be converted from COD units to DM units by using the conversion factor of 1.222 

gCOD (g biomass)-1, as proposed in Rousseau (2005). There are many factors that 

could be responsible for the variation in biofilm density, such as culture morphology, 

i.e. changes in species, and amount of inactive material, and changes in biofilm 

porosity or lysis (Şeker et al., 1995; Wik, 1999). The simulated biofilm density 

variation with respect to temperature in this study (Table 7.5) is in agreement with the 

results of Honda and Matsumoto (1983), who observed the growth capacity of a 
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microbial film in a model trickling filter to increase as temperature fell. This is due to 

the autolysis coefficient which becomes lower at low temperatures (Honda and 

Matsumoto, 1983). 

 
7.3.3 Sensitivity of the biofilm parameters 

The biofilm density, area and microbial volume fractions were the most sensitive 

biofilm characteristics for the majority of the variables in the bulk liquid zone (Table 

7.1). This is an indication that the total biomass concentration developed, the flux area 

available for diffusion of substrate as well as the bacterial composition of the biofilm 

are important parameters in the dynamic simulation of the wetland mesocosms. 

 
The  sensitivity analysis  revealed  the diffusion coefficients of components into the 

biofilm have  a  low or insignificant  sensitivity  to  the  final  simulation  results at all 

temperatures. It appears that pore water diffusion was not limiting the transport and 

biodegradation of contaminants under the experimental conditions. This is also 

observed in the simulated pore water concentration profiles (not shown) found to be 

similar to the bulk water simulated concentration profiles presented in Figures 7.2, 7.3 

and 7.4. This suggests the biofilm is fully penetrated (i.e. no substrate limitation and 

all reactions take place over the full depth of the biofilm), which may have allowed 

the omission of diffusion limitations in some previous modeling work for subsurface 

flow constructed wetland biofilms (García et al., 2010). The other factors influencing 

substrate transport, i.e. the biofilm thickness and the liquid boundary layer (through 

which transport from the bulk water to the biofilm surface occurs by molecular 

diffusion) had a moderate to significant sensitivity (Table 7.1). The sensitivity of the 

temperature (not shown) ranked high among the parameters with a "strong effect" on 

the bulk liquid concentrations only at the higher temperatures studied (i.e. at 20oC and 

24oC).  

 
There were no steep spatial gradients of the biomass profiles inside the biofilm within 

the simulation time (not shown), an expected result for a thin biofilm, whereas the 

simulation time scale (20 d) may also have been too short for the development of 

significant changes in bacterial species distribution (Vanhooren, 2002; Samsó and 

García, 2013). According to our current knowledge, a period of 3 year of continuous 
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wetland operation is about sufficient for the bacterial communities to stabilize (Samsó 

and García, 2013). The apparent homogeneous distribution of the bacterial species 

involved can be of advantage for the processes, as microorganisms with differing 

redox potential requirements reside in close proximity, making the exchange of 

intermediate products between the species more efficient.  

 
Anaerobic species favored by the oxygen limited conditions within the wetland 

mesocosm dominated the biofilm. The biomass volume fractions show the biofilm 

developed essentially as an anaerobic biofilm with a significant community of 

sulphate reducing and methanogenic bacteria (Table 7.3). Their population was 

enhanced with increase in temperature (Table 7.3), in agreement with the observation 

that in most cases the growth rates of both methanogens and sulphate reducing 

bacteria increase with increasing temperature (Baptista et al., 2003), while the 

methanogenic species were found to dominate the activity within the biofilm across 

all temperatures during the simulation period, with activity defined here as the 

product of all substrate quotients in the Monod growth equation for a given 

population (Shanahan and Semmens, 2004).  

 
7.4 Conclusions 
 
Based on the CWM1 biokinetic model and the 1-D biofilm model of the AQUASIM 

software, the dynamics of biofilm growth in a subsurface constructed wetland 

mesocosm have been simulated. The in silico analysis of constructed wetland biofilms 

indicates that aerobic, anoxic and anaerobic active biomass develops in the shallow 

biofilm. The development of this "active biomass", and thus its effect on the biofilm 

growth was influenced by the availability of substrates, presence or absence of 

macrophytes and temperature. Anaerobic biomass dominated the biofilm with 

methanogenic activity being the main organic matter removal process. For operational 

analysis and constructed wetland technology development, a complex model such as 

the CWM1 model is recommended, with further extensions as required to address 

factors such as biofilm and rhizosphere development dynamics. The CWM1-

Aquasim-Biofilm model is a useful tool to show the influence of the rhizosphere 

configuration on the performance of the constructed wetlands. 
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Chapter 8:  General discussion and outlook 
 
 
8.1  Introduction 

Constructed wetlands (CWs) are a natural alternative to technical methods of 

wastewater treatment (Hijosa-Valsero et al. 2012; Stottmeister et al. 2003). They are 

the engineer-made equivalent of natural wetlands designed to reproduce and intensify 

the wastewater treatment processes that occur in natural wetlands (IWA 2000; Mara 

2004). Through the efforts of research and operation for over fifty years, CWs have 

now been successfully used for environmental pollution control, through the treatment 

of a wide variety of wastewaters including industrial effluents, urban and agricultural 

stormwater runoff, animal wastewaters, leachates, sludges and mine drainage 

(Babatunde et al. 2008; IWA 2000). The main attraction for using constructed 

wetlands in pollution control has not only been due to their functional values, but also 

because of their low investment scale, running and maintenance costs compared to the 

traditional sewage treatment processes (Haberl 1999; Kivaisi 2001; Okurut 2000).   

