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Abstract 
 
Information on land-cover is important for verification of land use, land-use 
change and forestry (LULUCF). LULUCF is significant in assessing 
anthropogenic Green House Gas (GHG) emissions. This study aimed at 
developing a simple and computationally efficient yet accurate methodology for 
national land-cover mapping. The longstanding Landsat data freely available with 
a renewed and sustainable future archive after the launch of Landsat 8 was used. 
Data of two epochs namely 2000 and 2010 were selected. A chain classification 
approach using maximum likelihood classification (MLC) coupled with decision 
tree was used.  Chain classification approach was significant in classifying 
images of different seasons given that in national land-cover projects it is rare to 
obtain images of the same date. Six classes recommended by IPCC were 
adopted.  The developed approach attained an accuracy of 86% with a kappa 
coefficient of 0.8.  The study concluded the freely available Landsat data, 
computational efficiency of MLC and decision tree can be tapped for sustainable 
land-cover mapping for GHG. This method is replicable and therefore can be 
used to produce complete and comparable national land-cover products. 
.  
 
Keywords: Green House Gas (GHG), chain classification, maximum likelihood 
classification (MLC), decisition tree 
 
 
 
 



1 INTRODUCTION 

Land-use/land-cover (LULC) mapping is very significant source of anthropogenic 
Green House Gas (GHG) emissions. Land use refers to man’s activities on earth, 
which are directly related to land, whereas land cover refers to objects on land 
surface natural or manmade (Bhatta, 2010) . LULC change, mainly due to 
deforestation, has been found to contribute to about 20% of the GHG emissions 
from anthropogenic sources (Metz, 2007). Land use, land-use change and 
forestry (LULUCF) sector in general has an aggregate share of over 30% of the 
gross global emissions. This makes LULUCF a critical component in accounting 
for GHG emissions. To account for emissions, baseline spatial information of 
changes in LULC is of paramount importance. Moreover, international 
requirements for reporting on the environment status dictate the need to monitor 
land cover and land cover change through time (Intergovernmental Panel On 
Climate Change (IPCC), 2003; Metz, 2007).  According to (Intergovernmental 
Panel On Climate Change (IPCC), 2003) remote sensing methods are suitable 
for independent verification of national LULUCF. However, most developing 
countries are faced with limited technological, financial and personnel resources. 
Consequently, this has so far challenged development of land-cover maps often 
resulting into incomplete and/or incomparable products. This study seeks to 
demonstrate the use of simplistic, replicable and sustainable remote sensing 
land-cover mapping approach.  
 
Sustainable land-cover mapping requires that remote sensing processes that are 
used to generate maps can be implemented using limited resources.  In order to 
be able to report LULUCF through time it is mandatory to monitor land-cover. 
Remotely sensed data are an integral component of large area monitoring. 
Therefore, longevity and continuity of remote sensing programs are 
indispensable to the success and feasibility of large area monitoring programs 
(Wulder et al., 2008). (Intergovernmental Panel On Climate Change (IPCC)) 
requires that: the smallest spatial unit for assessing land-use changes to be  0.05 
ha which is approximately 500 m2, images of appropriate temporal resolution and 
be consistently available over time. Landsat is the longstanding sensor whose 
data are available for free and the only cost involved is technical capacity. The 
Landsat Data Continuity Mission objective to collect, archive and distribute 
multispectral imagery for global repetitive coverage (Irons & Dwyer, 2010) saw 
the launch of Landsat 8 which has extended opportunities for LULUCF. 
Furthermore, Landsat satellite data is the most widely used data type for land 
cover mapping because of its 35-year data record and its global coverage 
(Sexton et al., 2013; Wulder, et al., 2008). Therefore, this study found it 
appropriate, economical and sustainable to use Landsat images for land-cover 
mapping.  
 



A supervised approach using maximum likelihood classification (MLC) method 
coupled with decision tree was used for mapping. MLC is a statistical method that 
uses Bayesian formula to allocate a pixel to a class with the highest probability 
see (Tso & Mather, 2009). The performance of MLC is limited by frequency 
distribution assumption and thus decision tree was used to enhance the 
classification. Expert knowledge and ancillary information was used in selecting 
training samples for each representative class. Class separability analysis 
informed choice of final classes for classification. Therefore, the objective of this 
paper is to demonstrate a remote sensing procedure that can be utilized for land-
cover mapping for GHG inventory. 
 

2 MATERIALS  

2.1 Landsat Data  

Landsat freely available data of two epochs (2000 and 2010), see (USGS, 2013), 
was used for land-cover classification. The data scene numbers are Path 169 
Row 067 to 070. General land-cover of the area include: shrub-land, cropland, 
forest, grassland, other-land, wetland and settlements. A total of four scenes of 
Landsat images were used. In 2000 epoch; scenes of 10th September 2001 and 
1st October 2000 corresponding to Path 169 Row 067 to 68 and Path 169 Row 
069 to 070 respectively were used. As for 2010 epoch, all the four scenes (Path 
169 Row 067 to 070) corresponding to one date, 4th June 2009 were available. 
The images of the two epochs were selected within the dry season of the area, 
normally between May to October months of a year.  
 



