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Abstract A turbofan engine is a critical component of the aircraft, and monitoring its performance is important to avoid catastrophic failures 

and expensive downtime. Technologies in condition monitoring have made this possible by using sensors to collect data regarding fault 

propagation in systems. Machine Learning Algorithms (MLA) are useful tools for data analytics modeling. They use features from datasets to 

detect patterns and build predictive models. The predictive models are then used with new data, to determine the future reliability of a system by 

assessing the extent of degradation from its expected normal operating conditions. This in turn facilitating determination of the system's 

Remaining Useful Life (RUL). Several prognostics approaches have been proposed to predict RUL for complex systems. There is a need to 

further increase their accuracy and robustness, with the aim of increasing reliability. This can be achieved by use of ensemble techniques. 

Ensemble of predicting models developed using different MLAs or models developed using similar datasets are some of the ensemble techniques 

used in RUL modeling. Their results have demonstrated to achieve better performance compared to single modeling. This work aims at further 

increasing the prediction accuracy and robustness by combining these two ensemble techniques. A case study based on the National Aeronautics 

and Space Administration (NASA) turbofan engine degradation simulation dataset FD001 is presented. Evaluation results demonstrate that the 

developed ensemble model had better performance having a score value of 115. This is in comparison to the best approach in literature using 

similar dataset, where modeling was done using a single MLA and a score value of 231 was achieved. This illustrates the superiority of the 

developed prognostics approach having a diverse strategy in developing the RUL predicting model. 

Keywords Ensemble, Health Index, Machine Learning, Prognostics, Remaining Useful Lifetime. 
 

 

1. Introduction 

Maintenance involves all activities undertaken to retain or 

restore a system to a given functional condition [1]. 

Condition-based maintenance (CBM) is a strategic 

maintenance approach that monitors the performance of a 

system using sensors for data acquisition. Analysis of this 

data influences maintenance actions to be undertaken 

with the aim of maximizing system life. CBM has proved 

to be a more efficient and reliable approach compared to 

the traditional corrective and preventive approaches, 

taking the center stage in maintenance [2].  

CBM can be categorized into prognostics and 

diagnostics. Diagnostics involves detection, isolation and 

identification of faults in systems. Prognostics predicts 

the Remaining Useful Life (RUL) given the current health 
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state of a system. Predicted remaining useful life of a 

system is an important parameter in maintenance 

planning [3]. 

Prognostic methods can be categorized into; physics-

based, data-driven and hybrid methods [4]. Physics-based 

prognostics combines a physical damage model with 

measured data to predict future behavior of degradation 

or damage, and to predict the RUL. The modeling 

parameters are correlated to the material properties and 

stress levels, which are generally identifed by using 

specific experiments, finite element analysis or other 

suitable techniques. The accuracy of this approach 

depends on prior knowledge of the physical behavior of a 

system. For complex systems, this is not always available, 

or it is too expensive to acquire limiting its application. 

Data-driven prognostics utilizes models developed 

exclusively from data. Training data is used to design and 

train a predictive model while testing data is used to 

validate the model [5]. Hybrid prognostics combines 

physics-based and data-driven prognostics to maximize 

on the advantages of both approaches while minimizing 

corresponding disadvantages. The use of physics-based 

and hybrid approaches is limiting in practice because of 

unavailability of underlying physical knowledge in many 

practical systems [6]. As a result, data-driven approaches 

are preferred for prognostics as they don’t require expert 

knowledge of the system. 

Data-driven prognostics is classified into two 

approaches based on the training target. The first 

approach uses the RUL as the training target hence 

resulting in direct RUL predictions. The second approach 

uses Health Index (HI) as the training target which upon 

prediction, the HI is mapped on the RUL. 

Turbofan engine is a critical system of the aircraft. It is 

composed of various sub-systems such as the fan, the 

compressor, combustor among others, linked together. If 

no maintenance intervention is carried out, a turbofan 

engine gradually degrades until end of life. Reliable 

degradation assessment and RUL estimation make sense 

on both aviation safety and rational maintenance 

decisions being a critical part of the aircraft system [7]. 