 
In spite of its relative simplicity of construction, operation and maintenance, the 

successful design and optimization of CWs remains challenging. The various 

treatment processes taking place within the CW have not been entirely understood, 

quantified and integrated into the design models for CWs. This claim is indirectly 

supported by the fact that literature contains many studies aiming at contributing to 

the expert design and further understanding of CW processes (Chapter 1). The 

information does not translate well to simple design rules. Thus, there still remains a 

lack of integrated knowledge or models due to the complexity of the CW system. This 

for instance, is unlike for the mature technologies like activated sludge process or the 

anaerobic treatment of domestic wastewater, where modeling is an established 

method for assessing wastewater treatment for design, systems analysis, operational 

analysis, and control. 

 
The effectiveness of different types of wetland vegetation, environmental conditions, 

microbial dynamics (colonization characteristics of certain groups of 

microorganisms), wastewater composition, filter material and loading rates have been 

identified as important driving factors influencing the performance of the CWs. Their 
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design is a function of the wastewater nature, its pollutant load, the available area to 

build the wetland and the climatic conditions of the site (Hijosa-Valsero et al. 2012). 

However, the continuous development and consolidation in the understanding of these 

factors has challenged the state-of -the art design of CWs, which is based on rules of 

thumb, empirical and steady-state equations (Kadlec 2000; Rousseau et al. 2004; 

Stein et al. 2006). At the same time, the accumulated scientific information and 

engineering experiences about the CWs processes has seen the development of a 

number of processes based models describing these systems (Langergraber and 

Šimůnek 2012). These mechanistic models that describe the transformation and 

elimination processes taking place within CWs have become a promising tool for 

understanding parallel processes and interactions occurring in wetlands (Llorens et al. 

2011a; Ojeda et al. 2008).  

 
It is thus clear that the continuous development and application of CW knowledge is a 

key step to improve the design and optimization (most efficient configuration) of 

constructed wetlands. On the other hand, the achievement of a design model with 

universal parameters for the different CWs systems is unlikely.  The different set of 

conditions for each CW system under study and the complex treatment processes 

represent additional significant challenges to the designer. Yet, CWs are anticipated to 

be used more especially in the tropical regions for wastewater treatment.   

 
8.2  Horizontal Subsurface Flow Constructed Wetland 

The research carried out in this thesis focused on the understanding of the 

performance and treatment processes in horizontal subsurface flow constructed 

wetlands (HSSF-CW) with respect to carbon, nitrogen and sulphur conversions. Over 

the last decade, the CW wastewater technology has evolved into new reactor 

configurations featuring different flow characteristics, and a much broader range of 

treatment applications. It has been observed that the configuration and nature of a CW 

affects its performance (García et al. 2004). In particular, the HSSF-CW constitutes 

an appropriate technology for treating wastewaters that have been subjected to 

primary clarification. The use of HSSF-CWs is especially well suited to the removal 

of suspended solids, organic matter and nitrogen (Caselles-Osorio et al. 2007). HSSF-

CWs have complex processes driven by plants, microorganisms, soil matrixes and 
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substances in wastewater interacting with each other. These constituents influence the 

purification of influent wastewater as well as the overall quality of the effluent (Allen 

et al. 2002; Kadlec and Wallace 2009; Thurston et al. 2001). Thus, the interpretation 

of experimental measurements and data through a dynamic process based model 

approach remains indispensable to obtain insights of the different pollutant removal 

processes involved in wastewater treatment within HSSF-CW systems.  

Currently, CW mechanistic mathematical models are used to determine the 

relationships between the different biogeochemical processes and weigh their relative 

contributions in wastewater treatment  (Langergraber and Šimůnek 2012; Llorens et 

al. 2011b; Mburu et al. 2012; Ojeda et al. 2008). Where the availability of 

experimental data/measurements about the system behaviour is limited e.g. plant root 

oxygen release, inverse modeling with mechanistic models has been found useful 

(Mburu et al. 2012). In 2009, a general model named the Constructed Wetland Model 

No. 1 (CWM1) was published with the aim of providing a widely accepted model 

formulation for biochemical transformation and degradation processes of organic 

matter, nitrogen and sulphur in subsurface flow constructed wetlands (SSF CWs) 

(Langergraber et al. 2009). Indeed, the introduction of the CWM1 is aimed at the 

dynamic modeling of the HSSF-CWs and eventually the optimization of design and 

operation of HSSF-CWs for cost reduction and improvement in effluent quality. 

Further, CWM1 is intended to introduce common terminology for modeling HSSF-

CWs processes. This is important as it has not been always clear how discovered 

knowledge and information is integrated or transferred to the existing pool of CWs 

design knowledge. Thus, similarly as for the activated sludge models which has 

proved useful for facilitating the transfer of knowledge between researchers, for 

instance, by using a compact matrix formulation for the mathematical models, CWM1 

is intended to introduce common terminology for modeling HSSF-CWs processes.  