 
 

3 METHODOLOGY 

3.1 Data pre-processing 

Images with high spectral quality were given priority during selection. This was 
done in consideration of the dry season and minimum cloud cover. The images 
were downloaded from USGS site unzipped, Landsat bands 1, 2, 3, 4 and 7 
stacked and re-projected to WGS 84 datum on Universal Transverse Mercator 

Figure 1: Landsat Images used for land-cover mapping 



(UTM) zone 36 south projection automatically using a designed python program.  
Band 6 (thermal band) and 8 (panchromatic band) were exempted. Clouds 
present on 2000 epoch images were removed by masking. Mosaicking was done 
only for scenes acquired in one date so as to maintain spectral coherency 
between scenes. Images corresponding to 2010 epoch were all acquired in one 
date and thus one mosaic was produced. However, in 2000 epoch two mosaics 
were produced corresponding to the dates of acquisition. The images of the two 
epochs were co-registered pixel to pixel so as to facilitate pixel to pixel change 
comparison. 

3.2 Training site selection 

Image interpretation was done to identify classes of interest. Six major classes 
namely: Forestland, grassland, cropland, wetland, other-land and settlement as 
defined by (Intergovernmental Panel On Climate Change (IPCC), 2003) were 
used. Training sites of the chosen classes were selected using expert knowledge 
with aid of Google Earth GeoEye images and ancillary data. The training sites 
were distributed throughout the study area taking sub-classes of the main 
categories. The sub-classes include: dense, moderate and sparse forest, open 
and closed grassland, open and closed shrub-land, vegetated wetland, annual 
and perennial cropland and water body. Training sites of the different categories 
of forest were selected with the guide of Normalized Difference Vegetation Index 
(NDVI). Forested areas with NDVI value greater than 70%, 50% to 70% and 
below 50% were considered dense, moderate and sparse forest respectively. 
The sub-classes were later merged to IPCC recommended classes. Transformed 
divergence was used to compute separability between classes as recommended 
by (Swain & King, 1973) for feature selection in multispectral remote sensing. 
Classes with separability values less than 1.5 were omitted from the classification 
(Mthembu & Marwala, 2008). Only one pair of classes fell below the established 
threshold; cropland and settlements. Therefore, we opted to omit settlements 
from MLC algorithm to avoid pixel class confusion. A strategy of chain 
classification was adopted in selection of training sites within scene overlap 
areas. There were spectral differences at overlap areas in 2000 epoch due to 
different imagery dates. This is anticipated because when classifying large areas 
it is sometimes difficult to obtain images of the same date especially if they are in 
archive. However, (Knorn et al., 2009)  recommend representing classes well in 
the overlap area using chain classification. Following this, we ensured similar 
class interpretation on overlapping areas so as to avoid mismatch on scene 
boundaries. This approach was better than averaging pixels in overlap areas 
which resulted in class misinterpretation.  



3.3 Image classification 

Maximum likelihood classifier is prone to produce noisy classification 
(Kenduiywo, 2012) especially if class selection is not properly done. In contrast, 
advanced methods like Support Vector Machines (SVM), Markov Random Fields 
and Conditional Random Fields incorporate spatial context during classification 
hence minimize noise, see (Kenduiywo et al., 2012). However, their SVM 
algorithm in Envi 4.7 took more than a day to classify one scene of Landsat. MLC 
took less than 10 minutes to produce results of one Landsat scene using a core 
i7 computer. Thus, the method was deemed cost effective and sustainable for 
national and regional land-cover mapping for GHG projects where multiple 
scenes are used. We used maximum likelihood classifier in Envi 4.7 software to 
classify the selected classes except settlements. Settlements were digitized from 
GeoEye images and rasterized to 30 m pixel resolution equivalent to the 
classified images. The decision tree was used to integrate the settlements into 
the outcome of MLC to produce a final thematic map. 
 
A Decision tree performs multistage classifications by using a series of binary 
decisions to place pixels into proper classes (Matinfar & Roodposhti, 2012). It  
partitions a data set into homogeneous subsets using nodes where trees branch 
or split the data set (Punia et al., 2011). The decision tree hierarchical structure 
for labelling objects provides flexibility in understanding relationships between 
objects/classes (Tso & Mather, 2009). We exploited this attribute and used 
decision trees for post-classification.  Particularly we used it to integrate 
settlements, combine classes, code and add colours to the map produced by 
MLC. As illustrated in Error! Reference source not found. classes falling in 
settlements and that were initially classified as cropland (annual or perennial) or 
other-land were reclassified as settlements using the decision tree. The final 
thematic map from decision tree was passed through a majority analysis using a 
3 by 3 majority filter in order to eliminate any noisy pixels. A 3 by 3 majority filter 
was sufficient given that the smallest spatial unit for assessing land-use changes 
as per (Intergovernmental Panel On Climate Change (IPCC), 2003) is 0.05 ha. 
 