The complexity of this system influences selection of 

data-driven approach for prognostics. 

Ensemble is a machine learning paradigm where 

multiple learners are trained to solve the same problem 

and their outputs combined. It has demonstrated to 

improve prediction accuracy by combining multiple 

learning algorithms’ outputs [8, 9]. Ensemble of the 

outputs from various models results in output with tighter 

uncertainty bounds than the average output of any 

individual model [10, 11]. It is important for the models 

used in ensembling to be diverse so that they can 

complement each other. In contrast to ordinary machine 

learning approaches that learn one hypothesis from 

training data, ensemble methods construct a set of 

hypotheses and combine them [12]. This is an appealing 

strategy as it boosts weak learners to strong learners that 

can make more accurate predictions.  

Ensemble models can be developed either sequentially 

or using a parallel approach. Sequential ensembles have 

the base learners generated sequentially with the aim of 

exploiting their dependency. Parallel ensembles aim at 

exploiting the independence between the base learners. 

Mislabeling of the weights assigned to base learners in 

sequential ensembling could result in a vast error margin. 

As a result, parallel approach is preferred since the error 

can be reduced by averaging.  

Ensemble techniques can also be categorized based on 

the level of implementation of the fusion methodology; 

feature-level fusion and decision-level fusion [13, 14]. 

Feature-level fusion integrates feature information that 

results from independent analysis methods. Prior 

knowledge about the degradation mechanism and 

physical laws is usually implemented to create desired 

features. Decision-level fusion aggregates the outputs 

from various models developed using MLAs either by 

simple averaging or weighted averaging. Simple 

averaging assigns equal weights to all the outputs while 

weighted averaging assigns weights to outputs depending 

on their relevance. Weighted averaging is considered 

more superior as the final average reflects the importance 

of each output hence more descriptive compared to simple 

averaging.  

The rest of this paper is organized as follows. Section 2 

introduces recent and related work on the turbofan engine 

degradation dataset. Section 3 entails the methodology for 

generating multiple base learners and the fusion strategies 

used. Evaluation metrics used are also presented. In 

Section 4, the results based on the NASA turbofan engine 

degradation simulation dataset FD001 [15] are discussed. 

Section 5 is the conclusion and areas for future work. 

2. Related Work 

The turbofan engine degradation simulation has been 

extensively used to evaluate several data driven 

prognostics approaches. This section reviews some of the 

recent studies applied on this dataset. 

   Neural networks have widely found application in 

modeling of complex systems. This is because they 

independently establish the relationship between the input 

and output datasets. Zheng et al. [16] proposed used of 

Long Short-Term Memory Network. The developed 

approach was able to reveal hidden patterns in the 
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turbofan engine dataset and achieved higher accuracy in 

comparison to traditional Recurrent Neural Networks 

(RNN). Andre Listou et al. [17] proposed the semi-

supervised deep architecture approach to predict RUL of 

turbofan engines. The proposed approach was compared 

to supervised ensemble of convolutional and feed forward 

neural networks. It had better accuracy associated with 

decrease in score value from 274 to 231. Lin et al. [18] 

ensembled random forest and Extreme Learning Machine 

(ELM) algorithms. The ensemble technique contributed 

to error margin reduction from a Root Mean Square Error 

(RMSE) of 8.64 when only ELM was used, to a RMSE of 

6.89. 

Wang et al. [19] proposed the use of a linear regression 

model for calculating the HI from multi-dimensional 

sensor readings, and a similarity-based prognostics 

approach was then used to estimate the RUL. Riad et al. 

[20] improved on this by applying linear regression 

followed by a smoothing process with third-order 

polynomial curve fitting in calculating the HI. The 

calculated HI was used as the input to a multi-layer 

perceptron neural network to predict the RUL. The 

smoothing process improved the prediction accuracy. 

Yang et al. [6]  further improved on this by combining 

outputs from various Neural Network models to 

demonstrate effectiveness of ensembling. Direct RUL 

prediction had a RMSE of 4.12 compared to 2.74 where 

HI-based prognostics was applied. This demonstrates that 

using HI as the target when training increases the 

accuracy of the predictions compared to direct RUL 

prediction. 