 
Thus, the main body of the thesis was focused on the study of SSF CWs in two parts: 

 Pilot scale experimental study 

 Mechanistic simulations of reactive transport and organic matter 

transformation and degradation  
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8.2.1  Pilot scale experimental study  

Undertaking a pilot scale study on a tropical HSSF-CW treating domestic wastewater 

was in an attempt to provide performance data that can guide design and operation 

under tropical conditions. The pilot scale studies were carried out at Juja (Kenya) with 

three gravel based HSSF-CW cells. Primary effluent of domestic wastewater diverted 

from the outflow of the primary facultative pond of the Jomo-Kenyatta University of 

Agriculture and Technology sewage treatment works was used as the influent (with a 

continuous flow) to the wetlands. As described in Chapter 3, the three HSSF-CW 

cells (each of 7.5 m x 3 m x 0.5 m) out of which two were planted with the local 

emergent macrophyte Cyperus papyrus, were monitored. Influent-effluent water 

quality data were collected (which included sulphate measurements as a possible 

alternative electron acceptor that contributes to the oxidation of organic matter in 

HSSF-CW). Through statistical analysis, trends of variables and significant 

correlations were looked for among operating and environmental conditions as well as 

the performance of the constructed wetland. A literature survey in Chapter 2 on the 

application of the tropical Cyperus papyrus macrophyte in constructed wetlands was 

used to deduce its potential contribution to wastewater treatment. The plants' 

involvement in the input of oxygen into the root zone, in the uptake of nutrients, the 

generation of biomass and its harvesting, water loss (transpiration), among others, 

were discussed.  Further, a comparative evaluation of the performance and economics 

of the pilot HSSF-CW and an operational waste stabilization pond (WSP) system was 

undertaken (chapter 4). This was to offer technical and economic insights that would 

simplify technology selection among the two non-conventional sanitation 

technologies with potential for wide application in the developing countries. 

8.2.2 Mechanistic simulations of reactive transport and organic matter 

transformation and degradation  

Process based numerical simulations of reactive transport and organic matter 

transformation and degradation in subsurface flow constructed wetlands was done 

within the framework of the Constructed Wetland Model No.1 (CWM1) biokinetic 

model. The data used were obtained from the pilot HSSF-CW and a separate 

investigation with batch-operated constructed wetland mesocosms. Simulation results 
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are presented for the pilot HSSF-CW (Chapter 5) and the wetland mesocosms 

(Chapters 6 and 7).  The recent developments in numerical mechanistic modeling for 

subsurface flow CWs have served as an important, low-cost tool for a better 

description and an improved understanding of the internal functioning of CW 

systems.  Together with this, model results are only useful if the model predictions are 

reliable and transferable. Hence, before the models can be applied as tools to refine 

wetland design criteria and operational modes, there is a need to apply the models to a 

wide range of data sets to test their predictive power, reduce parameter uncertainty by 

calibration, modify process equations or extend the models with relevant processes. 

This can be achieved with lab-scale, pilot scale or full scale experiments. 

8.3 Evaluation of treatment performance of pilot HSSF-CW 

Chapter 3 revealed the successful performance of the wetland cells in terms of 

compliance with local discharge standards as stipulated by NEMA-Kenya (2003) with 

respect to COD, BOD5, TSS and SO4
2--S at an average mass removal efficiency 

between 58.9% and 74.9%. The removal efficiency of the pilot CWs cells was 

assessed based on the data from a sampling campaign period of about 2 years (Table 

7.2 of chapter 7). However, CWs are intended to treat wastewater during decades. 

Therefore, the application of those data obtained during a pilot trial period to the 

design and/or maintenance of full scale CWs can result in an unexpected decrease in 

the long-term system performance (Hijosa-Valsero et al. 2012). Reduced oxygen 

effluent concentrations of less than 2 mg/1 and a well-buffered pH of between 7 - 7.5, 

characterized the vegetated wetland cells (Table 7.2 of chapter 7). A large proportion 

of the COD and BOD5 removal probably occurred by anoxic and anaerobic processes, 

among others denitrification and sulphate reduction. This was supported by the 

observation that nitrates did not accumulate (notwithstanding the modest nitrification 

rates) and the significant sulphate removal in the pilot scale HSSF-CW cells (Chapter 

3). In the control cell, the curve for mass loading rate versus removal rates for COD 

and TSS (Figures 3.4 and 3.5 of chapter 3 respectively) had a brief range of linear 

correlation compared to that of the planted cells, depicting the planted cells as being 

capable of sustaining higher loading and removal rates.  This was linked to the 

presence of the macrophyte Cyperus papyrus and the spread of its roots and rhizomes, 

possibly promoting physical and biological removal processes associated with bulk 
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pollutants. The observed rate of BOD decay of 0.1 m d-1 (Chapter 3) indicates that the 

HSSF-CWs are area requirement competitive when compared to the widely applied 

waste stabilization pond system in the tropics.  

 
Removal of nutrients, nitrogen and phosphorus, from wastewater by the HSSF-CW 

cells was consistently not satisfactory during the monitoring period (Chapter 3). Low 

oxygen concentrations that prevailed in the wetland cells limited possible ammonium 

removal via the nitrification-denitrification pathway. Further, the nitrogen removal via 

plant uptake did not translate to substantial removal performance (Chapter 3). Despite 

the significant difference in the phosphorus removal between the planted and the 

unplanted cells, phosphorus removal via routes other than plant uptake was limited in 

the gravel bed HSSF-CW systems. This is attributable to the low phosphorus retention 

capacity by the granitic gravel used in the HSSF-CW bed. Overall, the results showed 

that achieving good and simultaneous reduction of bulk pollutants and nutrients under 

similar operating conditions was not feasible. Therefore, it is recommended that the 

intended objective of treatment be clearly defined at the wetland design stage in order 

to avoid over expectations of treatment performance of the system (Okurut 2000). 