 



 
 
 

Figure 2: Sample of decision tree in Envi 4.7 used to integrate settlements, 
combine classes, coding and adding colours to the thematic maps 



Figure 3: Properties used to code and assign colours to the classified map 

 
 

3.4 Accuracy assessment  

In any land-cover mapping procedures it is essential to evaluate the performance 
of the designed classification method. This gives a chance to experts to have a 
degree of confidence to the results. This study adopted the commonly used 
accuracy assessment method in remote sensing; confusion matrix/error matrix. It 
shows the proportions of correctly classified (overall accuracy) and misclassified 
pixels in a table matrix. In this way, several accuracy measures can be derived 
from it (ITC, 2010). Some of the measures; overall accuracy, false positives, false 
negatives and kappa statistics, are used as quality measures. False positives and 
false negatives are synonymous to type I and type II errors which indicate the 
proportions of pixels omitted and incorrectly classified respectively. They are a 
consequence of producer and user accuracies. Kappa statistics is useful in 
evaluating different remote sensing methods because it accounts for the degree 
of accuracy that can be attained when labels are assigned at random. 
 
Stratified random sampling was used to generate samples of representative 
classes as recommended for land-cover data (ITC, 2010). The sampled points 
were compared with field and ancillary data to generate ground truth points. The 



ground truth samples were used to generate an error matrix for accuracy 
assessment.   

 

4 RESULTS 

Results of the study include land-cover maps for two epochs and accuracy 
assessment results. Error! Reference source not found. illustrate the final land-
cover maps. Sub-classes were merged to produce the six IPCC classes. It is 
evident that grassland (shrub-land and forestland) converted to forestland.  

 show accuracy assessment results of the six classes. The overall accuracy 
achieved is 86.0% ((172 pixels out of a total of 200 were correctly classified) with 
a kappa coefficient value of 0.8.   Wetland class has the lowest user accuracy of 
65.0% (corollary of commission error of 35%). Consequently, forestland has the 
lowest producer accuracy of 78.0% (corollary of omission error of 22%).   

 Forestland Grassland Cropland Wetland Settlement 
Other-
land Total 

User 
Accuracy  

Forestland 39 5 3 1 0 0 48 81.3% 

Grassland 3 57 5 1 0 0 66 86.4% 
Cropland 1 0 42 0 1 0 44 95.5% 
Wetland 7 0 0 13 0 0 20 65.0% 

Settlement 0 0 0 0 12 0 12 100.0% 
Other-land 0 0 1 0 0 9 10 90.0% 
Total 50 62 51 15 13 9 200  
Producer 
Accuracy  78.0% 91.9% 82.4% 86.7% 92.3% 100.0% 86.0%  



Figure 4: Final classified images 

 
 
 



Table 1: Accuracy assessment by error matrix 

 

5 DISCUSSION AND CONCLUSION 

This study sought to demonstrate that freely available Landsat data can be used 
to support land-cover mapping initiatives so as to support GHG inventory in 
developing countries. We produced a mosaicked land-cover map of the study 
area with considerably acceptable overall accuracy of 86%.  No specific 
established accuracy thresholds for land-cover mapping exist. Though, 
(Anderson, 1976; Thomlinson et al., 1999) agree on a target of an overall 
accuracy of 85% with (Thomlinson, et al., 1999) setting a threshold of not less 
than 75% accuracy per class. Moreover, acceptability of accuracy values lies 
solely on user requirement. In this study, only one class, wetland, had a user 
accuracy value below the 75% threshold. In the study area, most trees do exist in 
wetland areas i.e. along the river basin and within wet areas. Therefore, this 
explains why there was significant misclassification of wetland and forestland. 
  
It is evident from the results that MLC coupled with decision tree classification 
produce acceptable land-cover maps. Computational efficiency and reliability are 
some of the advantages of the method. The approach is also replicable and thus 
can be used to build capacity of national GHG land-cover mapping agencies. 
Such replicable mapping approaches are important in obtaining complete and/or 
comparable land-cover both national wide and regionally. Developed land-cover 
maps will provide baseline information for determination of carbon credits to 
developing countries. Our future research will investigate the challenge of 
mosaicking national land-cover map across different UTM zones. 

 Forestland Grassland Cropland Wetland Settlement 
Other-
land Total 

User 
Accuracy  

Forestland 39 5 3 1 0 0 48 81.3% 

Grassland 3 57 5 1 0 0 66 86.4% 
Cropland 1 0 42 0 1 0 44 95.5% 
Wetland 7 0 0 13 0 0 20 65.0% 

Settlement 0 0 0 0 12 0 12 100.0% 
Other-land 0 0 1 0 0 9 10 90.0% 
Total 50 62 51 15 13 9 200  
Producer 
Accuracy  78.0% 91.9% 82.4% 86.7% 92.3% 100.0% 86.0%  
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