Khelif et al. [21] modeled using SVM and obtained a 

competitive score value of 448 compared to neural 

networks that had a score value of 1046. This is attributed 

to the high classification accuracy when using a kernel 

function in modeling. 

Li et al. [22] also demonstrated the effectiveness of 

ensemble technique in modeling. The MLAs ensembled 

included; random forests, classification and regression 

tree, RNN, autoregressive model, adaptive network-based 

fuzzy inference systems, relevance vector machine and 

elastic net. Particle swarm optimization and sequential 

quadratic optimization approaches were used to 

determine the optimal weights for each base learner. 

Model validation was done using dataset FD004. A score 

value of 26.382 was achieved representing high reliability 

of the model in RUL prediction.  

Support Vector Machine and Extreme Learning 

Machine algorithms are used to develop the proposed 

ensemble model. This is because of their high 

classification accuracy and good generalization 

performance respectively. Their working principles are 

discussed below. 

1) Extreme Learning Machine (ELM) 

Extreme learning machine is a single-hidden layer 

feedforward neural network first proposed by Huang [23]. 

Its learning process is faster compared to other 

feedforward neural networks. Fig.1 illustrates the 

structure of ELM. It consists of input neurons, hidden 

neurons and output neurons. The input vector 𝑥𝑗 is fed to 

the input neuron 𝑗, which links it to the hidden neuron 𝑙 
with an input weight 𝑎𝑙. The corresponding hidden neuron 

𝑙 is linked to the output neuron by an output weight 𝛽𝑙. 

The input weights and the hidden layer biases 𝑏𝑙 are 

randomly generated while the output weight is obtained 

by a generalized inverse operation of the hidden layer 

output matrix [23]. 

 
Fig. 1. Structure of ELM [23] 

 

2) Support Vector Machine (SVM) 

Support vector machine is a supervised MLA that solves 

binary data classification problems by finding a 

hyperplane that separates the data into classes [24]. 

Support vectors lie on the bounding planes which are 

parallel to the hyperplane. SVM aims at maximizing the 

distance between the two bounding planes by minimizing 

the vector orthogonal to the hyperplane [25].  

A kernel function is used to map features into a higher 

dimensional feature space [26]. This allows for 

construction of a hyperplane in the higher dimensional 

feature space without explicitly performing calculations 

in the feature space for data that is not linearly separable 

[26]. The Radial basis function (RBF), a kernel function 

used for this research is given by Equation 5. 

𝐾(𝑥𝑖 , 𝑥𝑗) = exp (−𝛾 ||𝑥𝑖 − 𝑥𝑗||
2

) (1) 

 

where 𝛾 is a tunable kernel parameter. 𝐶, a regularization 

parameter that controls trade-offs between maximizing 
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the margin and minimizing misclassification is also tuned 

during training to provide better regularization. Large 

values of 𝐶 lead to overfitting while small values lead to 

misclassification [26]. Optimization of these parameters 

is crucial on the accuracy of the predicted RUL.  

Extensive research has been done on methods of 

estimating RUL of turbofan engines. However, the aspect 

of combining various ensembling techniques has not been 

fully explored. Modeling using more than one ensemble 

technique diversifies the developed model increasing its 

accuracy. This paper focuses on investigating the effect of 

modeling using two ensemble techniques; ensemble 

based on similar datasets with varying initial wear 

conditions and ensemble based on different machine 

learning algorithms. HI-based RUL prediction technique 

discussed in Section III is used.  

3. Methodology 

This section presents the methodology used as illustrated 

in Fig. 2. It contains two major phases; training phase and 

the testing phase. During the training phase, the raw data 

signals were processed to extract useful information 

regarding fault propagation. The machine learning 

algorithm then learned the relationship between the 

processed training data and the health index, defined as 

the target. As a result, a predictive model was developed. 

The testing or online prognostics phase involved use of 

processed test dataset as the input to the developed 

predictive model. The predicted health index was then 

mapped to RUL by extrapolation to the predefined failure 

threshold. Predictions from various models were then 

ensembled to obtain the final predicted RUL. 