 
Chapter 3 showed the technical viability of using HSSF-CW within the tropical 

environments with respect to the removal of COD, BOD, and TSS.  Furthermore, the 

side by side economic and performance assessment of the pilot constructed wetland 

and a waste stabilization pond in the treatment of domestic wastewater augmented this 

potential (Chapter 4). The main attraction for using constructed wetlands has not only 

been promoted because of their technical functionality, but also because of the 

favorable economic cost of setting them up. The deduction from this comparison is 

that constructed wetlands can be established competitively with waste stabilization 

ponds in the tropical environments (Chapter 4). 

 
8.4 Processes based simulation of HSSF-CW 

The simulations were conducted in the Constructed Wetland Model No.1 (CWM1) 

framework that is based on the mathematical formulation as introduced by the IWA 

Activated Sludge Models (ASMs). CWM1 describes the biochemical transformation 

and degradation processes for organic matter, nitrogen and sulphur in subsurface flow 
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constructed wetlands, including hydrolysis, aerobic respiration, nitrification and 

denitrification, sulphate reduction and methanogenesis (Langergraber et al. 2009).  

The main objective of CWM1 is to predict effluent concentrations from constructed 

wetlands without predicting gaseous emissions.  

For purposes of simulations, the CWM1 biokinetic model was applied as CWM1-

RETRASO model, as implemented in the RetrasoCodeBright (RCB) by Llorens et al 

(2012) (Chapter 5) and as CWM1-AQUASIM model as implemented in the 

simulation software for identification and simulation for aquatic systems, AQUASIM 

by Mburu et al. (2012) (Chapter 6 and 7).  

8.4.1 Simulation with CWM1-RETRASO model 

This was applied for the reactive transport simulation of the pilot scale HSSF-CW 

(chapter 5). The RCB code provides the knowledge related to reactive transport and 

flow properties (Llorens et al. 2011a). The pilot-scale HSSF-CW reactive transport 

calibrations and validations were performed against the observed concentrations of 

COD, NH4
+-N, NO3

--N and SO4
2--S in the effluent over five different influent 

wastewater flow rates and compositions (Chapter 5). This involved the estimation of 

the initial bacterial biomass concentration required as input to run the CWM1-

RETRASO model. Results of the reactive transport simulations showed the 

distribution of the biodegradation pathways and wastewater components within the 

HSSF-CW (Figures 5.3, 5.4, 5.5 and 5.6 of Chapter 5). Anaerobic processes occurred 

over larger areas of the simulated wetland.  The dissolved oxygen concentration was 

low in the influent and dropped rapidly within the first meter of the simulated HSSF-

CW. The simulation results of the aerobic processes distribution showed their location 

to be close to the oxygen sources. Aerobic respiration in the simulated wetland was 

only observed in a thin layer of water on the surface of the wetland and at the inlet. 

The hydrolysis processes were found to take place mainly near the inlet zone of the 

simulated HSSF-CW. The exclusion of the plant processes in the CWM1-RETRASO 

model should not be a major limitation when only considering domestic wastewater, 

due to their relative low uptake rate of nutrients compared to the conversion and 

elimination rates caused by micro-organisms (Langergraber 2001). 
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8.4.2 Simulation with CWM1-AQUASIM model 

This was executed in AQUASIM's mixed reactor compartment without biofilm as 

CWM1-AQUASIM (Chapter 6) and with biofilm consideration as CWM1-

AQUASIM-Biofilm (Chapter 7). Data from 16 subsurface-flow wetland mesocosms 

operated under controlled greenhouse conditions with three different plant species 

(Typha latifolia, Carex rostrata, Schoenoplectus acutus) and an unplanted control 

were used. The experimental constructed wetlands were operated under controlled 

greenhouse conditions at Montana State University in Bozeman (Montana, USA). 

Details of column design, construction and planting, as well as sampling and 

measurement are fully described in Allen et al. (2002) and Stein et al. (2006). Further, 

by compiling the macrophyte process (growth, root oxygen release, physical 

degradation, decay and oxygen leaching), physical re-aeration, as well as reverse 

sorption processes for COD and ammonium in AQUASIM (Chapter 6), the combined 

effect of availability of electron acceptors, temperature and macrophyte type was 

studied. 

Figures 6.2, 6.3 and 6.4 of Chapter 6 show that the bulk water of the constructed 

wetland mesocosms was well simulated with the CWM1-AQUASIM. A sensitivity 

analysis performed for the CWM1-AQUASIM showed that in general the yield 

coefficients for methanogenic, sulphate reducing, fermenting and heterotrophic 

bacteria; the saturation/inhibition coefficients for oxygen, sulphate, acetate, 

fermentable COD and hydrolysis; the plant growth rate constant, rate constant for 

lysis of heterotrophic bacteria and the COD sorption coefficients are among the most 

sensitive and distinct parameters affecting the predicted concentrations (Table 6.1 of 

chapter 6). The simulation results showed that the measured behavior of the batch 

operated subsurface flow system could only be modeled well when COD and 

ammonium sorption are considered as additional process. Plant processes (root 

oxygen leaching, uptake of ammonium, physical degradation and decay) did not have 

much impact on the treatment compared to the microbiological processes.  

In simulations with the CWM1-AQUASIM-Biofilm model, the biofilm density and 

microbial volume fractions were the most sensitive biofilm characteristics for the 

majority of the variables in the bulk liquid zone, while diffusion coefficients of 

components into the biofilm had a low sensitivity to the final simulation results at all 
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temperatures. Simulation results showed the development of a thin biofilm dominated 

by anaerobic bacteria (fermenting bacteria, acetotrophic sulphate reducing bacteria 

and acetotrophic methanogenic bacteria). This correlated well with the observed and 

evaluated degradation activities and inferred redox conditions within the HSSF-CW 

bed (Chapter 6). The biofilm density and microbial concentration were evaluated to 

be influenced by temperature and the wetland vegetation. The consideration of 

biofilm processes was found to be only important qualitatively in defining and 

providing insights to the microbial dynamics and biofilm characteristics in the 

constructed wetland mesocosms (Chapter 7). 