 

 

 
Fig. 2. Methodology implementation procedure 

 

3.1 System and Data Description 

This paper considered dataset FD001 that describes the 

degradation of a simulated turbofan engine monitored 

using multiple sensors. The simulation model of the 

turbofan engine was developed using Commercial 

Modular Aero-Propulsion System Simulation 

(CMAPSS), a simulation tool developed at NASA and 

widely used in engine health monitoring research for 

simulating realistic large commercial turbofan engines 

[15]. 
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Fig. 3. Subroutines of a model and their interconnections for 

the turbofan engine simulated in CMAPSS [15] 

 

A model of a 90,000 lb thrust engine [15] illustrated in 

Fig. 3, was developed and simulations run for operations 

at altitude range of between 0 and 42 000 ft., Mach 

number (speed) range of 0 to 0.84, and Throttle Resolver 

Angle (TRA) range of 20 to 100. The CMAPSS 

simulation model was embedded in MATLAB Simulink. 

The software had 14 inputs and generated 21 outputs that 

were available for analysis. 

The simulation model was specifically used to 

characterize degradation in engine performance due to 

wear and tear based on the usage pattern of the engines. 

Unknown variance in the initial level of wear and random 

noise were introduced to represent system variability as is 

the case in real life application. Each engine started with 

different degrees of initial wear and manufacturing 

variation, which was unknown to the user, and was in 

operation until the failure threshold was reached. The 

failure threshold was used to define the end-of-life 

beyond which the unit was considered to have failed [15]. 

Dataset FD001 consisted of 100 training units, 100 

testing units, and a file recording the actual RUL of the 

100 testing units. Each training unit was run to failure, 

while the testing unit was stopped at some random point 

prior to its failure. Every engine had 21 sensors collecting 

different measurements related to the engine state at 

runtime with the data being of the time series nature as 

presented in Table I. At the start of the time series, the 

engine operated normally but after certain number of 

cycles, a fault developed in the engine which then 

gradually failed. 

Table I 

PMH08 challenge dataset parameters available to       

participants as sensor data [27] 

 

3.2 Data Processing 

Data processing techniques used included; data 

normalization, data smoothing and feature selection. The 

z-score of normalization, Equation 2, was adopted as it 

handles outliers well. Data normalization increased 

consistency and made the process of mapping inputs to 

the target during modeling more efficient. 

𝑧 =
𝑥 − 𝜇

𝜎
 (2) 

where 𝑥 is the dataset before normalization, 𝜇 and 𝜎 are 

the mean and standard deviation for the corresponding 

variable respectively, and 𝑧 is the normalized dataset.  

Data smoothing was done to remove noise from the 

data allowing important patterns/trends to be revealed as 

illustrated in Fig.4. Local Regression Smoothing 

technique was used being more robust compared to the 

moving average approach.  
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Fig. 4. Effect of data smoothing 

 

Feature selection was done to identify a smaller subset 

from the main feature set. This aimed to reduce 

redundancy. A monotonicity function, Equation 3, was 

used to remove any features that had a low monotonic 

value as they did not represent a clear trend of fault 

propagation [28]. 

𝑀 = |
𝑛𝑜. 𝑜𝑓 

𝑑𝑥

𝑑𝑡
> 0 − 𝑛𝑜. 𝑜𝑓

𝑑𝑥

𝑑𝑡
< 0

𝑛 − 1
| (3) 

where 𝑛 is the number of observations in a feature and 

𝑑𝑥 𝑑𝑡⁄  is the derivative of the feature variables with 

respect to the cycles for the engine. The value of M ranged 

between 0 and 1 with M=1 representing highly monotonic 

features and M=0 representing non-monotonic features.  

From the given training datasets with 26 variables, 

those selected for training had a monotonic value greater 

than 0.25. The time variable together with sensors 

2,3,4,7,8,9,11,12,13,14,15,17,20 and 21 where used as the 

training dataset. Fig. 5 compares the degradation trends of 

variables with high and low monotonic values. 

 

 
Fig. 5. Variance in monotonic value 

  

3.3 RUL Modelling and Ensemble 

Support Vector Machine and Extreme Machine Learning 

Algorithm were used for modeling. This is based on their 

high classification accuracy and good generalization 

capabilities respectively, upon review. Parameter 

optimization of the MLAs was done to yield a minimized 

generalization error. This maximized the margin over the 

hyperplane coefficients and minimized an estimate of the 

generalization error over the set of kernel parameters. 

Upon implementation, the optimal values of 𝐶 and 𝛾 

where found to be 1 and 8 respectively. 

 

3.4 RUL Predicting Technique 

A comparison of the direct RUL predicting technique 

and the HI-based RUL predicting technique was done to 

select the best performing technique. When modeling 

using the direct RUL predicting technique, the MLA 

learned the relationship between the processed training 

data and the RUL used as the target. The output from the 

model when test dataset was used as input to the model 

was the predicted RUL as illustrated in Fig. 6.  
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Fig. 6. Direct RUL prediction technique 

 

HI-based RUL predicting technique, illustrated in Fig 

7, used the health index as the target during the training 

phase. During the testing phase, the predicted HI was 

mapped to the corresponding RUL to establish its 

predicted end of life.  

 
Fig. 7. HI-based RUL prediction technique 

 

The HI was defined as exponential since most systems 

experience exponential decay to represent system 

degradation as shown in Fig. 8. The exponential curve 

fitting tool in MATLAB was employed to define the 

propagation of the HI. The generic form of an exponential 

model for 1-D data is given by Equation 4. 

 

𝑧 = 𝑎. exp(𝑏. 𝑡 + 𝑐) (4) 

where 𝑎, 𝑏 and 𝑐 are parameters learned during 

exponential curve fitting. 

 

 
 
Fig. 8. System life model [29] 

 

AutoRegressive modeling (AR) was used to map the 

predicted HI to the corresponding RUL. Given that the 

test dataset was truncated, it did not get to the set 

threshold where the engine was considered to have 

reached end of life. The modeling sequence represented 

by Equation 5 was established to each engine’s predicted 

HI values to obtain the degradation trend. 

𝐇𝐈𝐢 = ∑ 𝐚𝐤𝐱𝐢−𝐤 + 𝐞𝐢    𝐢 = 𝟏, 𝟐 … 𝐧

𝐦

𝐤=𝟏

(𝟓) 

where 𝑎𝑘 are the model parameters, 𝑚 is the model order, 

𝑒𝑖 is the residual of the model and 𝑛 is the number of data 

points in HI. The AR model parameters for a sample unit 

were determined using the Yule-Walker method [30] and 

results presented in Table II. Model order 2 was selected 

as the optimal order since the residual did not change 

significantly when the model order was increased 

afterwards.  
TABLE II 

AR model parameters for a sample unit  

Model 

order 

Model parameters Model 

residual 

1 [1, -0.98] -0.9813 

2 [1, -0.98,9.11 e-15, 2.22e-05] 2.18e-05 

3 [1, -0.98,9.11 e-15, 2.22e-05] 2.22e-05 

4 
[1, -0.98,9.11 e-15, -2.68e-15, 

2.27e-15] 

2.26e-05 

5 [1, -0.98,9.11 e-15, -2.68e-15, 

2.46e-15,2.31e-05] 

2.31e-05 
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The first section of Fig. 9 represents the predicted HI, 

with the second section being the corresponding 

extrapolation to the set threshold of 1. The RUL was then 

defined as the difference in number of cycles between the 

current time 𝑡𝑐 and the time at end of life of the engine 

𝑡𝐸𝑂𝐿. 

 

 
 

Fig. 9. Autoregressive modeling for turbofan engine 

  

3.5 Ensemble Techniques 

Ensembling was done to aggregate outputs of various 

base learner models. Where some predicting models had 

early predictions and others late predictions, this strategy 

optimized the RUL predictions. Ensemble based on 

similar datasets with varying initial wear conditions was 

implement first for each modeling MLA. Further 

ensemble based on different MLAs was then done.  