 In both evaluations, i.e. with and without biofilm consideration, anaerobic microbial 

degradation pathways were found to dominate compared to the anoxic and aerobic 

pathways on the account of limited oxygen supply and renewal in the subsurface flow 

constructed wetlands. Indeed, sulphate reduction and methanogenesis were simulated 

to be the more widespread degradation reaction. Thus, subsurface constructed 

wetlands with minimal oxygen renewal capacities such as the horizontal subsurface 

flow wetlands should be designed as an anaerobic or an aerobic–anaerobic hybrid 

system (Cui et al. 2006), rather than as an aerobic system. 

 
8.5 Simulation platform 

Computer aided simulations are fastening the development of constructed wetland 

models. The biokinetic model CWM1 was implemented in the two software platforms 

AQUASIM and RCB. The AQUASIM software provided the possibility of using the 

inbuilt automatic sensitivity analysis and parameter estimation features, which were 

used to optimize and fit parameters for the CWM1 biokinetic model, plant processes, 

sorption and the biofilm compartment (Chapter 6). Further, AQUASIM features a 

biofilm reactor compartment that describes the growth and population dynamics of 

biofilms in which substrate gradients over the depth are important.  Data treatment in 

the software was relatively straightforward. However, batch simulation (in the mixed 

reactor compartment of AQUASIM) has the advantage of simplifying the hydraulics 

when integrating transport and transformation processes in porous media that are 

otherwise solved with advection-dispersion-reaction equations in 1D or 2D.  On the 

other hand, the RetrasoCodeBright provided a platform to undertake modeling in 2D. 
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Both the calibration for the biochemical and flow model, i.e. considering the 

residence time distribution was possible (Chapter 5). Data treatment with the software 

was intricate. The code does not have neither a graphical user interface (GUI) nor 

parameter estimation tools. Running the 2D simulation was time consuming. The 

RCB code architecture does not consider fixed biomass and therefore does not allow 

to conduct biofilm based-modeling.  

Overall AQUASIM afforded the freedom and flexibility of specifying the CWM1 

biokinetic model in the software, which is essential to eliminate barriers for potential 

model users, while producing realistic simulation results. Despite this, the CWM1 

model does not generally use first order kinetics but rather Monod kinetics, which 

captures more knowledge, but introduces model complexity because parameters for 

constructed wetland processes have not been well estimated or standardised and 

assessment of parameter variability is limited. Thus, the calibration and application of 

this model would require a high-quality data set with a high information content. 

These are generally rare and could be developed in future dedicated studies to couple 

CW performance evaluation with design modeling. 

8.6 Outlook 

Over the years, numerous examples have shown that the constructed wetland 

wastewater treatment technology is suitable for treating both municipal and a broad 

range of industrial wastewaters (Kadlec and Wallace 2009; Vymazal and Kröpfelová 

2009). Originally, merely small wetlands were constructed which could only treat the 

wastewater produced by small populations. In the meantime, larger treatment works 

have also been built that are able to cope with a population equivalent of several 

thousands (Stottmeister et al. 2003). Therefore, their mechanistic simulation will 

continue to augment the much needed insights and information on the working 

mechanisms of CW systems.   

The improved understanding of the treatment processes in the "black box'' constructed 

wetland acquired through the process modeling of CWs will ensure wastewater is 

treated as efficiently as possible. With the good performance for removal of the 

wastewater pollutants, and the unraveling of the internal treatment processes, the 

constructed wetland wastewater treatment technology will be adapted with as much 
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confidence in their operability and pollutant removal levels as with comparable 

conventional wastewater treatment technology. This will see an increased institutional 

and public support and application of this inexpensive green technology of 

wastewater management, especially in the tropical developing countries. 

The testing of the CWM1 biokinetic model framework with diverse data and the 

development of techniques to directly measure or verify parameters of CWM1 and 

other mechanistic processes considered for CWs is desirable. This will enhance the 

calibration and further application of these mechanistic models for evaluation and 

refining of CW design criteria, as it is the case for other technologies, such as the 

activated sludge processes. Improvement in parameter certainty may see the extension 

of the model to include other relevant processes of CW (e.g. clogging) and the 

possible simplification of the model for standard design simulations. The evolution of 

methodologies to measure kinetic and stoichiometric parameters; to characterization 

wastewater (Ortigara et al. 2011) and to determine the microbial composition 

(DeJournett et al. 2007) in constructed wetlands is an important step in this direction. 

Further, significant insight may be gained from the recently developed approaches 

and techniques in related fields such as contaminant hydrology, environmental 

microbiology and biotechnology which can enhance mechanistic investigations and 

open up new possibilities for process characterization and interpretation of 

constructed wetland performance. Achieving a better understanding of the complex 

interactions involved will enable the basic scientific aspects to be optimally combined 

with the technical possibilities available, thus enabling wetland technologies to be 

used on a broader scale.  

Providing environmentally-safe sanitation to millions of people remains a significant 

challenge, especially in the developing countries. The target for goal 7 of the 

Millennium Development Goals (MDGs) calls on countries to halve, by 2015, the 

proportion of people without improved sanitation facilities (from 1990 levels). 