Fig. 10 illustrates ensembling technique based on 

similar datasets with varying initial wear conditions. 

Since the training dataset had 100 similar units (engines), 

100 predicting models were developed using a common 

MLA. During the testing phase, the test data for each unit 

was used as input to each of the developed models and the 

outputs ensembled. Simple averaging was used to obtain 

the final predicted RUL for this ensemble strategy 

 

 
Fig. 10. Ensemble based on similar datasets with varying 

initial wear conditions 

 

 Further ensembling based on different MLAs 

illustrated in Fig. 11 used weighted averaging described 

by Equation 6, to aggregate the outputs.  

 

𝑅𝑈𝐿𝑒𝑛𝑠 =
∑ 𝑤𝑖 𝑅𝑈𝐿𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

(6) 

where 𝑅𝑈𝐿𝑖 is the RUL estimated by method 𝑖, 𝑤𝑖 is the 

weight assigned to method i and n is the number of MLAs. 

 

 
Fig. 11. Ensemble based on different MLAs 
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3.4 Performance Evaluation 

The prognostics metrics selected for performance 

evaluation of the developed model were Mean Absolute 

Error, Mean Squared Error and the Score function. This 

was based on metrics used by other researchers to allow 

for ease of comparison of obtained results. 

3.4.1 Mean Absolute Error (MAE) 

For this research scope, error was defined as the 

difference between the Actual Time to Failure (ATTF) 

and Estimated Time to Failure (ETTF). 

𝐸 = 𝐴𝑇𝑇𝐹 − 𝐸𝑇𝑇𝐹 (7) 
 

Absolute error; 

|𝐸| = |𝐴𝑇𝑇𝐹 − 𝐸𝑇𝑇𝐹| (8) 
 

The Mean Absolute Error (MAE) was calculated as the 

average of the absolute error terms for all the 100 units 

under consideration.  

𝑀𝐴𝐸 =
1

𝑛
∑|𝐸|

𝑛

𝑖=1

(9) 

 

3.4.2 Mean Square Error (MSE) 

With the ATTF and ETTF, the MSE was calculated using 

Equation 10. A higher MSE score represented a larger 

average prediction error. 

𝑀𝑆𝐸 =
1

𝑛
∑ 𝐸2

𝑛

𝑖=1

(10) 

 

3.4.3 Score function ( [27]) 

The score function is a metric score of estimated 

calculations and a weighted sum of RUL errors. In either 

an early or late case, the penalty grows exponentially with 

increasing error. The asymmetric preference is controlled 

by user-defined acceptable early and late parameters, 𝑎1 

and 𝑎2, in the scoring function described below. 

 

𝑆 = 𝑠1 + 𝑠2 (11) 
 

𝑠1(𝐸 < 0) = ∑ 𝑒
−(

𝐸

𝑎1
)

𝑛

𝑖=1

(12) 

 

𝑠2(𝐸 ≥ 0) = ∑ 𝑒
(

𝐸

𝑎2
)
  

𝑛

𝑖=1

(13) 

 

 

where 𝑆 is the computed score, 𝑛 is the number of 

predicted units, and 𝐸 is the error term. In this work, 

values of 𝑎1 and 𝑎2 being 10 and 13 respectively were 

adopted based on the PMH guidelines so that late 

predictions are penalized more compared to early 

predictions.  

4. Results and Discussion 

For consistent comparison of results, the different MLAs 

were evaluated in the same way using the metrics 

presented in Section 3, on dataset FD001. For each RUL 

prediction, the results were compared with the actual RUL 

values provided. Further comparison was done with 

results obtained from other proposed prognostics 

approaches using the same dataset.  

    From Table III, the use of HI-based RUL prediction 

had better performance compared to the direct RUL 

predicting technique. When modeling using ELM, HI-

based technique had a lower MAE of 31.16 compared to 

44.59 when direct RUL prediction technique was used. 

The MSE reduced by 50% when modeling using ELM. 

The score value of SVM modeling also reduced from 

1.0e+04 to 951. This is attributed to its normalized nature 

that was able to account for varying lifetimes of various 

engines during modeling.  