Constructed wetlands which have contributed to providing low cost sanitation in the 

developed temperate countries will prove helpful on a large scale for the developing 

countries as a sustainable alternative to the large distance, waterborne conveyance and 

high-energy input wastewater treatment systems. It is hoped this work on subsurface 
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wetland treatment performance evaluation and mechanistic simulation has augmented 

this outlook.  

8.7  Conclusions 

 Constructed wetland wastewater treatment technology has developed in 

importance, mainly due to the need for low cost, effective wastewater 

treatment. In particular, the CW technology is likely to find wider applications 

in the developing tropical countries. 

 The main current motivations for modelling CW processes remain as (a) the 

acquisition of design parameters and laws, (b) the optimisation and the 

prediction of CW performance and (c) technology development for the long-

term sustainability of sewage treatment. 

 The CWMI was found adept in simulating the putative in-situ biotic 

degradation pathways and providing insight into the complex and 

heterogeneous constructed wetland system. 
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Summary  
 
Sustainable sanitation and water pollution control calls for adoption of affordable and 

efficient wastewater treatment technologies. In the developing countries, 

characterized as they are by inadequate sanitation, the safe management of wastewater 

is not widespread. There is therefore a need for an appropriate technology that can 

reliably achieve acceptable effluent quality for discharge to the environment at 

minimal cost. Constructed wetland (CW) systems have been used as a cost effective 

alternative to conventional methods of wastewater treatment. However, the 

mechanistic understanding of the CW has not matured, while performance data that 

can guide design and operation of CW under tropical climate are scarce. 

 
This study was undertaken to explore the treatment of domestic wastewater with 

subsurface constructed wetlands, in order:  1) to provide performance data that can 

influence design and operation of CW under tropical conditions and, 2) to evaluate the 

processes involved with the transformation and degradation of organic matter and 

nutrients.  

 
In the study a pilot scale horizontal subsurface flow constructed wetland (HSSF-CW) 

was established in Kenya, and an existing dataset with  experimental data from 16 

wetland mescocosms operated under greenhouse conditions were obtained from the 

U.S.A., kindly shared by Montana State University. The data from the tropical pilot 

scale HSSF-CW was used to conduct a performance evaluation (with respect to 

organic matter, nutrients and suspended solids) (Chapter 3), a comparison 

(performance and economics) with a waste stabilization pond (Chapter 4) and a 

reactive transport simulation in the HSSF-CW (Chapter 5). The data from the wetland 

mescocosms were used to conduct a simulation of carbon, nitrogen and sulphur 

conversion in the batch-operated experimental wetland mesocosms with and without 

consideration of biofilm development within the wetland (Chapters 6 and 7).  

 
The pilot HSSF-CW consisted of three cells receiving a continuous feed of primary 

effluent from the outflow of a primary facultative pond. In two of the cells, the 

macrophyte Cyperus papyrus was planted, while the third cell acted as a control. The 

wetland cells were 7.5 m long and 3 m wide with vertical masonry sides, 0.95 m deep, 
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and a concrete floor sloped at one percent. The cells were filled with granite type 

gravel to a depth of 0.6 m, ranging in size from 9-37 mm, with a porosity of 45 %.The 

experimental constructed wetlands were operated under controlled greenhouse 

conditions at Montana State University in Bozeman (Montana, USA). 16 subsurface 

constructed wetland mesocosms were constructed from polyvinyl chloride (PVC) 

pipes (60 cm in height × 20 cm in diameter) and filled to a depth of 50 cm with 

washed pea-gravel (0.3–1.3 cm in diameter). Four columns each were planted with 

Carex utriculata, Schoenoplectus acutus and Typha latifolia, while four were left 

unplanted as controls. A series of 20 days incubations with artificial wastewater was 

conducted over 20 months at temperatures ranging from 4 to 24 ◦C at 4 ◦C steps. A 

synthetic wastewater simulating secondary domestic effluent was used with mean 

influent concentrations of 470 mg/l COD, 44 mg/l N (27 Org- N, 17 NH4
+-N), 8 mg/l 

PO4 
3−-P, and 14 mg/l SO4

2−-S. Columns were gravity drained 3 days prior to each 

incubation and then again at the start of each incubation. Upon each emptying, 

columns were refilled from above with new wastewater. Sampling from all 16 

columns occurred at days 0, 1, 3, 6, 9, 14 and 20 of each incubation and those sub-

samples were analysed afterwards for the constituents. 

 
The results of the study showed successful performance of the tropical HSSF-CW for 

the secondary treatment of domestic wastewater with respect to organic matter (BOD5 

and COD) and TSS removal at an average mass removal efficiency between 58.9 and 

74.9 %. Moderate (36 - 49 %) removal of nutrients (nitrogen and phosphorus) was 

recorded. A two days hydraulic retention time was found to be optimum for organic 

matter removal. The presence of the macrophyte enhanced the ability of the wetland 

to withstand higher organic and suspended solids loading. The land area requirement 

for secondary treatment (based on BOD5 removal) was estimated as 2.0 m2 per 

population equivalent (Chapter 3). A waste stabilization pond would need 3 times the 

area that would be required for the HSSF-CW to treat the same amount of wastewater 

under tropical conditions (chapter 4). The evaluation of the capital cost of HSSF-CW 

system showed that it is largely influenced by the size of the population served, local 

cost of land and the construction materials involved. 
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Using a (mechanistic) numerical model that incorporates the growth of six microbial 

groups (heterotrophic, autotrophic nitrifying, fermenting, acetotrophic methanogenic, 