 
TABLE III 

Performance comparison of RUL predicting techniques 

Performance 

metric 

MLA Direct 

RUL 

predicting 

technique 

HI-based 

RUL 

predicting 

technique 

MAE SVM 30.84 28.65 

ELM 44.59 31.16 

MSE SVM 1449 1436 

ELM 3182 1603 

Score 

function 

SVM 1.0e+04 951 

ELM 1.06e+06 558 

 

Ensemble based on similar dataset with varying initial 

wear condition had better performance compared to 

single modeling as presented in Table IV. For modeling 

using SVM, the MSE had a 47% decrease with the score 

value also reducing by 83%. This ensemble technique was 

able to model various degrading trends associated with 

the varying initial wear conditions resulting in increased 

accuracy of the RUL predictions. 

For further ensembling based on different MLAs, the 

score function was used to assign weights to the 

predicting models having a better description of effects of 

early and late predictions. The model developed using 

ELM was assigned weight corresponding to 55% while 

the predicting model developed using SVM had a weight 

equivalent to 45%. The MAE and MSE values increased 

with comparisons to results obtained when only SVM was 

used. However, the final score value obtained of 115 was 
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lower compared to that of either SVM or ELM. This 

increase in accuracy is attributed to the combined high 

classification accuracy of SVM and good generalization 

capabilities of ELM. 

 
TABLE IV 

Effect of ensemble technique based on HI-based RUL 

predicting technique 

Performance 

metric 

MLA Single 

predicting 

model 

Ensemble 

based on 

similar 

datasets 

Further 

ensemble 

based on 

different 

MLAs 

MAE SVM 28.65 21.47 22.39 

ELM 31.16 23.81 

MSE SVM 1436 762 832 

ELM 1603 939 

Score 

function 

SVM 951 155 115 

ELM 558 129 

 

Ensemble based on different MLA aimed at 

maximizing the benefits associated with both MLAs. Fig. 

12 represents an instance where SVM had better 

performance than ELM. This is attributed to the high 

classification accuracy of SVM outperforming the good 

generalization capabilities of ELM. The vice versa is 

presented in Fig. 13. Modeling using an ensemble of the 

two models demonstrated an accuracy of 100% for engine 

64 as presented in Fig. 14. The high accuracy levels 

ensure effective maintenance strategy are adopted to 

avoid the consequences associated with unplanned engine 

failure. 

 

 

 

 
Fig. 12. RUL prediction for engine 78 

 

 
Fig. 13. RUL prediction for engine 64 
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Fig. 14. Ensemble modeling for engine 64 

 
TABLE V 

Benchmarking with other approaches based on dataset FD001 

MLA Score 

value 

ELM [31] 267 

Light Gradient Boost [32] 250 

Semi-supervised Deep Architecture [17] 231 

Ensemble of SVM and ELM 115 

 

Comparison of obtained results with the current best 

performing prognostics approaches in literature using the 

same dataset is presented in Table V. These approaches 

used a single MLA. Results obtained from the developed 

model for individual MLAs still outperformed these 

approaches. ELM and SVM had score values of 129 and 

155 respectively. This is attributed to the high accuracy 

levels associated with ensemble based on similar datasets 

with varying initial wear conditions. Combining two 

ensemble approaches demonstrated to have even higher 

accuracy with a score value of 115 with comparison to the 

other approaches. 

5. Conclusion  

In this paper, the superiority of using ensemble 

approach at two stages; ensemble based on similar 

datasets with varying initial wear conditions and 

ensemble based on different MLAs has been 

demonstrated. The developed model was implemented 

using NASA turbofan engine dataset FD001. The results 

indicate an increase in accuracy compared to other 

proposed prognostics approaches in literature. The 

obtained score value of 115 is lower compared to other 

reviewed approaches with score values above 200, an 

indication of increased accuracy in RUL prediction. 

Future research will explore optimization of the number 

of models ensembled based on similar datasets with the 

aim of reducing computational load. The feasibility and 

effectiveness of the developed model to other applications 

will also be analyzed. 
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