acetotrophic sulphate reducing and the sulphide oxidising bacteria) and the 

subsequent consumption of electron donors and acceptors, the influence of key 

operating and environmental conditions on the biochemical transformation and 

degradation processes for organic matter, nitrogen and sulphur in subsurface flow 

constructed wetlands was evaluated (Chapters 5, 6 and 7). Sorption processes were 

found to be important in simulating COD and ammonia removal in subsurface flow 

constructed wetlands. The rates of oxygen transfer by physical re-aeration and root 

oxygen transfer were found insufficient, indicating that organic matter in the 

wastewater was removed mainly by anaerobic processes. Indeed anaerobic reactions 

occurred over large areas of the simulated HSSF-CW and contributed (on average) to 

the majority (68%) of the COD removal, compared to aerobic (38%) and anoxic (1%) 

reactions in the tropical HSSF-CW (Chapter 5). Further a thin (predominantly 

anaerobic) biofilm in which no concentration gradients developed was simulated. The 

simulations suggest that incorporation of plant roots into the substrate of constructed 

wetlands enhances microbial populations related to the transformation and 

degradation of pollutants in constructed wetlands. Measured and simulated data 

demonstrate that the resultant effect on the wetland performance may not necessarily 

be related to temperature. 

 
This research contributed to performance data and getting a better mechanistic 

understanding about the factors influencing the performance of horizontal subsurface 

flow constructed wetland treating real domestic wastewater under tropical conditions. 

The findings obtained in this research may prove useful towards the wider application 

of the constructed wetland wastewater treatment technology and the optimization of 

full-scale HSSF-CW. 
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Samenvatting 
 

Duurzame sanitatie en het beheersen van waterverontreiniging pleiten voor het 

gebruik van betaalbare en efficiënte technologieën voor afvalwaterzuivering. In 

ontwikkelingslanden, getypeerd door onvoldoende sanitatie, is het veilig beheer van 

afvalwater niet wijdverbreid. Er is daarom behoefte aan een passende technologie die 

op een betrouwbare manier een acceptabele lozingskwaliteit van het effluent kan 

bereiken tegen minimale kosten. Helofytenfilter systemen (CW) zijn reeds in gebruik 

als een kosteneffectief alternatief voor conventionele afvalwaterzuiveringsmethoden. 

Ons begrip van de interne processen in CW blijft echter beperkt, en gegevens die 

kunnen leiden tot een beter ontwerp en werking van CW in een tropische klimaat 

blijven schaars. 

 
Dit onderzoek werd uitgevoerd om de zuivering van huishoudelijk afvalwater met 

ondergronds doorstroomde helofytenfilters beter te doorgronden, met de volgende 

doelstellingen: 1) prestatie gegevens verzamelen die van invloed kunnen zijn op het 

ontwerp en de werking van CW onder tropische omstandigheden en, 2) de processen 

evalueren die betrokken zijn bij de transformatie- en afbraakprocessen van organische 

stof en nutriënten. 

 
Voor dit onderzoeksproject werd een ondergronds horizontaal doorstroomde 

helofytenfilter (HSSF-CW) als proefproject gebouwd in Kenia, en werd ook gebruik 

gemaakt van een bestaande set experimentele gegevens van 16 mesocosmos-

opstellingen uit een gesloten kasexperiment in de VS die ter beschikking gesteld 

werden door de Montana State University. De gegevens van het proefproject  werden 

gebruikt om zuiveringsrendementen na te gaan (met betrekking tot organische stof, 

nutriënten en zwevende stoffen) (hoofdstuk 3), om een vergelijking te maken 

(zuiveringsrendement en kosten) met een stabilisatievijver (hoofdstuk 4) en om een 

reactief transport simulatie uit te voeren (Hoofdstuk 5). De gegevens van de 

mesocosmos-opstellingen werden gebruikt om een simulatie van de koolstof, stikstof 

en zwavel omzettingen uit te voeren, met en zonder inachtneming van biofilm 

ontwikkeling binnen de mesocosmossen (hoofdstukken 6 en 7). 
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De helofytenfilter bestond uit drie cellen die op continue wijze gevoed werden met 

primair gezuiverd effluent afkomstig van de uitlaat van een primaire facultatieve 

stabilisatievijver. Twee van de cellen werden beplant met de macrofyt Cyperus 

papyrus, terwijl de derde cel als onbeplante controle fungeerde. Elke cel was 7,5 m 

lang en 3 m breed met gemetselde opstaande wanden, 0,95 m diep en met een 

cementen vloer met een helling van 1 procent. De cellen werden tot een diepte van 0,6 

m gevuld met een laag granitisch grind met een deeltjesdiameter tussen 9-37 mm en 

een porositeit van  45%. De experimenten met de mesocosmos-opstellingen vonden 

plaats in een kas met klimaatcontrole, bij Montana State University in Bozeman 

(Montana, VS). Zestien mesocosmossen werden gebouwd van PVC buizen (60 cm 

hoog x 20 cm diameter) en gevuld met een laag gewassen parelgrind van 50 cm (0,3 – 

1,3 cm diameter). Telkens vier kolommen werden beplant met respectievelijk Carex 

utriculata, Schoenoplectus acutus en Typha latifolia, terwijl de resterende 4 

kolommen als onbeplante controle fungeerden. Een 20-maanden durend experiment 

werd opgezet waarbij de temperatuur in stappen van 4°C aangepast werd tussen 4 °C 

en 24 °C. De kolommen werden om de 23 dagen gevuld met artificieel afvalwater met 

gemiddelde influentconcentraties van 470 mg/l COD, 44 mg/l N (27 Org- N, 17 

NH4
+-N), 8 mg/l PO4 

3−-P, en 14 mg/l SO4
2--S; tussen de verschillende cycli werden 

de kolommen gedurende 3 dagen gedraineerd. Watermonsters werden genomen op 

dag 0, 1, 3, 6, 9, 14 en 20 van iedere cyclus en geanalyseerd op COD, NH4
+ en SO4

2-. 

 
De resultaten van dit onderzoek betreffende het gebruik van tropische HSSF-CW voor 

de secundaire zuivering van huishoudelijk afvalwater hebben een goede prestatie 

aangetoond voor wat betreft organisch materiaal (BOD5 en COD) en zwevende 

stoffen met een gemiddelde massa verwijdering tussen 58,9 en 74,9%. Voor 

nutriënten (stikstof en fosfor) werd daarentegen slechts een matige (36-49%) 

verwijdering opgetekend. Een hydraulische verblijftijd van 2 dagen bleek optimaal 

voor de verwijdering van organisch materiaal. De aanwezigheid van planten 

verbeterde het vermogen van de helofytenfilter om met hogere belastingen van 

organische en zwevende stoffen om te gaan.  

 
De vereiste oppervlakte voor secundaire zuivering (gebaseerd op BOD5 verwijdering) 

werd ingeschat op 2,0 m2 per inwoner equivalent (hoofdstuk 3). Een stabilisatievijver 
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zou een 3x grotere oppervlakte nodig hebben dan een HSSF-CW om dezelfde 

hoeveelheid afvalwater te zuiveren onder tropische condities (hoofdstuk 4). Een 

evaluatie van de investeringskosten voor een HSSF-CW systeem toonde aan deze 

kosten sterk beïnvloed worden door het aantal aangesloten personen, de plaatselijke 

grondprijzen en de gebruikte bouwmaterialen. 

  
Door middel van een (mechanistisch) numeriek model, met daarin opgenomen de 

groei van zes groepen bacteriën (heterotrofe, autotrofe nitrificerende, fermenterende, 

acetotrofe methanogene, zwavel reducerende en sulfide oxiderende bacteriën) en het 

corresponderende gebruik van verschillende elektronendonoren en –acceptoren, werd 

de invloed van een aantal belangrijke operationele en omgevingsparameters op de 

biochemische transformatieprocessen van organisch materiaal, stikstof en zwavel in 

ondergronds doorstroomde helofytenfilters geëvalueerd (hoofdstukken 5, 6 en 7). Een 

belangrijke vaststelling was dat sorptieprocessen een belangrijke rol speelden bij het 

correct simuleren van COD en ammonium processen. Verder bleken fysische en 

biologische (via de plantenwortels) zuurstoftransfersnelheden ontoereikend, wat erop 

wijst dat organisch materiaal in het afvalwater voornamelijk via anaerobe processen 

verwijderd wordt. Uit de simulaties bleek inderdaad dat in tropische HSSF-CW de 

anaerobe processen in grote delen van de helofytenfilter voorkwamen en gemiddeld 

gezien bijdroegen tot het grootste deel (68%) van de COD verwijdering, in 

vergelijking met aerobe (38%) en anoxische (1%) processen (hoofdstuk 5). In een 

volgende simulatie werd een dunne (hoofdzakelijk anaerobe) biofilm gebruikt zonder 

concentratiegradiënten. De resultaten hiervan suggereren dat de plantenwortels in het 

substraat van helofytenfilters de microbiële populaties stimuleren die 

verantwoordelijk zijn voor de omzetting en afbraak van polluenten. De gemeten 

zowel als gesimuleerde waarden toonden ook aan dat zuiveringsrendementen niet 

noodzakelijk gerelateerd zijn aan de temperatuur. 

 
Ter conclusie kan gesteld worden dat dit onderzoek een bijdrage geleverd heeft aan de 

databank van zuiveringsrendementen en vooral ook aan de kennis over de 

verschillende processen en factoren die hierop een invloed hebben, vooral dan in 

ondergronds horizontaal doorstroomde helofytenfilters voor de zuivering van 

huishoudelijk afvalwater onder tropische condities. De bekomen resultaten kunnen 
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nuttig blijken om de bredere toepassing van helofytenfilters te stimuleren en om hun 

werking te optimaliseren. 
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Sustainable sanitation and water pollution control calls for adoption of affordable 
and efficient wastewater treatment technologies. In the developing countries, the 
safe management of wastewater is not widespread. There is therefore a need for 
an appropriate technology that can reliably achieve acceptable effluent quality for 
discharge to the environment at minimal cost. Constructed wetland (CW) systems 
have been used as a cost effective alternative to conventional methods of wastewater 
treatment. However, the mechanistic understanding of the CW has not matured, 
while performance data that can guide design and operation of CW under tropical 
climate are scarce. 

This study explores the treatment of domestic wastewater with subsurface 
constructed wetlands, in order to provide performance data that can influence design 
and operation of CW under tropical conditions and to evaluate the processes involved 
with the transformation and degradation of organic matter and nutrients. 

The thesis contributes to performance data and getting a better mechanistic 
understanding about the factors influencing the performance of horizontal subsurface 
flow constructed wetland (HSSF-CW) treating real domestic wastewater under 
tropical conditions. The findings obtained in this research may prove useful towards 
the wider application of the constructed wetland wastewater treatment technology 
and the optimization of full-scale HSSF-CW.
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